JPS6052079A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS6052079A
JPS6052079A JP58161307A JP16130783A JPS6052079A JP S6052079 A JPS6052079 A JP S6052079A JP 58161307 A JP58161307 A JP 58161307A JP 16130783 A JP16130783 A JP 16130783A JP S6052079 A JPS6052079 A JP S6052079A
Authority
JP
Japan
Prior art keywords
submount
semiconductor laser
bonded
laser chip
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58161307A
Other languages
Japanese (ja)
Inventor
Masahiro Kume
雅博 粂
Kunio Ito
国雄 伊藤
Yuichi Shimizu
裕一 清水
Masaru Wada
優 和田
Takeshi Hamada
健 浜田
Fumiko Tajiri
田尻 文子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58161307A priority Critical patent/JPS6052079A/en
Publication of JPS6052079A publication Critical patent/JPS6052079A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/021Silicon based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To lessen rise of the heat resistance and the series resistance as well as to upgrade the processing precision by a method wherein a semiconductor laser chip is bonded to a Cu heat sink through an Si submount. CONSTITUTION:Sn 7 is evaporated on the surface of an Si wafer 1 after Ni/Ag were evaporated thereon, and following that, Au 8 is evaporated. A semiconductor laser chip 12 is bonded on each of individual submounts obtained by performing a dicing processing on the wafer 1 and the submount is bonded on a Cu heat sink 9 performed a gold plating of Au. According to such as way, rise of the heat resistance and the series resistance can be lessened, and at the same time, the processing precision can be upgraded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光通信・光情報処理等で用いられる半導体レー
ザ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor laser device used in optical communication, optical information processing, etc.

従来例の構成とその間I点 近年、半導体レーザは実用化の域に達し、小型軽量・高
効率のために様々な分野に応用されている。
Conventional Structure and Point I In recent years, semiconductor lasers have reached the level of practical use and are being applied to various fields due to their small size, light weight, and high efficiency.

ところで、半導体レーザはそのサイズが0.3 X O
,3X O,1wn程度であり、他のレーザに比べ高効
率とはいえ、レーザ発振動作中に発生する熱を効率よく
放熱してやらなければ発熱により著しく信頼性が損なわ
れてしまう。従って熱抵抗が出来るだけ小さくなる様に
ヒートシンクにボンディングしなければならない。この
ために通常は基板側を上にし、エピタキシャル成長側を
下にしてボンディングを行なっている。熱抵抗が最小に
なる様にするには、半導体レーザチップを直接半田でC
u ヒートシンクにボンディングするのが一番良いが、
量産には不利である。
By the way, the size of a semiconductor laser is 0.3×O
, 3X O, 1wn, and although it has higher efficiency than other lasers, unless the heat generated during laser oscillation is efficiently dissipated, the heat generation will significantly impair reliability. Therefore, it is necessary to bond to the heat sink so that the thermal resistance is as small as possible. For this purpose, bonding is usually performed with the substrate side facing up and the epitaxial growth side facing down. To minimize thermal resistance, solder the semiconductor laser chip directly to C.
u It is best to bond to the heat sink, but
This is disadvantageous for mass production.

そこで従来ではサブマウントにCu f用いていた。C
u サプマウン)k用いると熱抵抗の増大は少なくてす
むが、加工精度が上がらないのと熱膨張係数がGaAs
 (6,9X 10−6/’C)とCu (1,4X1
0−5/℃)では大きく異なるので、半田材にSn な
どのハードなものは用いることが出来ず、In等のソフ
トな半田を用いなくてはならない。ところがIn f半
田に用いると融点が低い(156℃)ためにチップが動
く恐れがあり信頼性に欠ける。
Therefore, in the past, Cuf was used for the submount. C
If u submount) k is used, the increase in thermal resistance will be small, but the machining accuracy will not improve and the coefficient of thermal expansion is higher than that of GaAs.
(6,9X 10-6/'C) and Cu (1,4X1
0-5/°C), so a hard solder such as Sn cannot be used, and a soft solder such as In must be used. However, when used as Inf solder, the chip may move due to its low melting point (156° C.), resulting in a lack of reliability.

発明の目的 本発明は上記欠点に鑑み、Cuサブマウントより加工が
し易く、加工精度が良く、GaAsと熱膨張係数が近く
て熱伝導率がCuに比べそれ程悪くないサブマウント材
料を提供するものである。
Purpose of the Invention In view of the above drawbacks, the present invention provides a submount material that is easier to process than a Cu submount, has better processing accuracy, has a coefficient of thermal expansion close to that of GaAs, and has a thermal conductivity that is not so bad as compared to Cu. It is.

発明の構成 この目的全達成するために本発明のサブマウントはSi
 f用いており、Si は熱膨張係数が2.4X10 
/rr、であるのでGaAsレーザチップはSn f用
いてボンディングすることが出来、信頼性を上げること
ができる。
Structure of the Invention In order to achieve all of these objects, the submount of the present invention is made of Si.
f is used, and Si has a thermal expansion coefficient of 2.4X10
/rr, so the GaAs laser chip can be bonded using Sn f, improving reliability.

実施例の説明 以下本発明の一実施例について図面を参照し々から説明
する。第1図はサブマウントに用いるSiウェハーの斜
視図である。sb ドープn型で(1ω]面ケ有し、厚
さが200〜500μm1比抵抗(ρ)0.7〜1.8
X10−2Ωcmウェハーの両面に、基板加熱温度20
0℃、真空度2X10 Torr以下でCr3’160
0人、 Ni −Cr 4 f 500人魚着し、続い
てNiSを3000人r Ag6を3000人蒸着人蒸
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of a Si wafer used for a submount. sb Doped n-type with (1ω) plane, thickness 200-500 μm 1 Specific resistance (ρ) 0.7-1.8
On both sides of the X10-2 Ωcm wafer, the substrate heating temperature was 20
Cr3'160 at 0℃, vacuum level 2X10 Torr or less
0 people, Ni - Cr 4 f 500 people, followed by 3000 people NiS, 3000 people vaporizing Ag6.

半導体レーザチ・ンプとのボンディングにはSnを用い
るためにNi/Ag蒸着後のSi ウェハー1の表向に
Sn 7 f 1.871m厚で蒸着し、引き続いてA
u 8 f:0.2 μm蒸着する( Au フラッシ
ュ)。
In order to use Sn for bonding with the semiconductor laser chip, Sn 7 f was evaporated to a thickness of 1.871 m on the surface of the Si wafer 1 after Ni/Ag evaporation, and then A
u8f: Deposit 0.2 μm (Au flash).

Au 8はSn 7表面の酸化を防ぐためである。蒸着
条件は基板温度が室温で、真空度5 X 10−6To
rr以下とする。
The purpose of Au 8 is to prevent oxidation of the Sn 7 surface. The deposition conditions were a substrate temperature of room temperature and a degree of vacuum of 5 x 10-6To.
rr or less.

このSi ウェハーi1.OX1.2mm角にダイシン
グ加工し個々のサブマウントとする。サブマウントに半
導体レーザチップ12をボンディングし、そのサブマウ
ントiIn半田を用いて、Au メッキしたCu ヒー
トシンク9上にデンディングした様子を第2図に示す。
This Si wafer i1. Dice it into OX1.2mm square pieces to make individual submounts. FIG. 2 shows how the semiconductor laser chip 12 is bonded to the submount and then dented onto the Au-plated Cu heat sink 9 using the submount iIn solder.

Si サブマウントの厚さは薄い程熱抵抗の点で好まし
いが、取り扱いが難しくなる。そこでサブマウントの厚
さは熱抵抗と電気抵抗から決める必要がある。第3図は
1.0 mm Xl、2Mの大きさで比抵抗が0.01
Ωcm のSi サブマウントの厚さく1)に対する半
導体レーザの熱抵抗(5)の変化を、捷だ第4図にサブ
マウントの厚さと電気抵抗(R)の関係を示す。第3図
より500μm厚のサブマウントヲ用いても50’C/
W程度の熱抵抗で用いることが出来、第4図より直列抵
抗の増加は0.16Ω以下に抑えられることが分り、本
発明のSt サブマウントは十分実用することが出来る
The thinner the Si submount is, the better it is in terms of thermal resistance, but it becomes more difficult to handle. Therefore, the thickness of the submount must be determined based on thermal resistance and electrical resistance. Figure 3 shows the size of 1.0 mm Xl, 2M, and the specific resistance is 0.01.
Figure 4 shows the relationship between the submount thickness and the electrical resistance (R). From Figure 3, even if a 500 μm thick submount is used, the temperature will reach 50'C/
It can be used with a thermal resistance on the order of W, and it can be seen from FIG. 4 that the increase in series resistance can be suppressed to 0.16Ω or less, so that the St 2 submount of the present invention can be fully put to practical use.

発明の効果 以上の様に本発明はSi サブマウントヲ用い、半導体
レーザチップを逆さ方向にボンディングすることによっ
て熱抵抗、直列抵抗の上昇を少なくし、ハードソルダー
による半導体レーザチップに加わる熱応力の問題を緩和
することができ、その実用的効果は大なるものがある。
Effects of the Invention As described above, the present invention uses a Si submount to bond the semiconductor laser chip upside down, thereby reducing the increase in thermal resistance and series resistance, and alleviating the problem of thermal stress applied to the semiconductor laser chip due to hard solder. It can be done, and its practical effects are great.

また加工精度が良く、量産に向いている利点がある。It also has the advantage of good processing accuracy and is suitable for mass production.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるSt サブマウント
の断面図、第2図は上記サブマウントヲ用いて半導体レ
ーザチップをヒートシンク上にボンディングした半導体
レーザ装置を示す図、第3図は半導体レーザの熱抵抗の
サブマウント厚依存性を示す図、第4図は上記サブマウ
ントの抵抗のサブマウント厚依存性を示す図である。 1・・・・・・sb ドープn型5t(100)ウェハ
ー、2・・・・・・St ウェハーの表面(レーザチッ
プをボンディングする側)、3・・・・・500人厚C
r 、4・・・・・・500人厚Ni −Or 、 5
 ・−・−300OA厚Ni 、 6・・・・・3oo
O人厚Ag 、 T・・・・・・1.8 μm厚Sn 
、 8・−・・0.2 μm 1lAu 、 9・・・
・・・Cu ヒートシンク、10・・・・・・Au メ
ッキ層、11・・・・・・In半田層、12・・・・・
・半導体レーザチップ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第4図 尺 fL1 」/ 6./ニ ア・! 7′ 、/ 413
FIG. 1 is a cross-sectional view of an St submount in an embodiment of the present invention, FIG. 2 is a diagram showing a semiconductor laser device in which a semiconductor laser chip is bonded onto a heat sink using the above submount, and FIG. FIG. 4 is a diagram showing the submount thickness dependence of the resistance of the submount. 1...sb Doped n-type 5t (100) wafer, 2...St Wafer surface (side to which the laser chip is bonded), 3...500 thickness C
r, 4...500 thickness Ni-Or, 5
・-・・300OA thickness Ni, 6・・・・・3oo
O thickness Ag, T...1.8 μm thickness Sn
, 8...0.2 μm 1lAu, 9...
...Cu heat sink, 10...Au plating layer, 11...In solder layer, 12...
・Semiconductor laser chip. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 4 Scale fL1'' / 6. /near·! 7', / 413

Claims (2)

【特許請求の範囲】[Claims] (1)半導体レーザチ・ソプヲSi サプマウン[1−
介してCu ヒートシンクにボンディングすることを特
徴とした半導体レーザ装置。
(1) Semiconductor laser chip Si submount [1-
A semiconductor laser device characterized in that it is bonded to a Cu heat sink through a Cu heat sink.
(2) St サブマウントが、厚さ1oo〜5ooμ
m。 n型sb ドープ、比抵抗2 X 10−0−2Q以下
のStウェハの両面にCr /N i /Ag f蒸着
し、半導体レーザチップをボンディングする側にSnと
Au f蒸着してなるSt サブマウントであることを
特徴とする特許請求の範囲第1項記載の半導体レーザ装
置。
(2) St submount has a thickness of 1oo to 5ooμ
m. St submount made by vapor-depositing Cr/Ni/Agf on both sides of an St wafer doped with n-type SB and having a resistivity of 2×10-0-2Q or less, and vapor-depositing Sn and Auf on the side to which a semiconductor laser chip is bonded. A semiconductor laser device according to claim 1, characterized in that:
JP58161307A 1983-09-01 1983-09-01 Semiconductor laser device Pending JPS6052079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58161307A JPS6052079A (en) 1983-09-01 1983-09-01 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58161307A JPS6052079A (en) 1983-09-01 1983-09-01 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS6052079A true JPS6052079A (en) 1985-03-23

Family

ID=15732613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58161307A Pending JPS6052079A (en) 1983-09-01 1983-09-01 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS6052079A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5016083A (en) * 1990-01-12 1991-05-14 Mitsubishi Denki Kabushiki Kaisha Submount for semiconductor laser device
JPH03143900A (en) * 1989-10-25 1991-06-19 Mitsubishi Corp Unmanned cart and transportation utilizing same
US5052005A (en) * 1988-12-19 1991-09-24 Rohm Co., Ltd. Method of mounting a laser diode unit
JPH03102752U (en) * 1990-02-08 1991-10-25
US5214660A (en) * 1990-09-25 1993-05-25 Fujitsu Limited Laser diode module and method for fabricating the same
US5233580A (en) * 1988-12-19 1993-08-03 Rohm Co., Ltd. Laser diode unit welded to a mounting member by laser light
US5285463A (en) * 1991-12-03 1994-02-08 Rohm Co., Ltd. Semiconductor device
JP2002158390A (en) * 2000-11-21 2002-05-31 Sharp Corp Semiconductor laser device and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5052005A (en) * 1988-12-19 1991-09-24 Rohm Co., Ltd. Method of mounting a laser diode unit
US5233580A (en) * 1988-12-19 1993-08-03 Rohm Co., Ltd. Laser diode unit welded to a mounting member by laser light
JPH03143900A (en) * 1989-10-25 1991-06-19 Mitsubishi Corp Unmanned cart and transportation utilizing same
US5016083A (en) * 1990-01-12 1991-05-14 Mitsubishi Denki Kabushiki Kaisha Submount for semiconductor laser device
JPH03102752U (en) * 1990-02-08 1991-10-25
US5214660A (en) * 1990-09-25 1993-05-25 Fujitsu Limited Laser diode module and method for fabricating the same
US5285463A (en) * 1991-12-03 1994-02-08 Rohm Co., Ltd. Semiconductor device
JP2002158390A (en) * 2000-11-21 2002-05-31 Sharp Corp Semiconductor laser device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP3509809B2 (en) Submount and semiconductor device
JP3882712B2 (en) Submount and semiconductor device
US10833474B2 (en) CTE-matched silicon-carbide submount with high thermal conductivity contacts
EP0460785B1 (en) Semiconductor device having a heat sink
JPS6052079A (en) Semiconductor laser device
JPH09172224A (en) Submount for phototransistor and its mounting method
JP2006032406A (en) Semiconductor laser device
JPH03211860A (en) Semiconductor package
US3071854A (en) Method of producing a broad area low resistance contact to a silicon semiconductor body
JP2001230498A (en) Group iii nitride-base compound semiconductor laser
JPS59172787A (en) Submounting device for semiconductor laser
JPH06188516A (en) Semiconductor device and fabrication thereof
JPS60157284A (en) Semiconductor device
JP2503920B2 (en) Optical semiconductor device and manufacturing method thereof.
JPS59210687A (en) Semiconductor laser device
JPS60153188A (en) Semiconductor laser output device utilizing heat pipe
JPH04283948A (en) Submount for optical semiconductor device
JPH0513843A (en) Heat dissipating parts and semiconductor laser equipped with said heat dissipating parts
JPS59189625A (en) Manufacture of semiconductor device
JPH041742Y2 (en)
USH434H (en) Contacts to III-V semiconductors
JPS5966182A (en) Manufacture of semiconductor device
US3709729A (en) Method of making nickel chrome ohmic contact to p-type silicon carbide
JPS6118188A (en) Semiconductor laser device
JPS61135130A (en) Manufacture of semiconductor device