JPS60157284A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPS60157284A JPS60157284A JP59011828A JP1182884A JPS60157284A JP S60157284 A JPS60157284 A JP S60157284A JP 59011828 A JP59011828 A JP 59011828A JP 1182884 A JP1182884 A JP 1182884A JP S60157284 A JPS60157284 A JP S60157284A
- Authority
- JP
- Japan
- Prior art keywords
- intermediate member
- layer
- solder
- substrate
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 66
- 239000000758 substrate Substances 0.000 claims abstract description 29
- 229910052802 copper Inorganic materials 0.000 claims abstract description 3
- 239000000463 material Substances 0.000 claims description 27
- 238000005219 brazing Methods 0.000 claims description 17
- 239000002184 metal Substances 0.000 claims description 16
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000000945 filler Substances 0.000 claims description 6
- 239000000853 adhesive Substances 0.000 claims description 3
- 230000001070 adhesive effect Effects 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 3
- 239000012212 insulator Substances 0.000 claims description 3
- 230000002457 bidirectional effect Effects 0.000 claims 2
- 229910052737 gold Inorganic materials 0.000 claims 2
- 229910052750 molybdenum Inorganic materials 0.000 claims 2
- 229910052759 nickel Inorganic materials 0.000 claims 2
- 229910052697 platinum Inorganic materials 0.000 claims 2
- 229910052709 silver Inorganic materials 0.000 claims 2
- 229910052804 chromium Inorganic materials 0.000 claims 1
- 229910052763 palladium Inorganic materials 0.000 claims 1
- 229910052721 tungsten Inorganic materials 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 14
- 229910000679 solder Inorganic materials 0.000 abstract description 13
- 229910015363 Au—Sn Inorganic materials 0.000 abstract description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 abstract description 2
- 229910020220 Pb—Sn Inorganic materials 0.000 abstract description 2
- 239000010949 copper Substances 0.000 abstract description 2
- 230000008961 swelling Effects 0.000 abstract description 2
- 238000009736 wetting Methods 0.000 abstract 2
- 239000000470 constituent Substances 0.000 abstract 1
- 238000007665 sagging Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 25
- 230000010355 oscillation Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 239000010931 gold Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000001465 metallisation Methods 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910017401 Au—Ge Inorganic materials 0.000 description 1
- 241000218202 Coptis Species 0.000 description 1
- 235000002991 Coptis groenlandica Nutrition 0.000 description 1
- 229910019590 Cr-N Inorganic materials 0.000 description 1
- 229910019588 Cr—N Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/62—Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/4501—Shape
- H01L2224/45012—Cross-sectional shape
- H01L2224/45015—Cross-sectional shape being circular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/4847—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
- H01L2224/48471—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area being a ball bond, i.e. wedge-to-ball, reverse stitch
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01015—Phosphorus [P]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0235—Method for mounting laser chips
- H01S5/02355—Fixing laser chips on mounts
- H01S5/0237—Fixing laser chips on mounts by soldering
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
- Die Bonding (AREA)
- Led Device Packages (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は半導体装置、特に熱放射性に優れ、安定した性
能の得られる半導体装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor device, and particularly to a semiconductor device that has excellent heat radiation and provides stable performance.
半導体装置の一例である半導体レーザ素子は、最近特に
光通信の分野で注目されている。これは半導体以外の発
光素子に比べて出力レベルが低い点を除けば、(1)低
電力駆動が可能、(2)直接変調が可能、(3)高効率
化が可能、(4)長寿命化が可能、(5)小形、軽量化
が可能、という種々の利点を有することに基づく。半導
体レーザ素子は例えばGaAs、GaP、GaA’RA
s、InGaAsP等で代表されるような■−■族化合
物や、PbSSe、Pb5nTe等で代表されるような
IV−Vl族化合物のごとき半導体単結晶材料からなり
、この材料中に形成されたPn接合に順方向電流を流し
、この際注入されたキャリヤの再結合により発光させ、
これにより生じた光の一部を反射鏡によって接合近傍の
発光領域中に帰還し、この帰還光がさらにキャリヤの再
結合を促進して新たな発光を促す、誘導放出過程をくり
返すことによってレーザ発振に至らしめようとするもの
である。Semiconductor laser elements, which are an example of semiconductor devices, have recently attracted attention, particularly in the field of optical communications. Other than the fact that the output level is lower than that of non-semiconductor light emitting devices, this has the following advantages: (1) low power driving possible, (2) direct modulation possible, (3) high efficiency possible, and (4) long life. (5) Small size and light weight. Semiconductor laser elements include, for example, GaAs, GaP, and GaA'RA.
A Pn junction formed in this material is made of a semiconductor single crystal material such as a ■-■ group compound represented by S, InGaAsP, etc., or a IV-Vl group compound represented by PbSSe, Pb5nTe, etc. A forward current is applied to the cell, and the injected carriers recombine to emit light.
A portion of the light generated by this is returned to the light emitting region near the junction by a reflecting mirror, and this returned light further promotes carrier recombination and new light emission. By repeating the stimulated emission process, the laser is emitted. This is intended to lead to oscillation.
この種の半導体レーザ素子の高率化をはかるためには、
レーザ発振に至るしきい値電流を下げることが有効であ
るが、このためには注入電流によって励起されたキャリ
ヤを発光領域に有効に閉じ込めることや誘導放出光を有
効に閉じ込め、光子とキャリヤの相互作用され促進せし
める必要がある。しかし、このような方策を施してもな
お発振しきい値電流密度は、例えば室温で連続発振させ
る場合には1〜3 K A / c♂程にも及ぶため、
当然のことながら接合部の発熱を伴なうこととなり、安
定的にレーザ発振さらるには半導体レーザ基体を効率的
に冷却、又は半導体レーザ基体で生じた熱を効率的に放
散させる必要がある。同時に、半導体レーザ素子の動作
及び休止にともなう発熱及び冷却のサイクルにより、半
導体レーザ基体と同基体を搭載するための支持部材との
間に両部材の熱膨張係数差に基づく熱歪によって接着界
面の熱疲労破壊、例えば接着層におけるクラックの発生
に至る。このような接着層は半導体レーザ基体の主要な
放熱経路の一部を兼ねでいること及び電気的な導体領域
を兼ねていて、レーザ基体自身の過熱、通電不能を生ず
るため、安定的なレーザ発振を続けることが困難となる
。In order to increase the efficiency of this type of semiconductor laser device,
It is effective to lower the threshold current that leads to laser oscillation, but to do so, it is necessary to effectively confine carriers excited by the injection current in the light emitting region, effectively confine stimulated emission light, and reduce the interaction between photons and carriers. It needs to be acted upon and promoted. However, even with such measures, the oscillation threshold current density still reaches about 1 to 3 KA/c♂ when continuous oscillation is performed at room temperature, for example.
Naturally, heat is generated at the joint, and in order to achieve stable laser oscillation, it is necessary to efficiently cool the semiconductor laser body or efficiently dissipate the heat generated in the semiconductor laser body. . At the same time, due to the heat generation and cooling cycles associated with the operation and rest of the semiconductor laser element, the bonding interface between the semiconductor laser substrate and the support member for mounting the substrate is caused by thermal strain due to the difference in the thermal expansion coefficients of both components. This leads to thermal fatigue failure, for example, the formation of cracks in the adhesive layer. Such an adhesive layer doubles as a part of the main heat dissipation path of the semiconductor laser body and also serves as an electrical conductor area, which may cause the laser body itself to overheat and become unable to conduct electricity, thus preventing stable laser oscillation. It becomes difficult to continue.
上述の問題点を克服するため、従来は第1図に示すよう
に、鋼材等からなる金属支持部材1上に熱伝導性に優れ
かつ半導体レーザ基体2と熱膨張係数が略近似したダイ
ヤモンド条片のごとき中間部材3を介して半導体レーザ
基体2を接着する構造がとられていた。この際、半導体
レーザ基体2は、レーザ素子と受光素子あるいはレーザ
素子と受光素子の間を中継する光フアイバケーブルとの
光結合を容易にするため、中間部材3の端部31に載置
されるとともに、放熱効率を高めるため発熱源となるp
n接合部21が放熱路に近くなるように配置され、ろう
材を用いて接着される。中間部材3には金属化層32が
設けられ中間部材3に対する接着強度が保持されると同
時にろう材に対するぬれ性が付与されている。中間部材
3は一般にAu−8iy Au−Ge、Au−5nの如
き金糸ソルダやP b −S n系はんだの如き材料に
より金属支持部材1上にろう付けされている。又、半導
体レーザ基体2には導電路構成部材5や当該部材5と半
導体レーザ基体2との電気的機械的接続を可能にする電
極層及び半導体レーザ基体2と中間部材3との電気的及
び機械的接続をするためろう材に対するぬれ性を付与す
る電極層が設けられている。半導体レーザ基体2と中間
部材3の間のろう材は上記ろう材と同質同系の物が用い
られる。In order to overcome the above-mentioned problems, conventionally, as shown in FIG. 1, a diamond strip having excellent thermal conductivity and having a coefficient of thermal expansion approximately similar to that of the semiconductor laser substrate 2 was placed on a metal support member 1 made of steel or the like. A structure was adopted in which the semiconductor laser substrate 2 was bonded via an intermediate member 3 such as the one shown in FIG. At this time, the semiconductor laser substrate 2 is placed on the end 31 of the intermediate member 3 in order to facilitate optical coupling between the laser element and the light receiving element or the optical fiber cable that relays between the laser element and the light receiving element. At the same time, in order to improve heat dissipation efficiency, p is used as a heat source.
The n-junction 21 is placed close to the heat radiation path and bonded using a brazing material. A metallized layer 32 is provided on the intermediate member 3 to maintain adhesive strength to the intermediate member 3 and at the same time provide wettability to the brazing material. The intermediate member 3 is generally brazed onto the metal support member 1 using a material such as gold thread solder such as Au-8iy Au-Ge or Au-5n or Pb-Sn based solder. Further, the semiconductor laser base 2 includes a conductive path forming member 5, an electrode layer that enables electrical and mechanical connection between the member 5 and the semiconductor laser base 2, and an electrical and mechanical connection between the semiconductor laser base 2 and the intermediate member 3. An electrode layer is provided that provides wettability to the brazing material in order to make a positive connection. As the brazing material between the semiconductor laser substrate 2 and the intermediate member 3, a material of the same quality and type as the above-mentioned brazing material is used.
更に、中間部材3上には上記半導体レーザ基体2以外に
導電路構成部材5に電気接続するための中継金属板6が
半導体レーザ基体2と同様に接着されている。Furthermore, in addition to the semiconductor laser base 2, a relay metal plate 6 for electrical connection to the conductive path forming member 5 is bonded on the intermediate member 3 in the same manner as the semiconductor laser base 2.
半導体レーザ基体2は通常エピタキシャル成長法や拡散
法によってpn接合を形成される関係上、発光領域は基
体の厚さ方向における中央部ではなく、表面に極めて近
い部分に形成される。ところが、放熱効率を高めるのに
半導体レーザ基体2のpn接合が形成されている側の面
を上述の中間部材3上にろう付けする構造をとるため、
次のような問題を生ずる。問題点の第1は半導体レーザ
基体2のろう付けによってレーザ光放出部の光路がしゃ
断される点、そして問題点の第2はレーザ光放出部が理
想的な反射面となるように壁開面で形成されていてpn
接合が露出しているため同接合がろう材により短絡され
る点である。このような問題を生ずる原因は、半導体レ
ーザ基体2、中間部材3の間のろう材接着部端部に放出
され、ろう材が盛上ることによる。Since a pn junction is usually formed in the semiconductor laser substrate 2 by an epitaxial growth method or a diffusion method, the light emitting region is formed not at the center in the thickness direction of the substrate but at a portion extremely close to the surface. However, in order to increase heat dissipation efficiency, a structure is adopted in which the surface of the semiconductor laser substrate 2 on which the pn junction is formed is brazed onto the above-mentioned intermediate member 3.
This causes the following problems. The first problem is that the optical path of the laser light emitting part is cut off by the soldering of the semiconductor laser base 2, and the second problem is that the laser light emitting part has to be cut in the wall so that it becomes an ideal reflecting surface. It is formed by pn
Since the bond is exposed, the bond is short-circuited by the brazing filler metal. The cause of such a problem is that the brazing material is discharged to the end of the bonded portion between the semiconductor laser substrate 2 and the intermediate member 3, and the brazing material bulges up.
本発明の目的は上述の問題点を改善し、性能の安定した
半導体装置を歩留りよく製造することの可能な構造を有
する半導体装置を提供することである。SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device having a structure that improves the above-mentioned problems and allows semiconductor devices with stable performance to be manufactured at a high yield.
上記目的を達成する本発明半導体装置は、互いに対向し
た一対の主面と上記両主面に対して直角な側面を有する
半導体基体が、互いに対向した一対の主面と上記両主面
に対して略直角な少なくとも1の側面を有する無機質絶
縁体又は無機質半導体からなる中間部材上に、半導体基
体と中間部材の側面が略同一平面上に位置するようにろ
う材を用いて接着された部分を有し、中間部材の側面の
少なくとも接着部の近傍に、上記ろう材に対するぬれ性
が付与された領域を具備していることを特徴とする。A semiconductor device of the present invention that achieves the above object has a semiconductor substrate having a pair of principal surfaces facing each other and a side surface perpendicular to the two principal surfaces. On an intermediate member made of an inorganic insulator or an inorganic semiconductor having at least one substantially right-angled side surface, a portion is bonded using a brazing material so that the semiconductor substrate and the side surface of the intermediate member are located on substantially the same plane. The intermediate member is characterized in that a side surface of the intermediate member is provided with a region imparted with wettability to the brazing material at least in the vicinity of the adhesive portion.
以下1本発明を実施例を用いて詳紬に説明する。 The present invention will be explained in detail below using examples.
第2図は本発明の一実施例の半導体レーザ素子を示す。FIG. 2 shows a semiconductor laser device according to an embodiment of the present invention.
図において、第1図と同一ないし同等の部分には第1図
と同、じ符号を用い、詳しい説明は省略する。In the figure, the same or equivalent parts as in FIG. 1 are denoted by the same reference numerals as in FIG. 1, and detailed description thereof will be omitted.
第2図において、金めつきを施した銅支持部材1上に、
G a A s上にエピタキシャル成長により形成され
たG a A (l A sを含む半導体レーザ基体2
(0,3mmX0.3mnX厚さ0.1mm)がSi
C条片からなる中間部材3を介して接着されている。こ
のSiC条片は0.8+nmX1.6nwnX厚さ0.
3であり、両主面には蒸着法により形成されたCr−N
i−Au多層金属化J132が設けられ、上記両主面に
対して略直角な側面31には金属化層32から延長して
設けられた同質の金属化層33が設けられている。半導
体レーザ基体2はA u −S n系ソルダにより中間
部材3上にダイボンディングされている。半導体レーザ
基体2の主面には最上層をAu層とする電極層が設けら
れている。又、中間部材3は支持部材1上にPb−8n
系はんだ材により接着されている。導電路構成部材5は
直径30μmのAu線からなり熱圧着法により半導体レ
ーザ基体2め上側の電極層から他の導電部材へと接続さ
れ、他方半導体レーザ基体2の下側の他の電気領域は金
めつきされた鋼中継板6を介して導電路構成部材5によ
り他の導電部材へと接続される。ここで、重要な点は中
間部材3の側面31に金属化層32から延長して設けら
れた金属化層33を有し半導体レーザ基体2と中間部材
3の間のろう材に対するぬれ性が付与されていることで
ある。In FIG. 2, on a gold-plated copper support member 1,
Semiconductor laser substrate 2 containing GaA (lAs) formed by epitaxial growth on GaAs
(0.3mm x 0.3mn x thickness 0.1mm) is Si
They are bonded via an intermediate member 3 made of a C strip. This SiC strip has a thickness of 0.8+nm x 1.6nwn x 0.
3, with Cr-N formed by vapor deposition on both main surfaces.
An i-Au multilayer metallization J132 is provided, and on the side surfaces 31, substantially perpendicular to the two main surfaces, a homogeneous metallization layer 33 extending from the metallization layer 32 is provided. The semiconductor laser substrate 2 is die-bonded onto the intermediate member 3 using Au-Sn solder. An electrode layer whose uppermost layer is an Au layer is provided on the main surface of the semiconductor laser substrate 2. Moreover, the intermediate member 3 is made of Pb-8n on the support member 1.
It is bonded with a solder material. The conductive path forming member 5 is made of an Au wire with a diameter of 30 μm, and is connected from the electrode layer on the upper side of the semiconductor laser body 2 to other conductive members by thermocompression bonding, while other electrical areas on the lower side of the semiconductor laser body 2 are It is connected to other conductive members by the conductive path forming member 5 via the gold-plated steel relay plate 6. The important point here is that a metallized layer 33 is provided on the side surface 31 of the intermediate member 3 extending from the metallized layer 32 to provide wettability to the brazing material between the semiconductor laser substrate 2 and the intermediate member 3. This is what is being done.
このような構造にすることにより、このろう材が半導体
レーザ基体2の端部にはみ出た後金属化層33上に流出
し、垂下るため端部に盛上ることがない。したがってレ
ーザ光放出部の光路がしゃ断されたりpn接合を電気的
に短絡したりすることがない。この効果を定量的に例示
すると、従来の第1図構造を採用した場合の光路しゃ断
及びPn接合短絡に基づく不良発生率が約5%であった
のに対し、本発明の第2図構造を採用した場合の不良発
生率は0.05%以下に低減された。又、従来構造の場
合半導体レーザ基体2と中間部材3の間のろう材の端部
における盛上りを軽減するためろう材の使用量を少なく
する配慮がなされていたが、このことは逆に半導体レー
ザ基体2と中間部材3間の接着の不完全性を誘発する。With this structure, the brazing material protrudes from the edge of the semiconductor laser substrate 2 and then flows out onto the metallized layer 33 and hangs down, so that it does not bulge at the edge. Therefore, there is no possibility that the optical path of the laser beam emitting section is cut off or the pn junction is electrically shorted. To quantitatively illustrate this effect, when the conventional structure shown in Fig. 1 was adopted, the failure rate due to optical path interruption and Pn junction short circuit was about 5%, whereas with the structure shown in Fig. 2 of the present invention, the failure rate was about 5%. When adopted, the defective rate was reduced to 0.05% or less. In addition, in the conventional structure, consideration was given to reducing the amount of brazing filler metal used in order to reduce the swelling at the end of the filler metal between the semiconductor laser substrate 2 and the intermediate member 3, but this has the opposite effect on the semiconductor laser substrate 2 and the intermediate member 3. This induces incomplete adhesion between the laser body 2 and the intermediate member 3.
しかし、本発明構造ではろう材の使用量をあまり少なく
する必要がないため上記接着が完全に行なわれる。例え
ば第1図構造の場合、半導体レーザ基体2から支持部材
1に至る間の熱抵抗が0.5℃/W以上となる割合が5
%以上と高かったのに対して、本発明の第2図構造では
0905%程度と低くなった。However, in the structure of the present invention, there is no need to reduce the amount of brazing filler metal so that the above-mentioned adhesion is completely achieved. For example, in the case of the structure shown in FIG.
% or more, whereas in the structure shown in FIG. 2 of the present invention, it was low at about 0.905%.
又、第1表は本発明の他の実施例の半導体レーザ素子に
適用した中間部材3用素材、複合層としたときの金属化
層33相当部、そしてソルダ4相当部を形成する金属の
構成である。Table 1 also shows the composition of the material for the intermediate member 3 applied to the semiconductor laser device of other embodiments of the present invention, the portion corresponding to the metallized layer 33 when it is made into a composite layer, and the metal forming the portion corresponding to the solder 4. It is.
SiCに接する第1の層、第1の層に接する第2の層、
第2の層及びソルダに接する第3の層を同表に示した各
種組合せで蒸着形成させた。このようにしても、上記実
施例の場合と全く同じ効果が得られた。a first layer in contact with SiC, a second layer in contact with the first layer,
The second layer and the third layer in contact with the solder were formed by vapor deposition in various combinations shown in the table. Even in this case, exactly the same effect as in the above embodiment was obtained.
更に、第1表の金属構成を中間部材3用素材としてのA
Q20:l、AQN、Bed、S i、N4゜MgO,
ダイヤモンド等のセラミックに適用した場合や、Si、
Ge、SiC等の半導体に適用した場合であっても上記
実施例と同様な効果が得られた。Furthermore, the metal configuration in Table 1 is A as the material for the intermediate member 3.
Q20: l, AQN, Bed, Si, N4゜MgO,
When applied to ceramics such as diamond, Si,
Even when applied to semiconductors such as Ge and SiC, the same effects as in the above embodiments were obtained.
次に、第3図は本発明のレーザダイオードの製法におけ
る中間部材3の製法に関する実施例を説明する断面図で
ある。同図(a)は厚さ0.3何のSiC板300であ
りSiC粉末とともにBeO粉末を微量添加した混合粉
末を2050℃、真空中のもとてホットプレスして得た
ものである。このようにして得たSiC板300は相対
密度98%以上で、熱伝導率0.7 cal/ cm・
℃・Sと金属並みの熱伝導性を有している。SiC板3
00は互いに並行な主面301及び302を有している
。このSiC板300の主面301側にこれに略直角な
面303を有する溝304を形成した。溝304は幅約
50pm、深さ約150μmであり、回転砥石による研
磨で形成した。次いで、主面301側及び302側に真
空蒸着法による金属化層32を形成した。この際主面3
01側の蒸着時に溝304の側面303にも回り込み蒸
着され金属化層33が同時形成される。この後、回転砥
石による研磨を進め、溝303がSiC板300を貫通
するようにした。この際の溝幅は30μmである。更に
、溝303と直角な方向にも貫通溝を形成して条片状(
0,8mm Xl、 G nwn X厚さ0.3in)
の中間部材3を作成した。金属化層32.33はCr:
0.05pm、 N i : 0.4 pm、 Au
: 0.5 μmの積層構造に形成されている。以降、
中間部材3上に半導体レーザ基体(0,3mmX0.3
++raX厚さ0.1iin)2とAuめつき鋼中継板
6をA u −S n系ろう材により接着した。この場
合の雰囲気は窒素ガスに数%の水素ガスを添加した混合
ガスであり、接着温度は280℃である。更に、中間部
材3をpb−8n系はんだ材により接着し導電路構成部
材5のワイヤボンディング配線を施して半導体レーザ素
子を完成した。Next, FIG. 3 is a sectional view illustrating an embodiment of the method for manufacturing the intermediate member 3 in the method for manufacturing a laser diode of the present invention. 3A shows a SiC plate 300 with a thickness of 0.3 mm, which was obtained by hot pressing a mixed powder containing SiC powder and a small amount of BeO powder at 2050° C. in a vacuum. The SiC plate 300 obtained in this way has a relative density of 98% or more and a thermal conductivity of 0.7 cal/cm・
It has thermal conductivity of ℃・S, which is comparable to that of metal. SiC board 3
00 has principal surfaces 301 and 302 that are parallel to each other. A groove 304 having a surface 303 substantially perpendicular to the main surface 301 of this SiC plate 300 was formed. The groove 304 has a width of about 50 pm and a depth of about 150 μm, and was formed by polishing with a rotating grindstone. Next, metallized layers 32 were formed on the main surfaces 301 and 302 by vacuum evaporation. At this time, main surface 3
During vapor deposition on the 01 side, the metallized layer 33 is also formed around the side surface 303 of the groove 304. Thereafter, polishing using a rotating grindstone was performed so that the grooves 303 penetrated through the SiC plate 300. The groove width at this time was 30 μm. Furthermore, a through groove is formed in a direction perpendicular to the groove 303 to form a strip-like (
0.8mm Xl, G nwn X thickness 0.3in)
An intermediate member 3 was created. The metallization layer 32.33 is Cr:
0.05pm, Ni: 0.4pm, Au
: Formed in a 0.5 μm laminated structure. onwards,
A semiconductor laser base (0.3 mm x 0.3
++raX thickness 0.1 iin) 2 and the Au-plated steel relay plate 6 were bonded together using an Au-Sn brazing filler metal. The atmosphere in this case is a mixed gas of nitrogen gas to which several percent of hydrogen gas is added, and the bonding temperature is 280°C. Further, the intermediate member 3 was bonded with a PB-8N solder material, and the conductive path forming member 5 was wire bonded to complete the semiconductor laser device.
以上に本発明の詳細を実施例により説明したが本発明は
次のような態様でも実施できる。Although the details of the present invention have been explained above using Examples, the present invention can also be implemented in the following embodiments.
先ず、上述の中間部材3用素材としてはSiCである必
要はなく、例えばSi、Ag2O3,ダイヤモンドBe
O等で代表されるような無機質絶縁体あるいは無機質半
導体を適用でき、金属化層32及び33も蒸着法による
金属である必要はなく、例えばテレフンケン法として知
られる厚膜焼成による金属化層、スパッタリング法や気
相成長法による金属化層であってもよい。又、溝304
の形成法や分割法としては回転砥石による方法の他、例
えばレーザビーム照射による方法やサンドブラスト吹付
法、超音波加工法等を適用できる。First of all, the material for the intermediate member 3 mentioned above does not need to be SiC, and may be, for example, Si, Ag2O3, diamond Be.
An inorganic insulator or an inorganic semiconductor such as O, etc. can be applied, and the metallized layers 32 and 33 do not need to be metals formed by vapor deposition, for example, metallized layers formed by thick film firing known as the Telefunken method, or sputtering. The metallized layer may be formed by a method or a vapor phase growth method. Also, the groove 304
In addition to the method using a rotating grindstone, for example, a method using a laser beam, a sandblasting method, an ultrasonic processing method, etc. can be applied as a forming method or a dividing method.
更に、本発明の半導体装置はレーザダイオードに限定さ
れるものではなく、本発明は半導体基体の側面にpn接
合が露出している場合に特に有効になる。Further, the semiconductor device of the present invention is not limited to a laser diode, and the present invention is particularly effective when a pn junction is exposed on the side surface of a semiconductor substrate.
以上説明したように、本発明によれば、性能及び安定し
た半導体装置を歩留りよく製造することが可能である。As described above, according to the present invention, it is possible to manufacture a semiconductor device with high performance and stability at a high yield.
第1図は従来の半導体装置を説明する図、第2図は本発
明の一実施例の半導体装置を説明する図、第3図は本発
明の一実施例の半導体装置の製法を説明する図である。
1・・・金属支持部材、2・・・半導体レーザ基体、3
・・・中間部材、5・・・導電路構成部材、6・・・中
継金属板、第 1 図
第2 図
め3図FIG. 1 is a diagram for explaining a conventional semiconductor device, FIG. 2 is a diagram for explaining a semiconductor device according to an embodiment of the present invention, and FIG. 3 is a diagram for explaining a method for manufacturing a semiconductor device according to an embodiment of the present invention. It is. DESCRIPTION OF SYMBOLS 1... Metal support member, 2... Semiconductor laser base, 3
... Intermediate member, 5... Conductive path component, 6... Relay metal plate, Fig. 1 Fig. 2 Fig. 3
Claims (1)
な側面を有する半導体基体が、互に対向した一対の主面
と上記両生面に対して略直角な少なくとも1の側面を有
する無機質絶縁体又は無機質半導体からなる中間部材上
に、半導体基体と中間部材の各側面とが略同一平面上に
位置するようにろう月を用いて接着された部分を有し、
中間部材の側面の少なくとも接着部の近傍に、上記ろう
材に対するぬれ性が付与された領域を具備していること
を特徴とする半導体装置。 2、特許請求の範囲第1項において、中間部材がSiC
,AQ、20.、AQN、B eo、Si:+ N4t
MgO,Cからなる群から選択された少なくとも1の材
料からなるセラミック又はS i y G e 5Si
Cの群から選択された少なくとも1の材料からなる半導
体であり、中間部材の側面の少なくとも半導体基体接着
部の近傍に、上記セラミック又は半導体に接するCr、
Ti、AQ、Mo、N i。 W、Agからなる群から選ばれた1の材料からなる第1
の層と、第1の層に接するCr、Ti。 AQ、Mo、Ni、Cu、Ag、Pd、Pt。 Auからなる群から選ばれたlの材料からなる第2の層
と、第2の層及びろう材に接するA g +Au、Pt
からなる群から選ばれた1の材料からなる第3の層を順
次積層した金属領域を具備していることを特徴とする半
導体装置。[Scope of Claims] 1. A semiconductor substrate having a pair of mutually opposing main surfaces and a side surface perpendicular to the above-mentioned bidirectional surfaces, the semiconductor substrate having a pair of mutually opposing main surfaces and a side surface substantially perpendicular to the above-mentioned bidirectional surfaces. On an intermediate member made of an inorganic insulator or an inorganic semiconductor having at least one side surface, a portion is bonded using a wax so that the semiconductor substrate and each side surface of the intermediate member are located approximately on the same plane. ,
1. A semiconductor device characterized in that a side surface of an intermediate member includes a region imparted with wettability to the brazing filler metal at least in the vicinity of an adhesive portion. 2. In claim 1, the intermediate member is made of SiC.
, AQ, 20. , AQN, B eo, Si: + N4t
Ceramic or S i y G e 5Si made of at least one material selected from the group consisting of MgO, C
Cr, which is a semiconductor made of at least one material selected from the group C, and which is in contact with the ceramic or semiconductor at least in the vicinity of the semiconductor substrate bonding part on the side surface of the intermediate member;
Ti, AQ, Mo, Ni. A first material made of one material selected from the group consisting of W and Ag.
layer, and Cr and Ti in contact with the first layer. AQ, Mo, Ni, Cu, Ag, Pd, Pt. a second layer made of l material selected from the group consisting of Au, and A g +Au, Pt in contact with the second layer and the brazing material;
A semiconductor device comprising a metal region in which a third layer made of one material selected from the group consisting of: is sequentially laminated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59011828A JPS60157284A (en) | 1984-01-27 | 1984-01-27 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59011828A JPS60157284A (en) | 1984-01-27 | 1984-01-27 | Semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60157284A true JPS60157284A (en) | 1985-08-17 |
JPH0451073B2 JPH0451073B2 (en) | 1992-08-18 |
Family
ID=11788622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59011828A Granted JPS60157284A (en) | 1984-01-27 | 1984-01-27 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60157284A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63132495A (en) * | 1986-11-21 | 1988-06-04 | Mitsubishi Electric Corp | Sub-mount for photo-semiconductor device |
JPS63160292A (en) * | 1986-12-23 | 1988-07-04 | Mitsubishi Electric Corp | Submount for optical semiconductor element |
JP2008302504A (en) * | 2007-06-05 | 2008-12-18 | Pilot Corporation | Retractable writing utensil |
JP2009272656A (en) * | 2009-08-20 | 2009-11-19 | Sumitomo Electric Ind Ltd | Semiconductor light-emitting element, and manufacturing method thereof |
JPWO2013150715A1 (en) * | 2012-04-05 | 2015-12-17 | パナソニックIpマネジメント株式会社 | Semiconductor laser device and manufacturing method thereof |
KR20220109266A (en) | 2021-01-28 | 2022-08-04 | 제브라 가부시키가이샤 | Retractable writing utensil |
-
1984
- 1984-01-27 JP JP59011828A patent/JPS60157284A/en active Granted
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63132495A (en) * | 1986-11-21 | 1988-06-04 | Mitsubishi Electric Corp | Sub-mount for photo-semiconductor device |
JPS63160292A (en) * | 1986-12-23 | 1988-07-04 | Mitsubishi Electric Corp | Submount for optical semiconductor element |
JP2008302504A (en) * | 2007-06-05 | 2008-12-18 | Pilot Corporation | Retractable writing utensil |
JP2009272656A (en) * | 2009-08-20 | 2009-11-19 | Sumitomo Electric Ind Ltd | Semiconductor light-emitting element, and manufacturing method thereof |
JPWO2013150715A1 (en) * | 2012-04-05 | 2015-12-17 | パナソニックIpマネジメント株式会社 | Semiconductor laser device and manufacturing method thereof |
KR20220109266A (en) | 2021-01-28 | 2022-08-04 | 제브라 가부시키가이샤 | Retractable writing utensil |
Also Published As
Publication number | Publication date |
---|---|
JPH0451073B2 (en) | 1992-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100688317B1 (en) | Semiconductor light-emitting device and method of manufacturing the same and mounting plate | |
US9001856B1 (en) | Diode laser bar mounted on a copper heat-sink | |
EP2378616B1 (en) | High-power semiconductor laser and method for manufacturing the same | |
JP2006344743A (en) | Semiconductor laser device | |
JP2001168442A (en) | Method of manufacturing semiconductor laser element, installation substrate, and support substrate | |
JP2016054279A (en) | Semiconductor laser | |
US20090185593A1 (en) | Method of manufacturing laser diode packages and arrays | |
CN105406350A (en) | Semiconductor Lasers | |
JPH11346031A (en) | Diode laser element and manufacture thereof | |
KR20100072087A (en) | Laser light source module | |
JP3617565B2 (en) | Nitride semiconductor laser device | |
JP2003101113A (en) | Nitride semiconductor laser | |
JP4811629B2 (en) | Semiconductor laser device | |
US20190067161A1 (en) | Semiconductor laser module and method for manufacturing the same | |
US6621839B1 (en) | Method for contacting a high-power diode laser bar and a high-power diode laser bar-contact arrangement of electrical contacts with minor thermal function | |
JPH0750813B2 (en) | Submount for semiconductor laser device | |
JP5031136B2 (en) | Semiconductor laser device | |
JPS60157284A (en) | Semiconductor device | |
JP2001230498A (en) | Group iii nitride-base compound semiconductor laser | |
JPH0637403A (en) | Semiconductor laser device | |
KR20070039195A (en) | Semiconductor device having advanced thermal stability and preparation method thereof | |
JP2018113377A (en) | Laser light source device | |
JPH01138777A (en) | Submount for optical semiconductor element | |
JP4055276B2 (en) | Semiconductor package and semiconductor module using the package | |
WO2024162073A1 (en) | Light emitting device, light emitting module, method for producing light emitting device, and method for producing light emitting module |