JPH01138777A - Submount for optical semiconductor element - Google Patents

Submount for optical semiconductor element

Info

Publication number
JPH01138777A
JPH01138777A JP62298114A JP29811487A JPH01138777A JP H01138777 A JPH01138777 A JP H01138777A JP 62298114 A JP62298114 A JP 62298114A JP 29811487 A JP29811487 A JP 29811487A JP H01138777 A JPH01138777 A JP H01138777A
Authority
JP
Japan
Prior art keywords
layer
submount
solder layer
optical semiconductor
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62298114A
Other languages
Japanese (ja)
Inventor
Mitsuo Ishii
光男 石井
Kazuyoshi Hasegawa
長谷川 和義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62298114A priority Critical patent/JPH01138777A/en
Publication of JPH01138777A publication Critical patent/JPH01138777A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

PURPOSE:To enable a fine control of a superficial solder layer in thickness and obtain a submount stable in mechanical strength by a method wherein barrier layers are provided to both faces of a submount substrate and moreover solder layers are formed thereon. CONSTITUTION:An alloy solder layer 9 of Au80-Sn20 is formed on a barrier layer 30 as a solder layer and a thin Au layer is continuously formed thereon through, for example, evaporation. The alloy solder layer 9 of Au-Sn is formed through evaporation, and moreover the Au layer 10 is thinly formed on the top face of the alloy solder layer 9, so that the alloy solder layer 9 is remarkably decreased in the defective exterior appearance which is caused by the superficial oxidation of the layer 9 even at standard temperature after a die- bonding. As the Au layer 10 is formed on the top surface, the decrease in an adhesive property due to the deviation in composition of Au-Sn due to the ununiformity of a conventional Sn plating in thickness can be remarkably alleviated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光半導体素子のチップの実装に使用する光
半導体素子用サブマウントに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a submount for an optical semiconductor element used for mounting a chip of an optical semiconductor element.

〔従来の技術〕[Conventional technology]

第3図は従来の光半導体素子用サブマウントの断面図を
示し、第4図はLDチップを光半導体素子用サブマウン
トを介して、放熱用金属ブロックにダイボンドした際の
状態を示す図である。
Fig. 3 shows a cross-sectional view of a conventional submount for optical semiconductor elements, and Fig. 4 shows a state in which an LD chip is die-bonded to a metal block for heat dissipation via the submount for optical semiconductor elements. .

これらの図において、1は半導体レーザチップ(通称L
Dチップという)、2は5i(7)電気伝導性材料から
なるサブマウント基体、3は前記サブマウント基体2の
両面にメタライズされたバリヤ層で、第1層Ti層31
.第2層Ni層33.および第3層Au層34かうなっ
ている。4は前記バリヤ層3上に形成されたSn半田層
で、このSn半田層4とLDチップ1および放熱用金属
ブロック5が接着されている。6.7は前記LDチップ
1の裏面電極および表面電極、8は前記LDチップ1の
表面電極7上に熱圧着された金ワイヤである。
In these figures, 1 is a semiconductor laser chip (commonly known as L
D chip), 2 is a submount base made of 5i (7) electrically conductive material, 3 is a barrier layer metalized on both sides of the submount base 2, and a first Ti layer 31
.. Second layer Ni layer 33. and the third Au layer 34. 4 is a Sn solder layer formed on the barrier layer 3, and the LD chip 1 and the heat dissipating metal block 5 are bonded to this Sn solder layer 4. Reference numerals 6 and 7 are the back and front electrodes of the LD chip 1, and 8 is a gold wire thermocompressed onto the front electrode 7 of the LD chip 1.

上記のような従来例にあっては、LDチップ1は図示は
していないが、GaAs基板上に液相成長法によりGa
As、Ga、−XAn、Asの各層が順次積層され、ダ
ブルへテロ接合を形成している。また、内部ストライブ
構造により電流注入によるキャリアの閉じ込めが効率よ
く行われ、その結果、電子とホールの再結合により光が
発生する。発生した光は共振器端面での反射を繰り返し
、導波路内で増幅していき、結晶内部の吸収損失と同じ
になった所でレーザ発振を開始する。レーザ光は共振器
端面の微小な領域より放射されるため、結晶内部ではか
なりの発熱が起こる。発振後のレーザ特性を安定に得る
ためには、放熱が必須である。以下、第4図に基づき、
LDチップ1が放熱用金属ブロック5の上にダイボンド
される過程を説明する。放熱用金属ブロック5の上にサ
ブマウント基体2がマウントされる。サブマウント基体
2の両面には、スパッタ法によりサブマウント基体2側
より順次第1層Ti層31.第2層Ni層33.第3層
Au層34が積層されたバリヤ層3が形成されている。
In the conventional example described above, although the LD chip 1 is not shown, Ga is grown on a GaAs substrate by liquid phase growth.
Each layer of As, Ga, -XAn, and As is sequentially laminated to form a double heterojunction. In addition, the internal stripe structure efficiently confines carriers by current injection, and as a result, light is generated by recombination of electrons and holes. The generated light is repeatedly reflected at the resonator end face and amplified within the waveguide, and laser oscillation begins when the absorption loss within the crystal becomes equal. Since the laser beam is emitted from a small area on the cavity end face, a considerable amount of heat is generated inside the crystal. Heat dissipation is essential in order to obtain stable laser characteristics after oscillation. Below, based on Figure 4,
The process of die-bonding the LD chip 1 onto the heat dissipation metal block 5 will be explained. A submount base 2 is mounted on the heat radiation metal block 5. On both sides of the submount base 2, one Ti layer 31. Second layer Ni layer 33. A barrier layer 3 is formed in which a third Au layer 34 is laminated.

さらに、バリヤ層3の上に、全面がSn半田層4で覆わ
れるような形でメツキが施される。LDチップ1は、こ
のサブマウント基体2の上にマウントされる。その後、
LDチップ1がダイボンド中に動かないように、ある荷
重で加圧され、放熱用金属ブロック5の下方よりヒート
アップする。ある温度になると、LDチップ1の裏面電
極6の金属および放熱用金属ブロック5の表面に施され
たAu層と、サブマウント基体2の両面に施されたSr
i半田層4との間でAu−3n (Sn  rich)
の半田層が形成されて接合される(ダイボンド完了)。
Furthermore, plating is applied on the barrier layer 3 so that the entire surface is covered with the Sn solder layer 4. The LD chip 1 is mounted on this submount base 2. after that,
In order to prevent the LD chip 1 from moving during die bonding, it is pressurized with a certain load and heats up from below the heat dissipation metal block 5. When a certain temperature is reached, the metal of the back electrode 6 of the LD chip 1 and the Au layer applied to the surface of the heat dissipation metal block 5 and the Sr layer applied to both sides of the submount base 2
Au-3n (Sn rich) between i solder layer 4
A solder layer is formed and bonded (die bonding completed).

ここで使用しているSiからなるサブマウントは、ダイ
ボンドする際の半田剤的なものであるとともに、ダイボ
ンド中の放熱用金属ブロック5の熱膨張によるLDチッ
プ1の歪を緩和するために、非常に重要な部品である。
The submount made of Si used here is used as a solder agent during die bonding, and is also used to alleviate distortion of the LD chip 1 due to thermal expansion of the heat dissipation metal block 5 during die bonding. It is an important part.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように構成された光半導体素子用サブマウントは
、サブマウント基体2の最表面のSn半田層4がメツキ
により形成されているため、Sn半田層厚がばらつき、
安定なAu−5nの共晶半田が形成されず、機械的強度
(接合強度)のばらつきが大きかった。また、LDチッ
プ1の発光点がサブマウント基体2との接合面に近いよ
うな組立方式(Junction−down組立方式)
においては、半田表面状態、すなわち、サブマウント表
面のSn半田層厚が厚めにメツキされた場合には、LD
特性の1つであるモニタ電流Im特性不良、半田のP−
N接合への付着によるショート不良等が発生する問題点
があった。
In the optical semiconductor device submount configured as described above, since the Sn solder layer 4 on the outermost surface of the submount base 2 is formed by plating, the Sn solder layer thickness varies.
A stable Au-5n eutectic solder was not formed, and the mechanical strength (joint strength) varied greatly. In addition, an assembly method in which the light emitting point of the LD chip 1 is close to the joint surface with the submount base 2 (junction-down assembly method)
In the solder surface condition, that is, when the Sn solder layer on the submount surface is plated thickly, the LD
Poor monitor current Im characteristic, which is one of the characteristics, solder P-
There was a problem in that short-circuit defects and the like occurred due to adhesion to the N junction.

この発明は、上記のような問題点を解消するためになさ
れたもので、サブマウント基体の両面にバリヤ層を形成
し、さらに、その上に半田層を形成することにより、最
表面の半田層の厚みを細か〈制御できるようにし、かつ
安定した機械的強度を得ることができるとともに、高品
質の光半導体素子用サブマウントを得ることを目的とす
る。
This invention was made to solve the above-mentioned problems, and by forming a barrier layer on both sides of a submount base and further forming a solder layer on top of the barrier layer, the solder layer on the outermost surface is removed. The purpose of the present invention is to obtain a high-quality submount for an optical semiconductor device, which can finely control the thickness of the substrate and obtain stable mechanical strength.

(問題点を解決するための手段) この発明に係る光半導体素子用サブマウントは、サブマ
ウント基体をSiの電気伝導性材料で構成するとともに
、サブマウント基体の両面に第1層Ti層、第2層pt
層からなるバリヤ層を設け、さらに、バリヤ層上に半田
層を形成したものである。
(Means for Solving the Problems) A submount for an optical semiconductor device according to the present invention has a submount base made of an electrically conductive material of Si, and a first Ti layer and a first Ti layer on both sides of the submount base. 2 layer pt
A barrier layer is provided, and a solder layer is further formed on the barrier layer.

〔作用〕[Effect]

この発明における光半導体素子用サブマウントは、第1
層Ti層、第2層pt層からなるバリヤ層をサブマウン
ト基体の両面に形成し、さらにその上に半田層を形成し
たことから、このサブマウントを介してLDチップを放
熱用金属ブロックに接着する際には、サブマウント基体
の電気伝導性を損なうことなく、接着溶融時にLDチッ
プの裏面電極と放熱用金属ブロック表面との間で安定し
た密着性の非常に優れた接合が得られる。
The submount for optical semiconductor elements in this invention has a first
A barrier layer consisting of a Ti layer and a second PT layer was formed on both sides of the submount base, and a solder layer was further formed on top of the barrier layer, so the LD chip was bonded to the heat dissipation metal block via this submount. In this case, stable and highly adhesive bonding can be obtained between the back electrode of the LD chip and the surface of the heat dissipating metal block during adhesive melting without impairing the electrical conductivity of the submount base.

〔実施例〕〔Example〕

以下、この発明の一実施例を図面について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例を示す光半導体素子用サブ
マウントの断面図であり、2はサブマウント基体、9は
半田層で、例えばA u −S n(金80%、5n2
0%)の合金半田層である。
FIG. 1 is a cross-sectional view of a submount for an optical semiconductor device showing an embodiment of the present invention, 2 is a submount base, 9 is a solder layer, for example, A u -S n (gold 80%, 5n2
0%) alloy solder layer.

10は前記合金半田層9の上に形成されたAu層、31
は第1層Ti層、32は第2層Pt層で、バリヤ層30
を形成している。
10 is an Au layer formed on the alloy solder layer 9; 31
is the first Ti layer, 32 is the second Pt layer, and the barrier layer 30
is formed.

第2図はこの発明のサブマウントを介して、LDチップ
が放熱用金属ブロック5にダイボンドされた状態を示す
図であり、ダイボンドされる過程は従来技術と全く同様
である。
FIG. 2 shows a state in which the LD chip is die-bonded to the heat dissipation metal block 5 via the submount of the present invention, and the die-bonding process is completely the same as in the prior art.

ここで、バリヤ層30の上に半田層として、Aua。−
5n2o(重量%)の合金半田層(厚み師5000人)
9.その上に薄<Au層(約500人)10が連続的に
、例えば蒸着により形成される。従来のサブマウントと
違って、AuとSnの合金半田層9を蒸着により形成し
、さらに、合金半田層9の最表面に薄<Au層1oを形
成したことで、■常温でも形成されるAu−5nの合金
半田層9の表面酸化に起因するダイボンド後の合金半田
層9表面の外観不良(半田の盛り上がり)が著しく低減
される。■接着強度においても、最表面にAU層10を
形成したことで、従来のSnメッキ厚のばらつきによる
A u −S nの配合ズレによる接着性の低下が著し
く改善される。■蒸着により形成されているために、合
金半田層9の厚みのばらつきが十分に抑えられ、特にジ
ャンクションダウン組立法においては、発光点より放射
されたレーザビームが合金半田層9によりけられるとい
うモニタ電流11特性不良、半田付着によるショート不
良等が著しく低減される。
Here, Aua is formed as a solder layer on the barrier layer 30. −
5n2o (weight%) alloy solder layer (thickness master 5000 people)
9. A thin <Au layer (approximately 500 layers) 10 is formed thereon in succession, for example by vapor deposition. Unlike conventional submounts, the alloy solder layer 9 of Au and Sn is formed by vapor deposition, and a thin Au layer 1o is formed on the outermost surface of the alloy solder layer 9. -5n alloy solder layer 9 has a surface oxidation that causes poor appearance (solder swelling) on the surface of alloy solder layer 9 after die bonding, which is significantly reduced. (2) In terms of adhesive strength, by forming the AU layer 10 on the outermost surface, the conventional deterioration in adhesion due to a mismatch in the Au-Sn composition due to variations in Sn plating thickness is significantly improved. ■Since it is formed by vapor deposition, variations in the thickness of the alloy solder layer 9 are sufficiently suppressed, and especially in the junction down assembly method, the laser beam emitted from the light emitting point is eclipsed by the alloy solder layer 9. Current 11 characteristic defects, short circuit defects due to solder adhesion, etc. are significantly reduced.

なお、上記実施例では、合金半田層9としてAuとSn
とを用いたが、PbとSnであっても同様の効果が得ら
れる。
In the above embodiment, Au and Sn are used as the alloy solder layer 9.
However, similar effects can be obtained using Pb and Sn.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明は、サブマウント基体をS
tの電気伝導性材料で構成するとともに、サブマウント
基体の両面に第1層Ti層、第2層pt層からなるバリ
ヤ層を設け、さらに、バリヤ層上に半田層を形成したの
で、ダイボンド後の半田層表面の半田の盛り上がり等の
外観不良が著しく低減され、また、十分な接着強度を有
する接合が得られ、かつ半田層厚のばらつきが抑えられ
、LD特性の1つであるモニタ電流I。特性不良、さら
には半田付着によるショート不良等が著しく低減される
効果がある。
As explained above, the present invention allows the submount base to be
A barrier layer consisting of a first Ti layer and a second PT layer was provided on both sides of the submount base, and a solder layer was formed on the barrier layer, so that after die bonding, Appearance defects such as solder swelling on the surface of the solder layer are significantly reduced, a bond with sufficient adhesive strength is obtained, variation in solder layer thickness is suppressed, and monitor current I, which is one of the LD characteristics, is reduced. . This has the effect of significantly reducing characteristic defects and short-circuit defects due to solder adhesion.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す光半導体素子用サブ
マウントの断面図、第2図はこの発明のサブマウントを
介してLDチップを放熱用金属ブロックにダイボンドし
た状態を示す図、第3図は従来の光半導体素子用サブマ
ウントの断面図、第4図は従来のサブマウントを介して
LDチップを放熱用金属ブロックにダイボンドした状態
を示す図である。 図において、1はLDチップ、2はサブマウント基体、
30はバリヤ層、31は第1層Ti層、32は第2層p
t層、5は放熱用金属ブロック、9は合金半田層、10
はAu層である。 なお、各図中の同一符号は同一または相当部分を示す。 代理人 大 岩 増 雄    (外2名)第1図 第2図 第3図 第4図 手続補正書(自発) 1、事件の表示   特願昭62−298114号2、
発明の名称  光半導体素子用サブラウンl−訊補正を
する者 代表者志岐守哉 三菱電機株式会社内 こ  7  ・。 5、補正の対象 明細書の発明の詳細な説明の欄 (1)  明細書第8頁5〜6行の「最表回に−J=−
v層10を形成したことで、」を削除する。 (2)同じく第9頁2〜3行の[バリヤ層上に半田層を
形成しなので、」を、「バリヤ層上に合金半田層を、さ
らにその上にAu層を蒸着により形成したので、」と補
正する。 以  上
FIG. 1 is a cross-sectional view of a submount for an optical semiconductor element showing an embodiment of the present invention, FIG. FIG. 3 is a sectional view of a conventional optical semiconductor element submount, and FIG. 4 is a diagram showing a state in which an LD chip is die-bonded to a heat dissipation metal block via the conventional submount. In the figure, 1 is the LD chip, 2 is the submount base,
30 is a barrier layer, 31 is a first layer Ti layer, 32 is a second layer p
t layer, 5 is a metal block for heat dissipation, 9 is an alloy solder layer, 10
is an Au layer. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa (2 others) Figure 1 Figure 2 Figure 3 Figure 4 Procedural amendment (voluntary) 1. Indication of the case Patent Application No. 1988-298114 2.
Name of the Invention: Person who performs sub-row correction for optical semiconductor devices Representative: Moriya Shiki, Mitsubishi Electric Corporation, Uchiko 7. 5. Detailed explanation of the invention in the specification subject to amendment (1) Page 8 of the specification, lines 5-6, “-J=-
Since the V layer 10 has been formed, "" is deleted. (2) Similarly, on page 9, lines 2 to 3, [because a solder layer was formed on the barrier layer] was replaced with "because an alloy solder layer was formed on the barrier layer, and an Au layer was formed on it by vapor deposition." ” he corrected. that's all

Claims (4)

【特許請求の範囲】[Claims] (1)光半導体素子のチップをサブマウントを介して放
熱用金属ブロックに接着する光半導体素子用サブマウン
トにおいて、サブマウント基体をSiの電気伝導性材料
で構成するとともに、前記サブマウント基体の両面に第
1層Ti層、第2層pt層からなるバリヤ層を設け、さ
らに、前記両面のバリヤ層上に半田層を形成したことを
特徴とする光半導体素子用サブマウント。
(1) In a submount for an optical semiconductor element in which a chip of an optical semiconductor element is bonded to a metal block for heat dissipation via a submount, the submount base is made of an electrically conductive material such as Si, and both sides of the submount base are made of an electrically conductive material such as Si. A submount for an optical semiconductor device, characterized in that a barrier layer consisting of a first Ti layer and a second PT layer is provided on the substrate, and a solder layer is further formed on the barrier layer on both surfaces.
(2)半田層は、AuとSnの合金層からなり、この合
金層上にAu層を形成したことを特徴とする特許請求の
範囲第(1)項記載の光半導体素子用サブマウント。
(2) The submount for an optical semiconductor device according to claim (1), wherein the solder layer is made of an alloy layer of Au and Sn, and an Au layer is formed on the alloy layer.
(3)半田層は、PbとSnの合金層からなり、この合
金層上にAu層を形成したことを特徴とする特許請求の
範囲第(1)項記載の光半導体素子用サブマウント。
(3) The submount for an optical semiconductor device according to claim (1), wherein the solder layer is made of an alloy layer of Pb and Sn, and an Au layer is formed on this alloy layer.
(4)バリヤ層および半田層は、蒸着により形成したこ
とを特徴とする特許請求の範囲第(1)項記載の光半導
体素子用サブマウント。
(4) The submount for an optical semiconductor device according to claim (1), wherein the barrier layer and the solder layer are formed by vapor deposition.
JP62298114A 1987-11-25 1987-11-25 Submount for optical semiconductor element Pending JPH01138777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62298114A JPH01138777A (en) 1987-11-25 1987-11-25 Submount for optical semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62298114A JPH01138777A (en) 1987-11-25 1987-11-25 Submount for optical semiconductor element

Publications (1)

Publication Number Publication Date
JPH01138777A true JPH01138777A (en) 1989-05-31

Family

ID=17855349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62298114A Pending JPH01138777A (en) 1987-11-25 1987-11-25 Submount for optical semiconductor element

Country Status (1)

Country Link
JP (1) JPH01138777A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03148192A (en) * 1989-11-02 1991-06-24 Mitsubishi Electric Corp Manufacture of semiconductor device
EP0622837A1 (en) * 1993-04-27 1994-11-02 Nec Corporation An optical semiconductor device and a method of manufacturing the same
JP2007266369A (en) * 2006-03-29 2007-10-11 Kyocera Corp Wiring board
KR100781859B1 (en) * 2003-09-22 2007-12-03 가부시끼가이샤 도시바 Method of manufacturing semiconductor laser device
JP2010074195A (en) * 2002-03-28 2010-04-02 Osram Opto Semiconductors Gmbh Luminescent diode chip to be flip-chip mounted on carrier, and method for production thereof
EP2521173A2 (en) 2005-03-18 2012-11-07 DOWA Electronics Materials Co., Ltd. Submount and method of manufacturing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03148192A (en) * 1989-11-02 1991-06-24 Mitsubishi Electric Corp Manufacture of semiconductor device
EP0622837A1 (en) * 1993-04-27 1994-11-02 Nec Corporation An optical semiconductor device and a method of manufacturing the same
EP0622837B1 (en) * 1993-04-27 2000-10-11 Nec Corporation A method of manufacturing an optical semiconductor device
JP2010074195A (en) * 2002-03-28 2010-04-02 Osram Opto Semiconductors Gmbh Luminescent diode chip to be flip-chip mounted on carrier, and method for production thereof
KR100781859B1 (en) * 2003-09-22 2007-12-03 가부시끼가이샤 도시바 Method of manufacturing semiconductor laser device
EP2521173A2 (en) 2005-03-18 2012-11-07 DOWA Electronics Materials Co., Ltd. Submount and method of manufacturing the same
EP2521174A2 (en) 2005-03-18 2012-11-07 DOWA Electronics Materials Co., Ltd. Submount and method of manufacturing the same
US8472208B2 (en) 2005-03-18 2013-06-25 Dowa Electronics Materials Co., Ltd. Submount and method of manufacturing the same
US8581106B2 (en) 2005-03-18 2013-11-12 Dowa Electronics Materials Co., Ltd. Submount
JP2007266369A (en) * 2006-03-29 2007-10-11 Kyocera Corp Wiring board

Similar Documents

Publication Publication Date Title
US6720581B2 (en) Mounting plate for a laser chip in a semiconductor laser device
JP3271475B2 (en) Electrical element joining material and joining method
US9001856B1 (en) Diode laser bar mounted on a copper heat-sink
WO1980001222A1 (en) Method of manufacturing semiconductor laser devices
JPH0439956A (en) Semiconductor device and manufacture thereof
JPH01293691A (en) Submount for semiconductor laser element
JPH01138777A (en) Submount for optical semiconductor element
JP2006032406A (en) Semiconductor laser device
JP3708319B2 (en) Semiconductor light emitting device
JPH03209896A (en) Semiconductor laser element submount
JP5031136B2 (en) Semiconductor laser device
JPS60211992A (en) Semiconductor laser device
JP2002299744A (en) Semiconductor laser assembly
JPH0637403A (en) Semiconductor laser device
JPH09232690A (en) Semiconductor device
JPS63132495A (en) Sub-mount for photo-semiconductor device
JPS63233591A (en) Submount for optical semiconductor element
JPS60157284A (en) Semiconductor device
JP2003258365A (en) Semiconductor laser device, manufacturing method of thereof and semiconductor laser module
JPS63160292A (en) Submount for optical semiconductor element
JPS63213976A (en) Sub-mount for optical semiconductor element
JPH0846289A (en) Manufacturing method of semiconductor laser
JPH02138785A (en) Heat sink
JPH04283948A (en) Submount for optical semiconductor device
JPS606117B2 (en) Injection type semiconductor light emitting device