JPS59172787A - Submounting device for semiconductor laser - Google Patents

Submounting device for semiconductor laser

Info

Publication number
JPS59172787A
JPS59172787A JP58047611A JP4761183A JPS59172787A JP S59172787 A JPS59172787 A JP S59172787A JP 58047611 A JP58047611 A JP 58047611A JP 4761183 A JP4761183 A JP 4761183A JP S59172787 A JPS59172787 A JP S59172787A
Authority
JP
Japan
Prior art keywords
heat sink
semiconductor laser
submounting
submount
laser element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58047611A
Other languages
Japanese (ja)
Inventor
Naotaka Otsuka
尚孝 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP58047611A priority Critical patent/JPS59172787A/en
Publication of JPS59172787A publication Critical patent/JPS59172787A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/021Silicon based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Die Bonding (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable to conduct the Joule heat generated at a P-N junction to a heat sink member with good efficiency by a method wherein silicon is used as a submounting member, and many micro recesses are formed on the junction surface of the heat sink side of said member. CONSTITUTION:A semiconductor laser element 2 is brazed to a submounting member 6 with a solder 3, and a heat sink member 4 is brazed to said member 6 with a solder 5. The many recesses 7 are previously formed on the junction surface of the heat sink side of the submounting member 6. As the heat sink member 4, a metal excellent in thermal conductivity such as Cu and Ag is used, and Si is used as the submounting member 6. E.g. In, Sn, and In-Sn alloy is used for the solder 5 and 6.

Description

【発明の詳細な説明】 (技術分野〉 本発明は半導体レーザ素子のサブマウント装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a submount device for a semiconductor laser device.

〈従来技術〉 半導体し〜ザを室温で連続発振させると共に動作寿命を
向上させためには、主として半導体レーザのp−n接合
部で動作時に発生ずるジュール熱を効果的に外部へ放散
させる必要がある。このため従来における半導体レーザ
素子のマウント構造は、第1図に示すように、サブマウ
ント材1に半導体レーザ素子2をインジウム(I n)
 、’錫(S n)等のロウ材3を介して一旦マウント
し、その後さらにヒートシンク材4に、インジウム−錫
合金(1,n5n)等のロウ材5を介してマウントする
ことにより半導体レーザ素子のp−n接合部で発生する
熱を外部放散する構造が一般的であった。
<Prior art> In order to make a semiconductor laser continuously oscillate at room temperature and improve its operating life, it is necessary to effectively dissipate the Joule heat generated during operation mainly at the p-n junction of the semiconductor laser to the outside. be. For this reason, in the conventional mounting structure for a semiconductor laser device, as shown in FIG.
, 'The semiconductor laser element is mounted once through a brazing material 3 such as tin (Sn), and then further mounted on a heat sink material 4 through a brazing material 5 such as indium-tin alloy (1,n5n). A common structure was to dissipate heat generated at the p-n junction to the outside.

このような構造において、サブマウント1およびヒート
シンク材4の材料として、ダイヤモンド、銅(C,u)
、銀(Ag)、シリコン(Si)等の半導体材料が使用
さている。
In such a structure, diamond, copper (C, u) is used as the material for the submount 1 and the heat sink material 4.
Semiconductor materials such as silver (Ag), silicon (Si), etc. are used.

ヒートシンク材4はその使用目的から熱伝導度の大きい
ことを必要とするが、そのほかヒートシンク材の価格、
加工性等を考慮して材料を決定しなければならず、通常
は銅が最も多用さている。
The heat sink material 4 needs to have high thermal conductivity due to its intended use, but there are also other factors such as the price of the heat sink material,
The material must be selected taking into account workability, etc., and copper is usually the most commonly used material.

サブマウント材1は、ヒートシンク材4と同様に熱伝導
度の大きいことを必要とするがそのほか、サブマうント
材料の価格、半導体レーザ素子との熱膨張係数の差等を
考慮して材料を決定しなければならない。
The submount material 1 needs to have high thermal conductivity like the heat sink material 4, but the material is also determined by taking into account the price of the submount material, the difference in thermal expansion coefficient from the semiconductor laser element, etc. Must.

然るにサブマウント材1の各祠料のうら、ダイヤモンド
は室温近傍で最も熱伝導度が大きく、サブマウント+A
料として優れた特性を示すが、非常に高価である上に通
常は絶縁体であり、従つ゛ζサブマウント材1として使
用するためには適当な金属薄膜を被膜してロウ材3との
なじみを良くし、且つ半導体レーザ素子を動作させるた
めには通電可能な状態にしなげればならないという工程
上の複雑さを伴う欠点がある。銅、銀は比較的安価で熱
伝導度も大き(、この点ではサブマウント材として優れ
ているが、反面、他の祠料に比べて半導体レーザ素子を
構成しているG aへS。
However, on the back of each abrasive material of submount material 1, diamond has the highest thermal conductivity near room temperature, and submount +A
Although it exhibits excellent properties as a material, it is very expensive and is usually an insulator. Therefore, in order to use it as the ζ submount material 1, it must be coated with a suitable thin metal film to make it compatible with the brazing material 3. In order to improve the performance and operate the semiconductor laser device, it has to be brought into a state where it can be energized, which is a disadvantage in that it involves a complicated process. Copper and silver are relatively cheap and have high thermal conductivity (in this respect, they are excellent as submount materials, but on the other hand, compared to other abrasive materials, they have a higher resistance to Ga S that constitutes a semiconductor laser element.

Ga l−XΔ#xAsとの熱膨張係数の差が大きく、
加熱ロウ伺り後の冷却時に、半導体レーザ素子内部に歪
のが導入される危険性が大きく、半導体レーデ素子の動
作寿命に悪影響を及ぼず結果になる。
The difference in thermal expansion coefficient from Gal-XΔ#xAs is large,
There is a great risk that strain will be introduced into the semiconductor laser element during cooling after heating and waxing, but the result is that the operating life of the semiconductor laser element is not adversely affected.

また、銅、銀は加工性は良いがザブマウントを高精度に
大量生産するには適さないという欠点もある。シリコン
は、半導体レーザ材料であるGaAsQ a 1− x
 AβXASと比較的、膨張係数が近く、マウント歪が
軽減されるという利点を有するが、熱伝導度の面ではダ
イヤモンド、銅、銀と比較して可成り劣るという欠点が
ある。
In addition, although copper and silver have good workability, they also have the disadvantage that they are not suitable for high-precision mass production of submounts. Silicon is GaAsQ a 1-x, which is a semiconductor laser material.
Although it has the advantage of having a relatively similar expansion coefficient to AβXAS and reducing mounting strain, it has the disadvantage of being considerably inferior in thermal conductivity compared to diamond, copper, and silver.

〈発明の目的〉 本発明の目的は、シリコンをサブマウント材料に用い、
その欠点である熱伝導を改善したロウ付&J構造を持つ
半導体レーザのサブマウント装置を提供することにある
<Object of the invention> The object of the invention is to use silicon as a submount material,
It is an object of the present invention to provide a submount device for a semiconductor laser having a soldered &J structure that improves heat conduction, which is a drawback of the semiconductor laser.

〈発明の構成〉 本発明のザブマウント装置は、半導体レーザ素子とヒー
トシンク材の間にザブマウント材を介在してなる装置に
おいて、サブマウント材としてシリコンを用い、そのザ
ブマウント材のヒートシンク側接合面に微小な凹部を多
数形成したことを特徴としている。
<Structure of the Invention> The sub-mount device of the present invention is a device in which a sub-mount material is interposed between a semiconductor laser element and a heat sink material, in which silicon is used as the sub-mount material, and microscopic particles are formed on the bonding surface of the sub-mount material on the heat sink side. It is characterized by the formation of a large number of recesses.

〈実施例〉 第2図に本発明の実施例を示す。半導体レーザ素子2と
サブマウント材6の間はロウ材3によりロウ付けされ、
ヒートシンク材4とサブマウント材6の間はロウ材5に
よりロウ付けされている。
<Example> FIG. 2 shows an example of the present invention. The semiconductor laser element 2 and the submount material 6 are brazed with a brazing material 3,
The heat sink material 4 and the submount material 6 are brazed with a brazing material 5.

サブマウント材6のヒートシンク側接合面には、あらか
じめ微少な多数の凹所7が形成されている。
A large number of minute recesses 7 are formed in advance on the heat sink side bonding surface of the submount material 6.

ヒートシンク材4として銅、銀のように熱伝導度の良好
な金属が用いられ、サブマウント材6としてシリコンが
用いられる。ロウ材3及び5には、例えばインジウム、
錫、インジウム錫合金が用いられる。サブマウント材6
の接合面に形成されている微小な凹所7の大きさは、そ
の凹所が縞状溝の場合、溝の深さが1μm〜5μmの範
囲、溝幅が5μm〜100μmの範囲、溝と溝の間に残
された6所の幅が5μm〜100μmの範囲のものが好
ましい。なお、この微小な凹所は綿状に限られるのでは
なく、種々な形状で実施することができる。
As the heat sink material 4, a metal with good thermal conductivity such as copper or silver is used, and as the submount material 6, silicon is used. The brazing materials 3 and 5 include, for example, indium,
Tin and indium-tin alloys are used. Submount material 6
When the recess is a striped groove, the size of the minute recess 7 formed in the joint surface of It is preferable that the width of the six places left between the grooves is in the range of 5 μm to 100 μm. Note that this minute recess is not limited to a cotton-like shape, but can be implemented in various shapes.

次に、第2図に示した実施例の製造方法を説明する。3
i02膜を被膜したSiの上面にホトレジストを塗布し
、縞状のマスクで露光し、現像後、1(F(弗酸)によ
り5i02膜を縞状に除去する。
Next, a method of manufacturing the embodiment shown in FIG. 2 will be explained. 3
A photoresist is applied to the top surface of the Si coated with the i02 film, exposed to light using a striped mask, and after development, the 5i02 film is removed in striped form using 1(F (hydrofluoric acid)).

残った綿状の5i02膜をエツチングマスクとして、K
OHとH20(7)比率1:1、温度60″C〜100
°Cの溶液を用いてエツチングを行う。
Using the remaining cotton-like 5i02 film as an etching mask, K
OH and H20(7) ratio 1:1, temperature 60″C~100
Etching is carried out using a solution at °C.

このエツチングにより凹形の微小な溝が多゛数形成され
る。
By this etching, a large number of concave minute grooves are formed.

〈発明の効果〉 本QrlJ]によれば、比較的安価で量産に適したシリ
コンウェハを用い、半導体レーザ素子のp−n接合部で
発生するジュール熱を能率よくヒートシンク材へ伝導す
るサブマウント材を得ることができ、動作寿命の長い半
導体レーザ素子を製作することができる。
<Effects of the Invention> According to this QrlJ], a submount material that efficiently conducts Joule heat generated at the p-n junction of a semiconductor laser element to a heat sink material is created using a silicon wafer that is relatively inexpensive and suitable for mass production. Therefore, it is possible to manufacture a semiconductor laser device with a long operating life.

【図面の簡単な説明】 第1図は従来例を示す拡大模型図、第2図は本発明実施
例を示す拡大模型図である。 l−・サブマウント材 2・−半導体レーザ素子 4− ヒートシンク材 7−微小な凹所
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an enlarged model diagram showing a conventional example, and FIG. 2 is an enlarged model diagram showing an embodiment of the present invention. l - Submount material 2 - Semiconductor laser element 4 - Heat sink material 7 - Minute recess

Claims (1)

【特許請求の範囲】[Claims] 半導体レーザ素子とヒートシンク材の間にサブマウント
材を介在してなる装置において、サブマウント材として
しシリコンを用い、そのサブマウント材のヒートシンク
側接合面に微小な凹所を多数形成したことを特徴とする
半導体レーザのサブマウント装置。
A device in which a submount material is interposed between a semiconductor laser element and a heat sink material, characterized in that silicon is used as the submount material and many minute recesses are formed on the bonding surface of the submount material on the heat sink side. A submount device for semiconductor lasers.
JP58047611A 1983-03-22 1983-03-22 Submounting device for semiconductor laser Pending JPS59172787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58047611A JPS59172787A (en) 1983-03-22 1983-03-22 Submounting device for semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58047611A JPS59172787A (en) 1983-03-22 1983-03-22 Submounting device for semiconductor laser

Publications (1)

Publication Number Publication Date
JPS59172787A true JPS59172787A (en) 1984-09-29

Family

ID=12780021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58047611A Pending JPS59172787A (en) 1983-03-22 1983-03-22 Submounting device for semiconductor laser

Country Status (1)

Country Link
JP (1) JPS59172787A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4846930A (en) * 1985-10-16 1989-07-11 British Telecommunications Public Limited Company Mounting a component to a substrate
JPH02220491A (en) * 1988-12-21 1990-09-03 American Teleph & Telegr Co <Att> Silicon base mounting structure for semiconductor optical device
EP0390313A2 (en) * 1989-03-28 1990-10-03 Mitsubishi Denki Kabushiki Kaisha A semiconductor laser device
JPH07193315A (en) * 1993-12-27 1995-07-28 Nec Corp Semiconductor laser system and manufacture thereof
DE19536463A1 (en) * 1995-09-29 1997-04-03 Siemens Ag Laser diode component with heat sink
EP1675229A1 (en) * 2004-12-24 2006-06-28 Fanuc Ltd LD bar with recesses for optimum soldering to a heat sink
JP2007242864A (en) * 2006-03-08 2007-09-20 Oki Electric Ind Co Ltd Semiconductor device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4846930A (en) * 1985-10-16 1989-07-11 British Telecommunications Public Limited Company Mounting a component to a substrate
US4896936A (en) * 1985-10-16 1990-01-30 British Telecommunications Component mounted to substrate with overlying bridge-shaped supporte
JPH02220491A (en) * 1988-12-21 1990-09-03 American Teleph & Telegr Co <Att> Silicon base mounting structure for semiconductor optical device
EP0390313A2 (en) * 1989-03-28 1990-10-03 Mitsubishi Denki Kabushiki Kaisha A semiconductor laser device
JPH07193315A (en) * 1993-12-27 1995-07-28 Nec Corp Semiconductor laser system and manufacture thereof
DE19536463A1 (en) * 1995-09-29 1997-04-03 Siemens Ag Laser diode component with heat sink
DE19536463C2 (en) * 1995-09-29 2002-02-07 Infineon Technologies Ag Method of manufacturing a plurality of laser diode devices
EP1675229A1 (en) * 2004-12-24 2006-06-28 Fanuc Ltd LD bar with recesses for optimum soldering to a heat sink
JP2007242864A (en) * 2006-03-08 2007-09-20 Oki Electric Ind Co Ltd Semiconductor device
JP4668814B2 (en) * 2006-03-08 2011-04-13 Okiセミコンダクタ株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
JP3509809B2 (en) Submount and semiconductor device
CN101339911B (en) Mounted semiconductor device and a method for making the same
JP4828635B2 (en) Thermoelectric element, thermoelectric module, and method of manufacturing thermoelectric element
JP2006261569A (en) Sub-mount and its manufacturing method
JPS58145169A (en) Optical semiconductor device
US2332330A (en) Method for joining aluminum structures
JPS59172787A (en) Submounting device for semiconductor laser
JP3377553B2 (en) Semiconductor laser device
JPH0423368A (en) Manufacture of thermoelectric device
JPS6052079A (en) Semiconductor laser device
JPS59172786A (en) Submounting device for semiconductor laser
JP2006344764A (en) Heat dissipation substrate and its manufacturing method
JPH0555712A (en) Optical semiconductor device and its assembly method
JPH0983072A (en) Jig for surface treating semiconductor
JP2012159310A (en) Thin film thermistor sensor and manufacturing method for the same
JPS60157284A (en) Semiconductor device
JPS59983A (en) Manufacture of semiconductor laser device
JPH02138785A (en) Heat sink
JPH07174941A (en) Optical element coupling module for optical communication and its production
JPS59210687A (en) Semiconductor laser device
JPS6118188A (en) Semiconductor laser device
JPH03148192A (en) Manufacture of semiconductor device
JPH11195842A (en) Soldering of optical component to board
JPH114029A (en) Excitation-type solid-state laser device
JP5062545B2 (en) Submount and manufacturing method thereof