JPS6231815B2 - - Google Patents

Info

Publication number
JPS6231815B2
JPS6231815B2 JP15993380A JP15993380A JPS6231815B2 JP S6231815 B2 JPS6231815 B2 JP S6231815B2 JP 15993380 A JP15993380 A JP 15993380A JP 15993380 A JP15993380 A JP 15993380A JP S6231815 B2 JPS6231815 B2 JP S6231815B2
Authority
JP
Japan
Prior art keywords
semiconductor substrate
film
layer
silicon
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15993380A
Other languages
Japanese (ja)
Other versions
JPS5784134A (en
Inventor
Shigeru Honjo
Shoichi Kitane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP15993380A priority Critical patent/JPS5784134A/en
Publication of JPS5784134A publication Critical patent/JPS5784134A/en
Publication of JPS6231815B2 publication Critical patent/JPS6231815B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2257Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer being silicon or silicide or SIPOS, e.g. polysilicon, porous silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Bipolar Transistors (AREA)

Description

【発明の詳細な説明】 本発明は電力用パワートランジスタの半導体基
板の製造方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for manufacturing a semiconductor substrate for a power transistor for electric power.

従来の半導体基板の製造方法は、第1図Aに示
す如くまずN型の厚さ300μ、#1000ラツプ
(Lap)仕上げの基体1を用意する。次に同図B
に示す如くこの基体1の両面側にN+型の不純物
を、例えばオキシ塩化リン(POCl3)を拡散源と
して1200℃の温度で3時間デポジシヨンとして、
深さ20μ、不純物層の表面濃度が4〜6×1021
cm3のN+デポジシヨン層2を形成する。次に同図
Cに示す如く、基体1の片側のN+デポジシヨン
層2だけをケミカルエツチング液にて除去する。
その後、同図Dに示す如く、スチーム酸化により
基体1の周囲に厚さ2μ程度のシリコン酸化膜3
を形成した後、基体1を圧力を加えたスタツク状
態にしてN+不純物を押込むスランピングを行
い、深さ190μ、不純物層の表面濃度が1×
1020/cm3以上のN+拡散層4を同図Eに示す如くを
得る。次にこれをフツ化水素酸溶液に4〜7日間
浸漬して、同図Fに示す如く基体1の表面のシリ
コン酸化膜3を除去する。このようにして裏面の
N+拡散層の深さが190μ、コレクタ領域となるN-
層の深さが60μ、基体1の厚さが250μの片面ケ
ミカルエツチング仕上げの基板を作つていた。し
かしながら、従来の半導体基板の製造方法には、
次の様な欠点があつた。
In the conventional method for manufacturing a semiconductor substrate, as shown in FIG. 1A, first, an N-type substrate 1 having a thickness of 300 μm and a #1000 lap finish is prepared. Next, figure B
As shown in FIG. 1, N + type impurities are deposited on both sides of the substrate 1 at a temperature of 1200° C. for 3 hours using phosphorus oxychloride (POCl 3 ) as a diffusion source.
Depth 20μ, surface concentration of impurity layer 4-6×10 21 /
A N + deposition layer 2 of cm 3 is formed. Next, as shown in Figure C, only the N + deposition layer 2 on one side of the substrate 1 is removed using a chemical etching solution.
Thereafter, as shown in FIG.
After forming the substrate 1, the substrate 1 is placed in a stacked state under pressure, and slumping is performed to push the N + impurity into the substrate to a depth of 190μ and a surface concentration of the impurity layer of 1×.
An N + diffusion layer 4 having a density of 10 20 /cm 3 or more is obtained as shown in FIG. Next, this is immersed in a hydrofluoric acid solution for 4 to 7 days to remove the silicon oxide film 3 on the surface of the substrate 1, as shown in FIG. In this way, the back side
The depth of the N + diffusion layer is 190μ, and the N - becomes the collector region.
A single-sided chemically etched substrate was made with a layer depth of 60μ and a substrate 1 thickness of 250μ. However, conventional semiconductor substrate manufacturing methods include
It had the following shortcomings.

裏面の高濃度のN+デポジシヨン層2のリン
が第4図に示す如く、基体1の反対主表面
(N-層)へ廻り込み、シリコン酸化膜3の弱い
部分をつきぬけて、N-表面に部分的なN+層4
aを形成するためエミツタ開放コレクタ逆電流
(ICBO)不良が発生して、歩留低下の主要因と
なる。
As shown in FIG. 4, the phosphorus in the highly concentrated N + deposition layer 2 on the back side circulates to the opposite main surface (N - layer) of the substrate 1, penetrates the weak part of the silicon oxide film 3, and is deposited on the N - surface. Partial N + layer 4
Due to the formation of the emitter a, an open emitter collector reverse current (I CBO ) defect occurs, which is the main cause of a decrease in yield.

窒素、酸素の混合雰囲気中で高温長時間の加
圧スタツク拡散をするため、拡散終了時に基体
1相互を分離するのに、非常に長時間(4日〜
7日)のフツ化水素酸中での浸漬が必要であ
り、製造時間短縮のさまたげとなる。また、基
体1同士の分離が容易でないため、基体分離工
程で基体の割れが生じる。
Because the high-temperature, long-term, pressurized stack diffusion is carried out in a mixed atmosphere of nitrogen and oxygen, it takes a very long time (4 days to
It requires immersion in hydrofluoric acid for 7 days), which hinders shortening of production time. Furthermore, since it is not easy to separate the substrates 1 from each other, cracks occur in the substrates during the substrate separation step.

本発明は、かかる点に鑑みてなされたもので、
加圧したスタツク拡散でもフツ化水素酸中での浸
漬時間を短縮し、すみやかに基体相互を分離する
ことができ、基体の主表面へのリンの回り込み、
つきぬけによるエミツタ開放コレクタ逆電流(I
CBO)不良の発生はほとんど無い半導体基板の製
造方法を提供しようとするものである。
The present invention has been made in view of these points,
Even with pressurized stack diffusion, the immersion time in hydrofluoric acid can be shortened and the substrates can be quickly separated from each other, allowing phosphorus to wrap around the main surface of the substrate,
Emitter open collector reverse current (I
CBO ) aims to provide a method for manufacturing semiconductor substrates with almost no defects.

本発明では、シリコン単結晶基体に対するリン
マスク材料、すなわち、シリコン化合物薄膜とし
て、シリコン酸化膜、シリコン多結晶膜、シリコ
ン窒化膜から成る三層多重膜を用いる。本発明で
用いる三層多重膜は、多重膜の下層の1〜2μの
シリコン酸化膜、中間層の4000〜8000Åのシリコ
ン多結晶膜、上層の1000〜1500Åのシリコン窒化
膜の三重構造にする事によつて、同一膜厚のシリ
コン酸化膜に比べ大きなリンに対するマスク効果
が得られ、シリコンとシリコン窒化膜の熱膨張係
数の違いに起因して発生する応力歪をシリコン多
結晶膜により打消すことができ、クラツクの発生
を防止することができるものである。また、三層
多重膜の最上層としてシリコン窒化膜を形成する
ことで、高温長時間の加圧スタツク拡散後の基体
の相互分離を容易にすることができるものであ
る。
In the present invention, a three-layer multilayer film consisting of a silicon oxide film, a silicon polycrystalline film, and a silicon nitride film is used as a phosphorus mask material for a silicon single crystal substrate, that is, a silicon compound thin film. The three-layer multilayer film used in the present invention has a triple structure consisting of a silicon oxide film with a thickness of 1 to 2 μm as the lower layer of the multilayer film, a silicon polycrystalline film with a thickness of 4000 to 8000 Å as an intermediate layer, and a silicon nitride film with a thickness of 1000 to 1500 Å as an upper layer. This provides a greater masking effect for phosphorus than a silicon oxide film of the same thickness, and the silicon polycrystalline film cancels out stress and strain caused by the difference in thermal expansion coefficients between silicon and silicon nitride films. This makes it possible to prevent cracks from occurring. Further, by forming a silicon nitride film as the uppermost layer of the three-layer multilayer film, it is possible to easily separate the substrates from each other after high-temperature and long-term pressurized stack diffusion.

以下本発明の実施例を図面を参照しながら説明
する。第2図Aに示す如く、まず厚さ300μの
#1000ラツプ(Lap)仕上げのN型基体5を用意
する。次に同図Bに示す如く、この基体5の両側
面にN+不純物を、例えばオキシ塩化リン
(POCl3)を拡散源として1200℃で3時間デポジシ
ヨンして、深さ20μ、不純物層の表面濃度が4〜
6×1021/cm3のN+デポジシヨン層6を形成する。
次に同図Cに示す如く、基体5の片側だけをケミ
カルエツチング液、例えばフツカ水素(HF):
酢酸(HAC):硝酸(HNO3)=1:2:3の溶
液によつて、厚さ30μ程度除去する。次に同図D
に示す如く、これをスチーム雰囲気中にて1000℃
で4時間酸化して厚さ1.0〜1.2μのシリコン酸化
膜7を形成する。次に、モノシラン(SiH4)、ヘ
リウム(He)などのガス供給源を具備した気相
反応装置を使用して、前記シリコン酸化膜7上に
厚さ4000〜8000Åのシリコン多結晶膜8を被着す
る。次いで、供給ガスをアンモニア(HN4)、ジ
クロルシラン(SiH2Cl2)に切替えて、シリコン多
結晶膜8の上に厚さ1000〜1500Åのシリコン窒化
膜9を被着する。このようにして形成されたシリ
コン酸化膜7、シリコン多結晶膜8、シリコン窒
化膜9からなる三層多重膜10は、リンに対する
拡散マスクであると同時に基体相互の接着防止膜
として働く。次に第3図に示す如く、三層多重膜
10を形成した基体ウエハー11を主表面同士を
向い合わせた加圧スタツク状態で、拡散ボート1
5のガイド板14間に挿入し、酸化性雰回気中、
例えばチツ素(N2):酸素(O2)=3:1で1270
℃×250時間の処理条件でN+不純物の押込み(ス
ランピング)を行い深さ190μ、スランピング層
の表面濃度が1×1020/cm3以上のN+層13を第2
図Eに示す如く得る。基板ウエハー11同士は、
加圧スタツク拡散のため、密着しているが、従来
方法によるもののように堅固な接着はない。また
三層多重膜10は、酸化性雰囲気中で熱処理して
いる為、三層全体がシリコン酸化膜12に変化し
ており、第3図に示すスタツク基板20をフツ化
水素酸溶液へ数十分浸漬すると簡単に基板ウエハ
ー11同士の分離ができる。その結果、第2図F
に示す如く片面がエツチング仕上げされた半導体
基板21を得ることができる。尚、三層多重膜1
0は、基体の両面に形成させるための主表面側の
マスクとなるとともに、裏面からのリンの飛び出
しを軽減するものである。因に、N+スランピン
グ時の裏面及び拡散炉からのN+不純物の飛び出
しによるN-表面へのN+不純物の入り込み状態を
示すパイプ密度と拡散時間の関係は、本発明によ
るもの()と従来方法によるもの()とでは
第5図から明らかな如く、本発明によるものでは
拡散時間の経過に関係なくパイプ密度はほぼ零で
あり、従来方法によるものに比べて遥かにすぐれ
ていることが判る。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 2A, first, an N-type substrate 5 with a #1000 lap finish and a thickness of 300 μm is prepared. Next , as shown in FIG. Concentration is 4~
A N + deposition layer 6 of 6×10 21 /cm 3 is formed.
Next, as shown in FIG.
A thickness of approximately 30 μm is removed using a solution of acetic acid (HAC):nitric acid (HNO 3 )=1:2:3. Next, figure D
As shown in the figure, this was heated to 1000℃ in a steam atmosphere.
Oxidation is carried out for 4 hours to form a silicon oxide film 7 with a thickness of 1.0 to 1.2 μm. Next, a silicon polycrystalline film 8 with a thickness of 4000 to 8000 Å is coated on the silicon oxide film 7 using a gas phase reactor equipped with a gas supply source such as monosilane (SiH 4 ) or helium (He). wear. Next, the supplied gas is switched to ammonia (HN 4 ) and dichlorosilane (SiH 2 Cl 2 ), and a silicon nitride film 9 with a thickness of 1000 to 1500 Å is deposited on the silicon polycrystalline film 8. The thus formed three-layer multilayer film 10 consisting of the silicon oxide film 7, the silicon polycrystalline film 8, and the silicon nitride film 9 functions as a diffusion mask for phosphorus and at the same time as an adhesion prevention film between the substrates. Next, as shown in FIG. 3, the base wafers 11 on which the three-layer multilayer film 10 has been formed are stacked under pressure with their main surfaces facing each other, and placed in the diffusion boat 1.
5 between the guide plates 14 in an oxidizing atmosphere,
For example, nitrogen (N 2 ): oxygen (O 2 ) = 3:1 and 1270
N + impurities were injected (slumping) under the treatment conditions of 250 hours at ℃ to form a second N + layer 13 with a depth of 190 μ and a surface concentration of 1 × 10 20 /cm 3 or more.
Obtain as shown in Figure E. The substrate wafers 11 are
Because of the pressure stack diffusion, there is close contact, but there is not as strong a bond as with conventional methods. Furthermore, since the three-layer multilayer film 10 is heat-treated in an oxidizing atmosphere, the entire three layers have changed to the silicon oxide film 12.The stacked substrate 20 shown in FIG. Substrate wafers 11 can be easily separated from each other by dipping for a minute. As a result, Figure 2 F
As shown in FIG. 2, a semiconductor substrate 21 whose one side is finished by etching can be obtained. In addition, three-layer multilayer film 1
0 serves as a mask on the main surface side to be formed on both sides of the substrate, and also serves to reduce phosphorus from popping out from the back surface. Incidentally, the relationship between the pipe density and diffusion time, which indicates the state of N + impurity entering the N - surface due to the jump of N + impurities from the back surface and diffusion furnace during N + slumping, is different from that according to the present invention () and the conventional method. As is clear from Fig. 5, the pipe density of the method according to the present invention is almost zero regardless of the elapse of the diffusion time, and it can be seen that it is far superior to the method using the conventional method. .

以上の説明した如く、本発明による半導体基板
の製造方法によれば、三層多重膜を設けることに
よつて片面の高濃度層の深い拡散が他面へ外部拡
散するのを防止し、且つ三層多重膜によつて加圧
スタツク拡散後の基板の分離を容易にしたので、
製造時間の短縮、基体割れを激減できる等顕著な
効果を有する。
As explained above, according to the method for manufacturing a semiconductor substrate according to the present invention, by providing a three-layer multilayer film, deep diffusion in the high concentration layer on one side is prevented from diffusing outward to the other side, and The multilayer film makes it easy to separate the substrate after pressure stack diffusion.
It has remarkable effects such as shortening manufacturing time and drastically reducing cracking of the substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A乃至同図Fは、従来の半導体基板の製
造工程を示す断面図、第2図A乃至同図Fは、本
発明による半導体基板の製造工程を示す断面図、
第3図は、スタツク基板の正面図、第4図は、
N+スランピング時の裏面、拡散炉からのN+不純
物の飛び出し、N-表面へのN+不純物の入り込み
(パイプ)状態を示す説明図、第5図は、パイプ
密度と拡散時間の関係を示す特性図である。 5…半導体基体、6…デポジシヨン層、7…シ
リコン酸化膜、8…シリコン多結晶膜、9…シリ
コン窒化膜、10…三層多重膜、11…基体ウエ
ハー、14…ガイド板、15…拡散ボート、20
…スタツク基板、21…半導体基板。
1A to 1F are cross-sectional views showing the conventional semiconductor substrate manufacturing process, and FIGS. 2A to 2F are cross-sectional views showing the semiconductor substrate manufacturing process according to the present invention.
Figure 3 is a front view of the stack board, Figure 4 is
An explanatory diagram showing the back side during N + slumping, N + impurities flying out from the diffusion furnace, and N + impurities entering the N - surface (pipe). Figure 5 shows the relationship between pipe density and diffusion time. It is a characteristic diagram. 5... Semiconductor substrate, 6... Deposition layer, 7... Silicon oxide film, 8... Silicon polycrystalline film, 9... Silicon nitride film, 10... Three-layer multilayer film, 11... Base wafer, 14... Guide plate, 15... Diffusion boat , 20
...Stack substrate, 21 ...Semiconductor substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板の片面に該半導体基板と同導電形
の高濃度不純物層を形成する工程と、前記半導体
基板の露出された表面及び前記高濃度不純物層の
表面にシリコン酸化膜、シリコン多結晶膜、シリ
コン窒化膜を順次積層する工程と、前記半導体基
板を加圧スタツク状態にして酸化雰囲気中で加熱
することにより前記半導体基板内に前記高濃度不
純物層を構成する不純物を導入してスランピング
層を形成すると共に、前記シリコン酸化膜、シリ
コン多結晶膜、シリコン窒化膜を一体に酸化して
酸化膜を形成する工程と、該酸化膜を除去する工
程とを具備することを特徴とする半導体基板の製
造方法。
1. Forming a high concentration impurity layer of the same conductivity type as the semiconductor substrate on one side of a semiconductor substrate, and forming a silicon oxide film, a silicon polycrystalline film, on the exposed surface of the semiconductor substrate and the surface of the high concentration impurity layer, A slumping layer is formed by sequentially stacking silicon nitride films, and by heating the semiconductor substrate in a pressurized stacked state in an oxidizing atmosphere to introduce impurities constituting the high concentration impurity layer into the semiconductor substrate. Manufacturing a semiconductor substrate, comprising the steps of integrally oxidizing the silicon oxide film, silicon polycrystalline film, and silicon nitride film to form an oxide film, and removing the oxide film. Method.
JP15993380A 1980-11-13 1980-11-13 Manufacture of semiconductor substrate Granted JPS5784134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15993380A JPS5784134A (en) 1980-11-13 1980-11-13 Manufacture of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15993380A JPS5784134A (en) 1980-11-13 1980-11-13 Manufacture of semiconductor substrate

Publications (2)

Publication Number Publication Date
JPS5784134A JPS5784134A (en) 1982-05-26
JPS6231815B2 true JPS6231815B2 (en) 1987-07-10

Family

ID=15704316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15993380A Granted JPS5784134A (en) 1980-11-13 1980-11-13 Manufacture of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS5784134A (en)

Also Published As

Publication number Publication date
JPS5784134A (en) 1982-05-26

Similar Documents

Publication Publication Date Title
US3743552A (en) Process for coplanar semiconductor structure
JP3170445B2 (en) Method of forming solar cell element
JPS6231815B2 (en)
JPH03181115A (en) Manufacture of semiconductor substrate
JPS5812340A (en) Manufacture of semiconductor device
CA1059647A (en) Method of preparing dielectric insulator separated substrate for semiconductor integrated circuits
KR950006339B1 (en) Bpsg layer forming method
JPH0834193B2 (en) Method for manufacturing semiconductor device
JPS63174348A (en) Semiconductor device of laminated structure
CN114496733B (en) High-resistivity composite substrate, preparation method and electronic component
JP2608443B2 (en) Method for manufacturing semiconductor wafer
US4391658A (en) Method for manufacturing semiconductor substrate
JPS5943549A (en) Method of forming aluminum wiring layer
JPH0235459B2 (en)
JPS5856327A (en) Manufacture of semiconductor device
JPS6094738A (en) Semiconductor substrate
JPS5889840A (en) Manufacture of derivative isolating substrate
JP3244097B2 (en) Method for manufacturing dielectric-isolated semiconductor substrate having multilayer structure
JPS6248040A (en) Insulator isolated substrate and manufacture thereof
JPS641066B2 (en)
JPS63302524A (en) Manufacture of semiconductor device
JPH0228250B2 (en)
JPH0341719A (en) Manufacture of semiconductor substrate
RU2022405C1 (en) Method for producing structures for integrated circuits with dielectric insulation
JPS6120154B2 (en)