JPH0341719A - Manufacture of semiconductor substrate - Google Patents

Manufacture of semiconductor substrate

Info

Publication number
JPH0341719A
JPH0341719A JP17749789A JP17749789A JPH0341719A JP H0341719 A JPH0341719 A JP H0341719A JP 17749789 A JP17749789 A JP 17749789A JP 17749789 A JP17749789 A JP 17749789A JP H0341719 A JPH0341719 A JP H0341719A
Authority
JP
Japan
Prior art keywords
substrate
layer
film
gaas
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17749789A
Other languages
Japanese (ja)
Other versions
JP2779954B2 (en
Inventor
Mitsuru Sugo
須郷 満
Yoshio Ito
義夫 伊藤
Masami Tachikawa
太刀川 正美
Hidefumi Mori
森 英史
Kazuo Imai
和雄 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1177497A priority Critical patent/JP2779954B2/en
Publication of JPH0341719A publication Critical patent/JPH0341719A/en
Application granted granted Critical
Publication of JP2779954B2 publication Critical patent/JP2779954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain a high-quality III-V compound semiconductor layer without cracks and defects on an Si substrate by laminating an insulating film and a thin Si layer on a substrate, and growing a III-V compound semiconductor on said laminated layers. CONSTITUTION:A BPSG film 2 is formed on the main surface of an Si substrate 1 by a plasma CVD method. Then, a substrate 6 is otherwise prepared by laminating a BPSG film 5 on the surface of a second substrate 4 made of molybdenum by a plasma CVD method in addition to the substrate 3. Thereafter, both substrates (3 and 6) are bonded at a specified temperature by using the BPSG films 2 and 5. The Si substrate 1 is made to be the thin layer by mechanical chemical etching method. The Si substrate on the molybdenum substrate 4 is set in an MBE apparatus. A GaAs film 8 is grown by so-called two-stage growing method. Since most of thermal stress is alleviated with the Si layer 1, the high-quality GaAs is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体基板の製造方法に関し、特にシリコン(
81)基板上にGaAsなどの■−V族化合物半導体単
結晶を得るためのm−v族化合物半導体基板の製造方法
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor substrate, particularly silicon (
81) This relates to a method for manufacturing an m-v group compound semiconductor substrate for obtaining a single crystal of a -V group compound semiconductor such as GaAs on a substrate.

〔従来の技術〕[Conventional technology]

GaAs 、InP等の化合物半導体はその優れた特徴
を活かして、高性能、高機能、高機能デバイスに利用さ
れつつある。しかし化合物半導体は一般に高価であう、
筐た大面積の高品質基板結晶を得にくい等の問題点があ
る。このような問題点を克服するための試みとして、安
価で、良質、軽量。
Compound semiconductors such as GaAs and InP are being utilized for high performance, high functionality, and high performance devices by taking advantage of their excellent characteristics. However, compound semiconductors are generally expensive,
There are problems such as difficulty in obtaining a high-quality substrate crystal with a large area. In an attempt to overcome these problems, we have developed a product that is inexpensive, high quality, and lightweight.

大面積なシリコンを基板としこのシリコン基板上に化合
物半導体を積層し、この化合物半導体層にデバイスを製
造することが試みられている。このようなシリコン基板
を用いて化合物半導体基板を製造する方法は従来よシ幾
つか提案されているが、いまだ結晶品質の点でバルク結
晶に劣るのが現状である。
Attempts have been made to use a large silicon substrate as a substrate, stack compound semiconductors on the silicon substrate, and manufacture devices using the compound semiconductor layers. Although several methods for manufacturing compound semiconductor substrates using such silicon substrates have been proposed in the past, they are still inferior to bulk crystals in terms of crystal quality.

その原因は、■−■族半導体の熱膨張係数と格子定数が
シリコンと異なるためである。特に熱膨張係数差にもと
づく熱応力は10’dyn/−以上となシ欠陥やクラッ
クを引起こす主要因となっている。
The reason for this is that the thermal expansion coefficient and lattice constant of the ■-■ group semiconductor are different from those of silicon. In particular, thermal stress based on the difference in thermal expansion coefficients of 10'dyn/- or more is the main cause of defects and cracks.

すなわち、成長温度T、でsi基板上にGaAs層を成
長させた後冷却を開始すると、81基板の熱膨張係数α
siとGaAaの熱膨張係数αo1^、との差に基づく
応力σT1つまり σT=(αGA人B−α5t)−(T、−T)−E/(
1−y)が発生する。この応力はSlとGaAsが密着
している限シは不可避で、81基板よシ薄いGaAs層
にクラックや欠陥を導入させて緩和する。
That is, when cooling is started after growing a GaAs layer on a Si substrate at a growth temperature T, the thermal expansion coefficient α of the 81 substrate is
The stress σT1 based on the difference between si and the thermal expansion coefficient αo1^ of GaAa, that is, σT=(αGAB−α5t)−(T,−T)−E/(
1-y) occurs. This stress is unavoidable as long as Sl and GaAs are in close contact with each other, and is alleviated by introducing cracks and defects into the GaAs layer, which is thinner than the 81 substrate.

従来より1この問題を解決するため、■−v族半導体層
と基板との間に熱膨張係数差を緩和する層を入れる構造
の■−v族化合物半導体基板の製造方法が提案されてい
る。
In order to solve this problem, a method for manufacturing a 2-V group compound semiconductor substrate has been proposed in which a layer for reducing the difference in thermal expansion coefficient is inserted between the 1-V group semiconductor layer and the substrate.

例えば、■−v族半導体とsiやガラスなどの基板との
間に低融点物質層を介在させる方法がある。特開昭62
−2669によると、太陽電池層とSt、ガラスや金属
等の基板との間にS n + G a r I n等を
介在させる構造、あるいは太陽電池層の代シにGe単結
晶を使いその上に■−v結晶を成長させた方法が示され
ている。
For example, there is a method in which a low melting point material layer is interposed between the ■-V group semiconductor and a substrate such as Si or glass. Unexamined Japanese Patent Publication 1986
According to 2669, there is a structure in which Sn + Gar In is interposed between the solar cell layer and a substrate made of St, glass, metal, etc., or a structure in which Ge single crystal is used as a substitute for the solar cell layer, and shows a method for growing ■-v crystals.

また、他の方法として種類の異なる複数の半導体基材を
積層して一体化する方法がある。特開昭61−1822
15によると、St基板上にInP、その上にGaAs
を隣合わせにし、鏡面同士を密着し熱処理して一体化す
る方法が示されている。
Another method is to laminate and integrate a plurality of semiconductor substrates of different types. Japanese Patent Publication No. 61-1822
15, InP is placed on a St substrate and GaAs is placed on top of it.
A method is shown in which they are placed next to each other, their mirror surfaces are brought into close contact with each other, and heat treated to integrate them.

また、特開昭61−219182にはシリコン基板に高
濃度不純物層を作製し、そのうえにsiをうずく形成し
て、さらに■−■結晶を成長させた後、前記S1基板を
化学的にエツチングして高濃度不純物層でエツチングを
とめる方法により大面積。
Furthermore, in JP-A No. 61-219182, a highly concentrated impurity layer is formed on a silicon substrate, Si is formed on the layer, and crystals are further grown, and then the S1 substrate is chemically etched. A large area can be achieved by stopping etching with a highly concentrated impurity layer.

軽量な化合物半導体を得る方法が示されている。A method for obtaining lightweight compound semiconductors is shown.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記特開昭62−2669の方法では、太陽電
池層を作製してから基板に貼シつけるため、その面積は
■−■族基板の大きさ(直径4インチ以下)に限定され
てし筐う。またGo層を貼シつける方法では、GoがS
tと比較して大計積の結晶が通常得られないため、上記
と同様な問題がある。
However, in the method of JP-A-62-2669 mentioned above, since the solar cell layer is produced and then attached to the substrate, its area is limited to the size of the ■-■ group substrate (4 inches or less in diameter). Ensemble. In addition, in the method of pasting the Go layer, Go is S
Since a crystal with a large total area compared to t cannot usually be obtained, there is a problem similar to that described above.

また、上記特開昭61−182215の方法では、隣合
う材料の熱膨張係数差が2×lO″″6 de g −
Zになシ、かつ接着温度が高々200℃であるため、熱
歪が大幅に緩和される利点を有しているが、その大きさ
は■−V族化合物半導体の大きさに限定されるうえGa
Aaよシ高価IInPを中間に使うため、経済的でない
Furthermore, in the method of JP-A-61-182215, the difference in thermal expansion coefficient between adjacent materials is 2×lO″″6 de g −
Since it is non-Z and the bonding temperature is at most 200°C, it has the advantage of greatly easing thermal distortion, but its size is limited to the size of ■-V group compound semiconductors. Ga
Since IInP, which is more expensive than Aa, is used in the middle, it is not economical.

さらに、上記特開昭61−219182の方法では、シ
リコン基板が厚い状態で化合物半導体を成長するため、
熱歪低減の効果はなく、化合物半導体の品質を向上させ
る働きはない。
Furthermore, in the method of JP-A-61-219182, since the compound semiconductor is grown on a thick silicon substrate,
It has no effect of reducing thermal strain and has no effect on improving the quality of compound semiconductors.

本発明は以上の点に鑑みてなされたもので、その目的は
、81基板上にクラックや欠陥の無い高品品質なm−v
族化合物半導体層を成長させることができる半導体基板
の製造方法を提供することにある。
The present invention has been made in view of the above points, and its purpose is to provide high quality m-v without cracks or defects on the 81 board.
An object of the present invention is to provide a method for manufacturing a semiconductor substrate that allows growth of a group compound semiconductor layer.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために、本発明は、31からなる
第1の基板を絶縁膜を介在させて第2の基板に接着させ
て基板を形成し、次いでこの第1のsi基板の薄層化を
行ったのち、その薄層化した81層上にm−v族化合物
半導体を成長することを主要な特徴とする。
In order to achieve the above object, the present invention forms a substrate by adhering a first substrate made of 31 to a second substrate with an insulating film interposed, and then a thin layer of this first Si substrate. The main feature is that after the thinning of the 81 layer, an m-v group compound semiconductor is grown on the thinned 81 layer.

〔作用〕[Effect]

本発明にかいては、基板上に絶縁膜と薄いSt層とを積
層した上に■−v族化合物半導体を成長することによシ
、その81基板上にクラックや欠陥の無い高品質々■−
v族化合物半導体層を得ることができる。
In the present invention, by growing a ■-V group compound semiconductor on a laminated insulating film and a thin St layer on a substrate, a high-quality product without cracks or defects can be formed on the substrate. −
A V group compound semiconductor layer can be obtained.

〔実施例〕〔Example〕

以下、本発明の実施例について図面を参照して説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図(龜)〜(d)は、本発明の第1の実施例による
半導体基板の製造工程を示す断面図である。
FIGS. 1(d) to 1(d) are cross-sectional views showing the manufacturing process of a semiconductor substrate according to a first embodiment of the present invention.

筐ず、半導体主面が(ioo)面であるSl基板1を用
意する。次に、このSl基板1の主面上にプラズマCV
D法によ5BPSG膜2を形成して第1の基板3を作製
する。次に、この基板3とは別に、モリブデン製の第2
の基板4の表面にプラズマCVD法によ、pBPSG膜
5を積層した基板6を用意しく第1図(&))、しかる
後両者(3と6)をBPSG膜2と5を用いて所定の温
度で接着する(第1図(b))。ただし、図中7は接着
後のnpsaiを示す。
First, an Sl substrate 1 whose main semiconductor surface is an (ioo) plane is prepared. Next, plasma CVD is applied onto the main surface of this Sl substrate 1.
A 5BPSG film 2 is formed by method D to produce a first substrate 3. Next, apart from this substrate 3, a second substrate made of molybdenum is installed.
Prepare a substrate 6 with a pBPSG film 5 laminated on the surface of the substrate 4 by plasma CVD method (Fig. Adhesion is achieved by temperature (Fig. 1(b)). However, 7 in the figure indicates npsai after adhesion.

次に、メカのケミカルエツチング法にようSi基板1を
1μm−!!で薄層化する(第1図(C) )。
Next, the Si substrate 1 is etched to a thickness of 1 μm using a mechanical chemical etching method. ! (Fig. 1 (C)).

この様にして作製したモリブデン基板4上の81基板を
MBEの装置内にセットし、いわゆる2段階成長法(約
350℃の低温成長と約600℃の高温成長からなる)
によjl)GaAs膜8を約3μm成長した。
The 81 substrate on the molybdenum substrate 4 produced in this way was set in an MBE apparatus, and the so-called two-step growth method (consisting of low-temperature growth at about 350°C and high-temperature growth at about 600°C) was performed.
A GaAs film 8 was grown to a thickness of about 3 μm.

第1図(d)にこの様にして得られた半導体基板の構造
を示す。
FIG. 1(d) shows the structure of the semiconductor substrate thus obtained.

このようにして得られたGaAs層8中の応力は、フォ
トルミネッセンスのピーク波長のシフト量は2 X 1
0’ dyn/−であると見積もられた。従来のGaA
s/Si(約2 X 10’ dyn/cJ)に比べて
減少していることが分る。溶融KOHによるエツチング
からは、ニッチeビット密度(EPD)は約2X105
all−”  と見積もられ、これ筐で得られている8
1基板上のGaAsと比較して格段の膜質のものが得ら
れた。従来の方法では、si基板が厚い状態でGaAs
を成長していたため、熱応力が副基板よう薄いGaAs
層に欠陥を導入させて緩和していた。
The stress in the GaAs layer 8 thus obtained is such that the amount of shift in the peak wavelength of photoluminescence is 2 x 1
It was estimated to be 0' dyn/-. Conventional GaA
It can be seen that this decreases compared to s/Si (approximately 2 x 10' dyn/cJ). From etching with molten KOH, the niche e-bit density (EPD) is approximately 2X105
It is estimated that 8
A film of much higher quality was obtained than that of GaAs on a single substrate. In the conventional method, GaAs is grown when the Si substrate is thick.
Because the thermal stress was growing on the thin GaAs sub-substrate
This was alleviated by introducing defects into the layer.

これに対して、本発明では、薄層化したSi基板1つま
bSiSt層GaAs層8及び熱膨張係数がGaAaに
近いモリブデンに比べて薄く、熱応力のほとんどが当該
St層1によシ緩和されたために、高品質のGaAsが
得られたものと考えられる。
In contrast, in the present invention, most of the thermal stress is alleviated by the thin Si substrate, one SiSt layer, one GaAs layer 8, and the other is thinner than molybdenum, which has a coefficient of thermal expansion close to that of GaAa. This is probably why high quality GaAs was obtained.

第2図(瓢)〜(41)は、本発明の第2の実施例によ
る半導体基板の製造工程を示す断面図である。
FIGS. 2(a) to (41) are cross-sectional views showing the manufacturing process of a semiconductor substrate according to a second embodiment of the present invention.

まず、半導体主面が(100)面である81基板9を用
意する。次に、このSi基板9の主面上に、イオン注入
法(注入エネルギー:40eV、注入量: I X 1
0”cm″″2、アニール温度:1100℃、アニール
時間:3層m)によシ表面からの深さ1μmの不純物濃
度が1020CWL″″3以上となるように設定された
p+ボロンドープ層10を形成する(第2図(a))。
First, an 81 substrate 9 whose main semiconductor surface is a (100) plane is prepared. Next, on the main surface of this Si substrate 9, an ion implantation method (implantation energy: 40 eV, implantation amount: I
0"cm""2, annealing temperature: 1100° C., annealing time: 3 layers m), the p + boron doped layer 10 is set so that the impurity concentration at a depth of 1 μm from the surface is 1020CWL""3 or more. (Fig. 2(a)).

次いで、このp+ボロンドープ層10の上にプラズマC
VD法によ、り PSG膜1膜管1成したのち、該基板
12とは別に、サファイア製の第2の基板13(熱膨張
係数6.5X10−6℃−1)の表面にpsGMl 4
をプラズマCVD法によう積層した基板15を用意しく
第2図(b) ’) 、両者(12と15)をPSG膜
1膜管14を用いて接着する(第2図(C))。ただし
、図中16は接着後のpsagを示す。
Next, plasma C is applied onto this p+ boron doped layer 10.
After forming one PSG film and one film tube by the VD method, psGMl 4 was deposited on the surface of a second substrate 13 made of sapphire (thermal expansion coefficient 6.5 x 10-6°C-1) separately from the substrate 12.
Prepare the substrate 15 laminated by the plasma CVD method (FIG. 2(b)'), and bond both (12 and 15) using the PSG film 1 film tube 14 (FIG. 2(C)). However, 16 in the figure indicates psag after adhesion.

次に、基板12のp中層10以外の部分(Si基板9)
をエツチング除去して薄層化する。この方法としては、
筐ず、10μm程度の膜厚1で機械的な研磨によシ薄層
化し、次に、エチレンジアミン17m1、ピテカテコー
ル3g、水8mlの組成比のアルカリ系の混合液を10
0℃に加熱したものを使用した。この混合液は、p−、
n″″あるいはn”s 1層に対するエツチング速度が
、1020crn″″3以上のボロン濃度のp+にたい
して500倍以上大きく、選択性があるため、膜厚の均
一性に優れた1μmのp+si層10を有する構造のも
のが得られる(第2図(d))。
Next, a portion of the substrate 12 other than the p-middle layer 10 (Si substrate 9)
Remove it by etching and make it a thin layer. This method is
A thin layer was formed by mechanical polishing to a film thickness of about 10 μm, and then an alkaline mixed solution with a composition ratio of 17 ml of ethylenediamine, 3 g of pitecatechol, and 8 ml of water was poured into a thin layer with a thickness of about 10 μm.
The one heated to 0°C was used. This mixture is p-,
The etching rate for one layer of n'''' or n''s is more than 500 times higher than that of p+ with a boron concentration of 1020 crn''''3 or more, and the etching rate is more than 500 times higher than that of p+ with a boron concentration of 1020 crn''3 or more. (FIG. 2(d)).

この様にして作製したサフサファイア基板13上のSt
基板をMOCVDの装置内にセットし、いわゆる2段階
成長法(約400℃の低温成長と約700℃の高温成長
からなる)によシGaAs膜11を約5μm成長じた。
St on the sapphire substrate 13 produced in this way
The substrate was set in an MOCVD apparatus, and a GaAs film 11 of about 5 μm was grown by a so-called two-step growth method (consisting of low-temperature growth at about 400° C. and high-temperature growth at about 700° C.).

第2図(、)にこの様にして得られた半導体基板の構造
を示す。
FIG. 2(,) shows the structure of the semiconductor substrate thus obtained.

このようにして得られたGaAs層1T中の応力は、フ
ォトルミネッセンスのピーク波長のシフト量は108 
dyn/−であると見積もられた。従来のGaAs/S
i(約2X 10’dyn/cII)に比べて減少して
いることが分る。溶融KOJIによるエツチングからは
、ニッチ・ピット密度(EPD)ハ約lX105α″″
2と見積もられ、これ1で得られているS!基板上のG
aAsと比較して格段の膜質のものが得られた。従来の
方法では、si基板が厚い状態でGaA3を成長してい
たため熱応力が81基板よう薄いGaAs層に欠陥を導
入させて緩和していたのに対して、本発明では、p”8
1層10がGaAs層1T及び熱膨張係数がGaAsに
近いサファイアに比べて薄く、熱応力のほとんどがp+
st層10によう緩和されたために、高品質のGaAs
が得られたものと考えられる。
The stress in the GaAs layer 1T obtained in this way is such that the shift amount of the peak wavelength of photoluminescence is 108
It was estimated to be dyn/-. Conventional GaAs/S
It can be seen that this decreases compared to i (approximately 2X 10'dyn/cII). From etching with molten KOJI, the niche pit density (EPD) is approximately 1×105α″
S is estimated to be 2 and obtained with this 1! G on the board
A film of much higher quality than aAs was obtained. In the conventional method, GaA3 was grown on a thick Si substrate, so the thermal stress was alleviated by introducing defects into the GaAs layer as thin as the 81 substrate.
The first layer 10 is thinner than the GaAs layer 1T and sapphire whose coefficient of thermal expansion is close to that of GaAs, and most of the thermal stress is p+.
Since the st layer 10 is relaxed, high quality GaAs
It is thought that this was obtained.

第3図は(、)〜(f)は、本発明の第3の実施例によ
る半導体基板の製造工程を示す断面図である。
3(a) to 3(f) are cross-sectional views showing the manufacturing process of a semiconductor substrate according to a third embodiment of the present invention.

まず、半導体主面が(ioo)面であるSi基板18を
用意する。次に、とのSi基板1Bの主面上に、イオン
注入法(注入エネルギー: 40 e V %注入量:
lX1016傭−2アニール温度: 1100℃、アニ
ール時間: 30= )によシ表面からの深さ1μmの
不純物濃度が1020cm″″3以上となるように設定
されたp+ボロンドープ層19を形成する(第3図(&
))。
First, a Si substrate 18 whose main semiconductor surface is an (ioo) plane is prepared. Next, on the main surface of the Si substrate 1B, an ion implantation method (implantation energy: 40 eV % implantation amount:
A p+ boron doped layer 19 is formed so that the impurity concentration at a depth of 1 μm from the surface is 1020 cm''3 or more (annealing temperature: 1100° C., annealing time: 30=). Figure 3 (&
)).

次いで、このp+ボロンドープ層19の上ニプラズマC
VD法によ、9 PSG膜20を形成したのち、該基板
21とは別に、アルミナ単結晶製の第2の基板22(熱
膨張係数4.6X10″″6℃−1)の表面にPSG膜
23をプラズマCVD法によう積層した基板24を用意
しく第3図(b) ) 、両者(21と24)をPSG
膜20と23を用いて接着する(第3図(C))。
Next, on this p+ boron doped layer 19, a plasma C
After forming 9 PSG films 20 by the VD method, a PSG film was formed on the surface of a second substrate 22 made of alumina single crystal (thermal expansion coefficient 4.6×10″″6°C-1) separately from the substrate 21. Prepare a substrate 24 on which 23 is laminated by plasma CVD method (Fig. 3(b)), and PSG both (21 and 24).
Bonding is performed using films 20 and 23 (FIG. 3(C)).

ただし、図中25は接着後のPSG膜を示す。However, 25 in the figure indicates the PSG film after adhesion.

次に、基板21のp十層19以外の部分(Si基板18
)をエツチング除去して薄層化する。この方法としては
、1ず、10μm程度の膜厚筐で機械的な研磨によう薄
層化し、次に、エチレンジアミン17m1.ピテカテコ
ール3g、水8mlの組成比のアルカリ系の混合液を1
00℃に加熱したものを使用した。この混合液は、p−
、n−あるいはn”81層に対するエツチング速度が、
1020cm−3以上のボロン濃度の、十に対して50
0倍以上大きく、選択性があるため、膜厚の均一性に優
れた1μmのp+Si層19を有する構造のものが得ら
れる(第3図(d))。
Next, a portion of the substrate 21 other than the p-layer 19 (the Si substrate 18
) is removed by etching to make it a thin layer. In this method, first, a film thickness of about 10 μm is made into a thin layer by mechanical polishing, and then 17 ml of ethylenediamine. 1 1 of an alkaline mixture with a composition ratio of 3 g of pitecatechol and 8 ml of water.
The one heated to 00°C was used. This mixture is p-
, n- or n''81 layer, the etching rate is
50 to 10 with a boron concentration of 1020 cm-3 or more
Since it is larger than 0 times and has selectivity, a structure having a p+Si layer 19 of 1 μm with excellent film thickness uniformity can be obtained (FIG. 3(d)).

次に、この基板を1000℃の加湿酸素(ウェット02
)雰囲気で約12時間酸化する。この酸化条件によシ、
膜厚1μmの5io2膜26が形成される(第3図(e
))。良く知られているように81は酸化されることに
よ沙、約2倍の膜厚となるため、膜厚1μmのsio2
gを形成するためには約05μmのSi層が必要であう
1本実施例では、結果して膜厚的0.5μmの81層1
9が残っている。ここで、第3図(d)で示したp+s
i層19を得る工程、及び第3図(、)で示した810
2膜26を得る工程の条件を変えることによシ、任意の
厚さのp+si層19を有する第3図(・)の構造のも
のが得られている。
Next, this substrate was heated with humidified oxygen at 1000°C (wet 02
) Oxidize in atmosphere for about 12 hours. Under these oxidation conditions,
A 5io2 film 26 with a thickness of 1 μm is formed (Fig. 3(e)
)). As is well known, when 81 is oxidized, the film becomes about twice as thick.
In this example, a Si layer of approximately 0.5 μm is required to form a Si layer of 0.5 μm in thickness.
There are 9 left. Here, p+s shown in FIG. 3(d)
Step of obtaining the i-layer 19 and 810 shown in FIG.
By changing the conditions of the process for obtaining the two-layer film 26, the structure shown in FIG.

次に、sio、膜26をエツチング除去したのち、その
アルミナ単結晶基板22上のS1基板をMOCVDの装
置内にセットし、いわゆる2段階成長法(約350℃の
低温成長と約600℃の高温成長からなる)によFi 
InP膜2膜上75μm成長した。第3図(f)にこの
様にして得られた半導体基板の構造を示す。このとき、
工nP膜27の形成に際し、p+si層19の一部を酸
化し、その5i02膜26を除去する工程を設けること
によF) Sp ” S 3層19の平坦性が良く々シ
、しかもそのp+33層19の濃度制御が可能になる。
Next, after removing the SIO film 26 by etching, the S1 substrate on the alumina single crystal substrate 22 is set in an MOCVD apparatus, and the so-called two-step growth method (low-temperature growth at about 350°C and high-temperature growth at about 600°C) is performed. (consisting of growth) YoFi
It was grown to a thickness of 75 μm on two InP films. FIG. 3(f) shows the structure of the semiconductor substrate thus obtained. At this time,
By providing a step of oxidizing a part of the p+Si layer 19 and removing the 5i02 film 26 when forming the nP film 27, the flatness of the Sp"S 3 layer 19 is good, and the p+33 The concentration of layer 19 can be controlled.

このようにして得られたInPIJ2T中の応力は、フ
ォトルミネッセンスのピーク波長のシフト量は108d
yn/−以下であると見積もられた。従来のInP/S
t(約10’dyn/d)に比べて減少していることが
分る。H3PO4+HBrによるエツチングからは、エ
ッチ・ビット密度(EPD)は約lX105傭″″2と
見積もられ、これ1で得られているSl基板上のInP
と比較して格段の膜質のものが得られた。従来の方法で
は、Si基板が厚い状態でInPを成長していたため熱
応力が81基板よシ薄いllxP層に欠陥を導入させて
緩和していたのに対して、本発明ではp+si層19が
EnP層2γ及び熱膨張係数がInPに近いアルミナに
比べて薄く、熱応力のほとんどがp+si層19にょシ
緩和されたために、高品質のInPが得られたものと考
えられる。
The stress in InPIJ2T obtained in this way is such that the shift amount of the peak wavelength of photoluminescence is 108 d.
It was estimated to be less than yn/-. Conventional InP/S
t (approximately 10'dyn/d). From etching with H3PO4 + HBr, the etch bit density (EPD) is estimated to be about 1×105×2″2, which is the InP on the Sl substrate obtained in 1.
A film of much higher quality was obtained compared to the conventional method. In the conventional method, InP was grown on a thick Si substrate, so the thermal stress was alleviated by introducing defects into the llxP layer, which is thinner than the 81 substrate. It is considered that high quality InP was obtained because the layer 2γ and the thermal expansion coefficient were thinner than alumina, which is close to InP, and most of the thermal stress was relaxed in the p+si layer 19.

なお、本実施例以外にも、第2の基板としてセラミック
基板、金属基板、ガラス基板、また半導体基板などを用
いたが、同様な結果が得られた。
In addition to this example, a ceramic substrate, a metal substrate, a glass substrate, a semiconductor substrate, etc. were used as the second substrate, and similar results were obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、slからなる第
1の基板を絶縁膜を介在させて第2の基板に接着させて
基板を形成し、その第1のSi基板を薄層化したのち、
この薄層化したSt層上に■−v族化合物半導体を成長
することにょυ、熱膨張係数差に起因する応力がSi基
板に吸収されるため、■−v族化合物半導体層内には熱
応力にともなう転位等の欠陥のない高品質m−v族化合
物半導体層が得られる。筐た、第2の基板としても、ガ
ラス、金属、セラミックス、単結晶基板等を用いること
ができるため、安価、大面積なm −V族化合物半導体
基板を得ることができ、その効果は大きいものがある。
As explained above, according to the present invention, a first substrate made of SL is bonded to a second substrate with an insulating film interposed to form a substrate, and the first Si substrate is thinned. after,
When the ■-V group compound semiconductor is grown on this thinned St layer, the stress caused by the difference in thermal expansion coefficient is absorbed by the Si substrate, so that heat is generated in the ■-V group compound semiconductor layer. A high quality m-v group compound semiconductor layer free of defects such as dislocations caused by stress can be obtained. Since glass, metal, ceramics, single crystal substrates, etc. can be used for the casing and the second substrate, it is possible to obtain an inexpensive, large-area m-V group compound semiconductor substrate, which is highly effective. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(&)〜(d)は本発明の第1の実施例による半
導体基板の製造工程を示す断面図、第2図(、)〜(、
)は本発明の第2の実施例による半導体基板の製造工程
を示す断面鹸、第3図(a)〜(f)は本発明の第3の
実施例による半導体基板の製造工程を示す断面図である
。 1・・・・Sl基板、2,5.γ・・・・BPSG膜、
3・・・・第1の基板、4・・・・モリブデン基板、6
・・◆・基板、8・・・・G a A s M % 9
・・・・Si基板、10・・・・p+ボロンドープ層、
11,14,16・・・・PSGi、  12・番・・
第1の基板、13−・・・サファイア基板、15se*
s基板、17 e ・・* GaAs膜、18・・・・
Si基板、1 プ層、20.23,25・ ・第1の基板、22・ ・・・・基板、26・ ・・InP膜。 9・・・・ p+ボロンドー ・ ・ ・PSG膜、21 ・ ・ ・・・・アルミナ
基板、24 ・・・3102膜、27・・
FIGS. 1(&) to (d) are sectional views showing the manufacturing process of a semiconductor substrate according to the first embodiment of the present invention, and FIGS. 2(,) to (,
) is a cross-sectional view showing the manufacturing process of a semiconductor substrate according to the second embodiment of the present invention, and FIGS. 3(a) to (f) are cross-sectional views showing the manufacturing process of the semiconductor substrate according to the third example of the present invention. It is. 1...Sl substrate, 2,5. γ...BPSG film,
3...first substrate, 4...molybdenum substrate, 6
・・◆・Substrate, 8...Ga As M % 9
...Si substrate, 10...p+ boron doped layer,
11, 14, 16...PSGi, number 12...
First substrate, 13-... Sapphire substrate, 15se*
s substrate, 17 e...* GaAs film, 18...
Si substrate, 1 layer, 20.23, 25...first substrate, 22...substrate, 26...InP film. 9...p+ boron doe...PSG film, 21...alumina substrate, 24...3102 film, 27...

Claims (3)

【特許請求の範囲】[Claims] (1)シリコンからなる第1の基板を、絶縁膜を介在さ
せて第2の基板に接着させ、基板を形成する第1の工程
と、上記第1の基板の薄層化を行う第2の工程と、上記
薄層化したシリコン層上にIII−V族化合物半導体を成
長する第3の工程を少なくとも含むことを特徴とする半
導体基板の製造方法。
(1) A first step of bonding a first substrate made of silicon to a second substrate with an insulating film interposed therebetween to form a substrate, and a second step of thinning the first substrate. and a third step of growing a III-V compound semiconductor on the thinned silicon layer.
(2)請求項1において、第1の工程に、シリコンから
なる第1の基板の主面上に高濃度不純物ドープ層を形成
し、該高濃度不純物ドープ層上に絶縁膜を介在させて接
着させる工程を含み、かつ第2の工程に上記高濃度不純
物ドープ層以外のシリコン部分を選択的に除去する工程
を含むことを特徴とする半導体基板の製造方法。
(2) In claim 1, in the first step, a highly concentrated impurity doped layer is formed on the main surface of the first substrate made of silicon, and an insulating film is interposed on the highly concentrated impurity doped layer and bonded. A method for manufacturing a semiconductor substrate, the second step including a step of selectively removing a silicon portion other than the heavily doped layer.
(3)請求項1において、第2の工程にシリコン層の一
部を酸化し、該酸化層を除去する工程を含むことを特徴
とする半導体基板の製造方法。
(3) The method of manufacturing a semiconductor substrate according to claim 1, wherein the second step includes a step of oxidizing a part of the silicon layer and removing the oxidized layer.
JP1177497A 1989-07-10 1989-07-10 Semiconductor substrate manufacturing method Expired - Fee Related JP2779954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1177497A JP2779954B2 (en) 1989-07-10 1989-07-10 Semiconductor substrate manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1177497A JP2779954B2 (en) 1989-07-10 1989-07-10 Semiconductor substrate manufacturing method

Publications (2)

Publication Number Publication Date
JPH0341719A true JPH0341719A (en) 1991-02-22
JP2779954B2 JP2779954B2 (en) 1998-07-23

Family

ID=16031937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1177497A Expired - Fee Related JP2779954B2 (en) 1989-07-10 1989-07-10 Semiconductor substrate manufacturing method

Country Status (1)

Country Link
JP (1) JP2779954B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324573A (en) * 2006-05-30 2007-12-13 Sharp Corp Compound semiconductor-on-silicon wafer with thermally softened insulator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296709A (en) * 1985-06-24 1986-12-27 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Manufacture of semiconductor
JPH01154512A (en) * 1987-12-11 1989-06-16 Hitachi Ltd Semiconductor crystal
JPH01183134A (en) * 1988-01-18 1989-07-20 Fujitsu Ltd Semiconductor substrate and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61296709A (en) * 1985-06-24 1986-12-27 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Manufacture of semiconductor
JPH01154512A (en) * 1987-12-11 1989-06-16 Hitachi Ltd Semiconductor crystal
JPH01183134A (en) * 1988-01-18 1989-07-20 Fujitsu Ltd Semiconductor substrate and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324573A (en) * 2006-05-30 2007-12-13 Sharp Corp Compound semiconductor-on-silicon wafer with thermally softened insulator

Also Published As

Publication number Publication date
JP2779954B2 (en) 1998-07-23

Similar Documents

Publication Publication Date Title
EP0663688B1 (en) Process for producing a semiconductor substrate
US5856229A (en) Process for production of semiconductor substrate
US7148119B1 (en) Process for production of semiconductor substrate
KR960006687B1 (en) Manufacturing method of semiconductor substrate
JP2608351B2 (en) Semiconductor member and method of manufacturing semiconductor member
US6468663B1 (en) Semiconductor substrate and process for producing the same
JPH01315159A (en) Dielectric-isolation semiconductor substrate and its manufacture
JP3262470B2 (en) Semiconductor substrate and manufacturing method thereof
JPH0682753B2 (en) Method for manufacturing semiconductor device
USRE41841E1 (en) Method for making a silicon substrate comprising a buried thin silicon oxide film
JP3293767B2 (en) Semiconductor member manufacturing method
JP2003068593A (en) Semiconductor multilayer substrate and its producing method
JPH01136328A (en) Manufacture of semiconductor substrate
JPH0341719A (en) Manufacture of semiconductor substrate
JPH056883A (en) Manufacture of semiconductor substrate
JP2002118242A (en) Method for manufacturing semiconductor member
JP2608443B2 (en) Method for manufacturing semiconductor wafer
JPH05226464A (en) Manufacture of joined dielectric isolation wafer
JPH0334531A (en) Semiconductor substrate
JP2791900B2 (en) Semiconductor substrate and method of manufacturing the same
JP3293766B2 (en) Semiconductor member manufacturing method
JP3755857B2 (en) Method for manufacturing semiconductor substrate and method for separating semiconductor layer from substrate
JPH029148A (en) Manufacture of substrates for integrated circuits
JP3796358B2 (en) Method for manufacturing semiconductor substrate and method for separating semiconductor layer from substrate
JPH06216136A (en) Semiconductor substrate and manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees