JPH01154512A - Semiconductor crystal - Google Patents

Semiconductor crystal

Info

Publication number
JPH01154512A
JPH01154512A JP31191687A JP31191687A JPH01154512A JP H01154512 A JPH01154512 A JP H01154512A JP 31191687 A JP31191687 A JP 31191687A JP 31191687 A JP31191687 A JP 31191687A JP H01154512 A JPH01154512 A JP H01154512A
Authority
JP
Japan
Prior art keywords
crystal
layer
thin
substrate
epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31191687A
Other languages
Japanese (ja)
Other versions
JP2828980B2 (en
Inventor
Yoshihisa Fujisaki
芳久 藤崎
Yukio Takano
高野 幸男
Masanobu Miyao
正信 宮尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62311916A priority Critical patent/JP2828980B2/en
Publication of JPH01154512A publication Critical patent/JPH01154512A/en
Application granted granted Critical
Publication of JP2828980B2 publication Critical patent/JP2828980B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To reduce the density of dislocation occurring in a second semiconductor crystal, by arranging a layerlike insulating material on an Si substrate crystal, arranging thereon a layerlike Si single crystal layer, and further arranging thereon a specified second semiconductor layer setting the Si single crystal as a reference. CONSTITUTION:Oxygen ions are implanted into an Si substrate crystal 4, on which GaAs crystal 1 is epitaxially grown by MBE method. During the epitaxial growth, an SiO2 insulating film 3 is automatically formed, and a thin Si crystal layer 2 is made by a thermal process in the course of the epitaxial growth. The stress due to lattice mismatching between a GaAs layer 8 and an Si layer 9 is mainly intensively applied to the thin Si crystal layer side, and the thin Si crystal layer of the Si layer 9 deforms in the lateral direction. However, the thin SiO2 film automatically formed during the thermal process acts as a buffer layer, so that the deformation of the thin Si crystal layer of the Si layer 9 is relieved at the boundary surface between an SiO2 film 10 and the Si layer 9, and dose not propagate to an Si substrate crystal 11. Further, since the thin SiO2 film of the Si layer 9 deforms, the stress to the GaAs epitaxial layer 8 remarkably decreases, and the generation of dislocation in the epitaxial layer is restrained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は格子定数差の大きい異種半導体をSi基板結晶
上に作製するにあたり、格子定数不整合に起因する転位
の発生を抑制するのに好適な構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is suitable for suppressing the occurrence of dislocations due to lattice constant mismatch when producing a heterogeneous semiconductor with a large difference in lattice constants on a Si substrate crystal. Regarding the structure.

〔従来の技術〕[Conventional technology]

従来Si基板結晶上に格子定数差の大きい異種半導体結
晶を設けた例としては、ジャパニーズ・ジャーナル・オ
ブ・アプライド・フイズイクス(Japanese J
ournal of Applied Physics
)、 23巻(1984年)第5843頁から第584
5頁において論じられている。
An example of a dissimilar semiconductor crystal with a large lattice constant difference provided on a conventional Si substrate crystal is the Japanese Journal of Applied Physics (Japanese J
Internal of Applied Physics
), Vol. 23 (1984), pp. 5843-584
Discussed on page 5.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来技術では結晶格子不整合はSi基板結晶上に設けら
れた第2の異常半導体層の中でのみ行なわれていた。従
って格子不整合に起因し発生する高密度の転位の抑制に
は限界がありエピタキシャル層に作製した半導体素子特
性を著しく劣化させていた。
In the prior art, crystal lattice mismatch occurs only in the second abnormal semiconductor layer provided on the Si substrate crystal. Therefore, there is a limit to the suppression of high-density dislocations that occur due to lattice mismatch, and the characteristics of semiconductor devices fabricated in the epitaxial layer are significantly deteriorated.

本発明の目的は格子不整合の緩和をSi結晶中でも行な
う事により、第2の半導体結晶中に発生する転位の密度
を低減する事にある。
An object of the present invention is to reduce the density of dislocations generated in the second semiconductor crystal by alleviating lattice mismatch even in the Si crystal.

更には、本発明の目的は格子不整合の緩和をSi基板結
晶及びエピタキシャル層双方で行ない、エピタキシャル
半導体層中に発生する転位密度を低減することにある。
A further object of the present invention is to alleviate lattice mismatch in both the Si substrate crystal and the epitaxial layer, thereby reducing the dislocation density generated in the epitaxial semiconductor layer.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、第2の異種半導体結晶に隣接するSi結晶
層とSi基板結晶の間に絶縁物層を挟む事により絶縁物
層とSi結晶界面で歪を緩和させて、第2の半導体結晶
層に加わる歪応力を減少させる事で達成される。
The above purpose is to sandwich an insulating layer between the Si crystal layer adjacent to the second heterogeneous semiconductor crystal and the Si substrate crystal, thereby relieving strain at the interface between the insulating layer and the Si crystal. This is achieved by reducing the strain stress applied to the

即ち、Si基板結晶上に層状の絶縁性物質を設けその上
に層状のSi単結晶層を設け、さらにその上にSi単結
晶を基準とした格子定数の差が1%以上の第2の半導体
層を設けるものである。
That is, a layered insulating material is provided on a Si substrate crystal, a layered Si single crystal layer is provided thereon, and a second semiconductor having a lattice constant difference of 1% or more with respect to the Si single crystal layer is further provided on top of the layered insulating material. It provides layers.

更には、上記目的は、イオン注入によりSi基板結晶中
に転位を導入し、エピタキシャル結晶との格子不整合に
起因する歪の緩和を基板結晶とエピタキシャル結晶の双
方に分散させる事により達成される。
Further, the above object is achieved by introducing dislocations into the Si substrate crystal by ion implantation and distributing the relaxation of strain caused by lattice mismatch with the epitaxial crystal to both the substrate crystal and the epitaxial crystal.

即ち、イオン注入により表面近傍に転位を導入したSi
基板結晶上に、Si単結晶を基準とした格子定数差が1
/Zooパーセント以上の第2の半導体材料をエピタキ
シャル成長した半導体結晶を用いて達成するものである
That is, Si with dislocations introduced near the surface by ion implantation
On the substrate crystal, there is a difference in lattice constant of 1 with respect to the Si single crystal.
This is achieved by using a semiconductor crystal in which a second semiconductor material with a ratio of /Zoo percent or more is epitaxially grown.

〔作用〕[Effect]

Si単結晶と第2の異種半導体結晶の格子定数は大きく
異なるため、第2の半導体結晶層及びこれに隣接するS
i結晶層には大きな歪応力が加ゎる。この応力はSi結
晶に挟まれる形で設けられた絶縁物層とSi結晶の界面
にも加えられるため、ここで転位が発生し歪が緩和され
る。従ってSi結晶と第2の半導体結晶の格子不整合に
起因する歪応力が、第2の半導体結晶でのみ緩和される
従来の場合に比べて、第2の半導体結晶中に発生する転
位密度を著しく低減することができる。
Since the lattice constants of the Si single crystal and the second heterogeneous semiconductor crystal are significantly different, the second semiconductor crystal layer and the adjacent S
A large strain stress is applied to the i-crystal layer. Since this stress is also applied to the interface between the insulating layer and the Si crystal, which are sandwiched between the Si crystals, dislocations occur here and the strain is relaxed. Therefore, the strain stress caused by the lattice mismatch between the Si crystal and the second semiconductor crystal significantly reduces the dislocation density generated in the second semiconductor crystal, compared to the conventional case where the strain stress is relaxed only in the second semiconductor crystal. can be reduced.

第2の手段、即ちイオン注入によってSi基板結晶中に
転位を導入する方策の場合1次の如く考えられる。
In the case of the second method, that is, introducing dislocations into the Si substrate crystal by ion implantation, the following can be considered.

Si基板結晶中に注入されたイオンはSi基板結晶中の
注入イオン到達深さ付近に高密度の転位を発生させる。
Ions implanted into the Si substrate crystal generate high-density dislocations near the depth to which the implanted ions reach the Si substrate crystal.

この状態で格子定数差の大きい第2の半導体材料をエピ
タキシャル成長させると。
In this state, a second semiconductor material having a large lattice constant difference is epitaxially grown.

格子不整合はエピタキシャル結晶中に発生する転位とS
i基板結晶中に発生した転位の両者で緩和される。
Lattice mismatch is caused by dislocations occurring in the epitaxial crystal and S
It is relaxed by both dislocations generated in the i-substrate crystal.

従来エピタキシャル結晶層にのみ押しつけられていた格
子不整合がSi基板結晶側でも緩和させる事で、エピタ
キシャル結晶中に発生する転位密度を低減する事が可能
である。
By relaxing the lattice mismatch, which was conventionally imposed only on the epitaxial crystal layer, also on the Si substrate crystal side, it is possible to reduce the dislocation density generated in the epitaxial crystal.

〔実施例〕〔Example〕

実施例1 以下本発明の一実施例を第1図、第2図、第3図を用い
て説明する。
Embodiment 1 An embodiment of the present invention will be described below with reference to FIGS. 1, 2, and 3.

第1図は(100)Si基板結晶4に面密度5X 10
1scm−”、加速電圧180に■で酸素イオンを注入
し、これにMBE法でGaAs結晶1をエピタキシャル
成長させた結果出来上がる構造である。図中3はエピタ
キシャル成長中に自動的に形成されるSiOx絶縁膜で
、2は同じくエピタキシャル成長中の熱プロセスで作ら
れる薄いSi結晶層である1通常Si基板結晶上にG 
a A s結晶をエピタキシャル成長させた場合には、
第2図に模式的に示す様にヘテロ界面に高密度の転位が
発生する。即ち7で示したSi基板結晶の格子定数と5
で示すG a A s単結晶の格子定数は約4%もの大
きな差があるため、GaAsエピタキシャル結晶層に大
きな歪応力が加わり6で示す様な転位が高密度で導入さ
れる。これに対し本実施例を用いた場合、結晶構造は第
3図に示す様になる。即ちG a A s 758とS
i層9の格子不整合に伴なう応力は主に薄いSi結晶層
側に強く加わり、9の薄いSi結晶層は横方向に歪む。
Figure 1 shows an areal density of 5X 10 on a (100) Si substrate crystal 4.
This is the structure that is created by implanting oxygen ions at 1scm-" and an acceleration voltage of 180 and epitaxially growing a GaAs crystal 1 using the MBE method. 3 in the figure is a SiOx insulating film that is automatically formed during epitaxial growth. 2 is a thin Si crystal layer also created by a thermal process during epitaxial growth.
When a As crystal is grown epitaxially,
As schematically shown in FIG. 2, a high density of dislocations occurs at the hetero interface. That is, the lattice constant of the Si substrate crystal shown in 7 and 5
Since the lattice constants of the GaAs single crystals shown by 6 have a large difference of about 4%, a large strain stress is applied to the GaAs epitaxial crystal layer, and dislocations as shown by 6 are introduced at a high density. On the other hand, when this example is used, the crystal structure becomes as shown in FIG. That is, G a A s 758 and S
Stress due to lattice mismatch in i-layer 9 is strongly applied mainly to the thin Si crystal layer side, and the thin Si crystal layer 9 is laterally distorted.

本実施例では熱プロセス中に自動的に形成される薄い5
iOz膜が緩衝層となり、9の薄いSi結晶層の歪みは
1oの5iOiとの界面で緩和され11で示されるSi
基板結晶に伝わる事はない。また9の薄い5iftが歪
む事によってG a A sエピタキシャル層8への応
力は大きく減少しエピタキシャル成長層中での転位発生
は著しく抑制される。
In this example, a thin 5
The iOz film becomes a buffer layer, and the strain in the thin Si crystal layer 9 is relaxed at the interface with the 5iOi layer 1o, and the Si crystal layer 11
It is not transmitted to the substrate crystal. Furthermore, the stress on the GaAs epitaxial layer 8 is greatly reduced due to the distortion of the thin 5ift layer 9, and the generation of dislocations in the epitaxially grown layer is significantly suppressed.

本実施例の構造を用いた場合、G a A sエピタキ
シャル層中の転位密度は従来構造の約1/3に抑制され
る。
When the structure of this example is used, the dislocation density in the GaAs epitaxial layer is suppressed to about 1/3 of that of the conventional structure.

なお本実施例ではSi基板結晶全面に第1図で示す構造
を設けたが、これを基板結晶の一部領域にのみ形成した
場合にも同様の効果が得られる。
In this embodiment, the structure shown in FIG. 1 is provided over the entire surface of the Si substrate crystal, but the same effect can be obtained even if the structure is formed only in a partial region of the substrate crystal.

また本実施例の様にイオン注入で絶縁膜層を自動的に形
成する場合には、NやP等の他のイオン種を用いる事も
可能である。
Further, when automatically forming an insulating film layer by ion implantation as in this embodiment, it is also possible to use other ion species such as N and P.

実施例2 本発明の第2の一実施例を第1図、第2図(a)及び第
2図(b)により説明する。
Embodiment 2 A second embodiment of the present invention will be described with reference to FIG. 1, FIG. 2(a), and FIG. 2(b).

第4図に示す様に基板結晶として面方位(100)から
[110]方向に2度傾斜した無転位Siウェハ14を
用い、この一部の領域に面密度1×1018an−2、
加速電圧100KVでヒ素イオンを注入した。これによ
って深さ約3000人のイオン注入層12が形成され、
またイオン到達距離付近には高密度の転位領域3が作ら
れる。図中11はエピタキシャル成長されたG a A
 s結晶層であるが、エピタキシャル成長時の熱プロセ
スにより3で示された転位はかなり回復する。しかしG
aAs結晶格子とSi結晶格子の不整合によりSi基板
結晶中に導入された転位は完全には消滅しない。
As shown in FIG. 4, a dislocation-free Si wafer 14 tilted 2 degrees from the plane orientation (100) to the [110] direction is used as the substrate crystal, and a part of the area has an areal density of 1×1018an-2,
Arsenic ions were implanted at an accelerating voltage of 100 KV. As a result, an ion implantation layer 12 with a depth of about 3000 people is formed.
Further, a high-density dislocation region 3 is created near the ion reach distance. 11 in the figure is epitaxially grown Ga A
Although it is an s-crystal layer, the dislocations shown in 3 are considerably recovered by the thermal process during epitaxial growth. But G
Dislocations introduced into the Si substrate crystal due to mismatch between the aAs crystal lattice and the Si crystal lattice are not completely eliminated.

この様子を示したのが第6図である。即ちG a A 
s18と5i21の格子不整合に起因する歪は一部はへ
テロ界面で発生する転位19で緩和され、残りはSi基
板結晶21中に導入された転位20で緩和される。一方
従来作られてきたSi基板結晶上のG a A sエピ
タキシャル結晶の構造を模式的に示したのが第5図であ
る。G a A sエピ層15とSi基板結晶17の格
子不整合は全て、ヘテロ界面に発生する転位16で緩和
されるため、この転位の密度を一定量以下に抑制する事
は困難であった。本実施例では歪の一部はSi基板結晶
中の転位で緩和されるため、G a A sエピタキシ
ャル層の転位密度を低減する事が可能である。
FIG. 6 shows this situation. That is, G a A
Part of the strain caused by the lattice mismatch between s18 and 5i21 is relaxed by dislocations 19 generated at the hetero interface, and the rest is relaxed by dislocations 20 introduced into the Si substrate crystal 21. On the other hand, FIG. 5 schematically shows the structure of a conventionally produced GaAs epitaxial crystal on a Si substrate crystal. Since all the lattice mismatch between the GaAs epilayer 15 and the Si substrate crystal 17 is alleviated by the dislocations 16 generated at the hetero interface, it has been difficult to suppress the density of these dislocations below a certain amount. In this example, part of the strain is relaxed by dislocations in the Si substrate crystal, so it is possible to reduce the dislocation density of the GaAs epitaxial layer.

本実施例のイオン注入条件では、イオン注入領域上に設
けられたG a A sエピタキシャル結晶層中の転位
密度は、イオン注入を行なわない場合に比べ約173に
低減された。
Under the ion implantation conditions of this example, the dislocation density in the GaAs epitaxial crystal layer provided on the ion implantation region was reduced to about 173 compared to the case where ion implantation was not performed.

なお、本実施例ではイオン種としてヒ素を選んだが、そ
の他のイオンを用いても同様の効果が得られる。また本
実施例ではSi基板結晶面内の一部領域にのみイオン注
入を行なったが、基板全面にイオン注入を行なっても同
様の効果が得られる。
Although arsenic was selected as the ion species in this example, similar effects can be obtained using other ions. Further, in this embodiment, ions were implanted only into a partial region within the crystal plane of the Si substrate, but the same effect can be obtained even if ions are implanted over the entire surface of the substrate.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、Si基板結晶上に設けられた第2の半
導体結晶中の転位密度を、従来構造の1/3程度に低減
できるので、第2の結晶層に作製される半導体素子の特
性改善の効果がある。特に第2の半導体結晶中の少数キ
ャリアを用いて動作する半導体素子(例えばバイポーラ
トランジスタ)では、少数キャリア寿命を転位低減によ
り約3倍以上に長く出来るので著しい特性向上が図れる
According to the present invention, the dislocation density in the second semiconductor crystal provided on the Si substrate crystal can be reduced to about 1/3 of that of the conventional structure, so that the characteristics of the semiconductor element manufactured in the second crystal layer can be reduced. It has an improving effect. In particular, in a semiconductor device (for example, a bipolar transistor) that operates using minority carriers in the second semiconductor crystal, the lifetime of the minority carriers can be increased by about three times or more by reducing dislocations, so that the characteristics can be significantly improved.

更に、第2の手段によれば、Si基板結晶上にエピタキ
シャル成長されたSi単結晶を基準とした格子定数差が
1/100パーセント以上の第2の半導体結晶層中の転
位密度を、従来構造の1/3程度に低減できるので、エ
ピタキシャル結晶層に作製される半導体素子の特性改善
の効果がある。
Furthermore, according to the second means, the dislocation density in the second semiconductor crystal layer having a lattice constant difference of 1/100 percent or more with respect to the Si single crystal epitaxially grown on the Si substrate crystal is reduced from that of the conventional structure. Since it can be reduced to about 1/3, it has the effect of improving the characteristics of semiconductor elements manufactured in epitaxial crystal layers.

特にエピタキシャル結晶中の少数キャリアを用いて動作
する半導体素子(例えばバイポーラトランジスタ)では
、少数キャリア寿命を約3倍以上に長く出来るので著し
い特性向上が図れる。
In particular, in a semiconductor device (for example, a bipolar transistor) that operates using minority carriers in an epitaxial crystal, the minority carrier lifetime can be increased by about three times or more, resulting in a significant improvement in characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の結晶断面図、第2図は従来
技術で作製されたG a A s / S i結晶の結
晶構造を表わす模式図、第3図は本発明の一実施例の結
晶構造を表わす模式図である。第4図は本発明の一実施
例のG a A s / S i結晶断面図。 第5図は従来技術で作製されたG a A s / S
 i結晶の結晶構造を表わす模式図、第6図は本発明の
一実施例の結晶構造を表わす模式図である。 1・・・G a A sエピタキシャル結晶層、2・・
・Si結晶層、3・・・5ift膜、4・・・Si基板
結晶、5・・・GaAsエピタキシャル結晶層の結晶格
子、6・・・ヘテロ界面に発生した転位、7・・・Si
基板結晶の結晶格子、8・・・GaAsエピタキシャル
結晶層の結晶格子、9・・・Si結晶層の結晶格子、1
0・・・5iOz膜、11・・・Si基板結晶の結晶格
子、11・・・GaAsエピタキシャル結晶層、12・
・・イオン注入層、13・・・転位発生領域、14・・
・Si基板結晶、15,18・・・G a A sエピ
タキシャル結晶層の結晶格子、16.19・・・ヘテロ
界面に発生した転位、17,21・・・Si基板結晶の
結晶格子、18・・・G a A sエピタキシャル結
晶層の結晶格子、19・・・ヘテロ界面に発生した転位
、20・・・Si基板結晶中に発生した転位。
FIG. 1 is a crystal cross-sectional view of an embodiment of the present invention, FIG. 2 is a schematic diagram showing the crystal structure of a GaAs/Si crystal produced by a conventional technique, and FIG. 3 is a crystal cross-sectional view of an embodiment of the present invention. FIG. 2 is a schematic diagram showing an example crystal structure. FIG. 4 is a cross-sectional view of a GaAs/Si crystal according to an embodiment of the present invention. Figure 5 shows the G a A s/S fabricated using the conventional technology.
FIG. 6 is a schematic diagram showing the crystal structure of an i-crystal. FIG. 6 is a schematic diagram showing the crystal structure of an embodiment of the present invention. 1...G a As epitaxial crystal layer, 2...
・Si crystal layer, 3...5ift film, 4...Si substrate crystal, 5...crystal lattice of GaAs epitaxial crystal layer, 6...dislocation generated at hetero interface, 7...Si
Crystal lattice of substrate crystal, 8... Crystal lattice of GaAs epitaxial crystal layer, 9... Crystal lattice of Si crystal layer, 1
0...5iOz film, 11...Crystal lattice of Si substrate crystal, 11...GaAs epitaxial crystal layer, 12...
...Ion implantation layer, 13...Dislocation generation region, 14...
・Si substrate crystal, 15,18...Crystal lattice of GaAs epitaxial crystal layer, 16.19...Dislocation generated at the hetero interface, 17,21...Crystal lattice of Si substrate crystal, 18. ...Crystal lattice of GaAs epitaxial crystal layer, 19...Dislocation generated at the hetero interface, 20...Dislocation generated in the Si substrate crystal.

Claims (1)

【特許請求の範囲】[Claims] 1、Si基板結晶上に層状の絶縁性物質を設けその上に
層状のSi単結晶層を設けさらにその上にSi単結晶を
基準とした格子定数差が1パーセント以上の第2の半導
体結晶層を設けた部分を有する事を特徴とする半導体結
晶。
1. A layered insulating material is provided on a Si substrate crystal, a layered Si single crystal layer is provided thereon, and a second semiconductor crystal layer having a lattice constant difference of 1% or more with respect to the Si single crystal layer is further provided thereon. A semiconductor crystal characterized by having a portion provided with.
JP62311916A 1987-12-11 1987-12-11 Manufacturing method of semiconductor crystal Expired - Fee Related JP2828980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62311916A JP2828980B2 (en) 1987-12-11 1987-12-11 Manufacturing method of semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62311916A JP2828980B2 (en) 1987-12-11 1987-12-11 Manufacturing method of semiconductor crystal

Publications (2)

Publication Number Publication Date
JPH01154512A true JPH01154512A (en) 1989-06-16
JP2828980B2 JP2828980B2 (en) 1998-11-25

Family

ID=18022963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62311916A Expired - Fee Related JP2828980B2 (en) 1987-12-11 1987-12-11 Manufacturing method of semiconductor crystal

Country Status (1)

Country Link
JP (1) JP2828980B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341719A (en) * 1989-07-10 1991-02-22 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor substrate
CN107680901A (en) * 2017-09-27 2018-02-09 闽南师范大学 The flexible compound substrate and manufacture method of a kind of semiconductor epitaxial

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60140813A (en) * 1983-12-28 1985-07-25 Fujitsu Ltd Manufacture of semiconductor device
JPS63291416A (en) * 1987-05-25 1988-11-29 Sharp Corp Semiconductor substrate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60140813A (en) * 1983-12-28 1985-07-25 Fujitsu Ltd Manufacture of semiconductor device
JPS63291416A (en) * 1987-05-25 1988-11-29 Sharp Corp Semiconductor substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341719A (en) * 1989-07-10 1991-02-22 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor substrate
CN107680901A (en) * 2017-09-27 2018-02-09 闽南师范大学 The flexible compound substrate and manufacture method of a kind of semiconductor epitaxial

Also Published As

Publication number Publication date
JP2828980B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
EP0365875B1 (en) Capped anneal
US5091767A (en) Article comprising a lattice-mismatched semiconductor heterostructure
US5221367A (en) Strained defect-free epitaxial mismatched heterostructures and method of fabrication
US5144379A (en) Semiconductor device having a group iii-v epitaxial semiconductor layer on a substrate
US7357838B2 (en) Relaxed silicon germanium substrate with low defect density
JPH03236218A (en) Compound semiconductor substrate and manufacture thereof
JPH04303920A (en) Insulating film/iii-v compound semiconductor stacked structure on group iv substrate
JP3113156B2 (en) Semiconductor substrate manufacturing method
US7767548B2 (en) Method for manufacturing semiconductor wafer including a strained silicon layer
JPH01154512A (en) Semiconductor crystal
JPS63182811A (en) Epitaxial growth method for compound semiconductor
US4948752A (en) Method of making sagfets on buffer layers
JPH03136319A (en) Heteroepitaxial substrate and semiconductor device
US5341006A (en) Semiconductor device having diffusion-preventing layer between III-V layer and IV layer
US4918493A (en) Sagfet with buffer layers
US20220077287A1 (en) Nitride semiconductor substrate
US20220254633A1 (en) Semiconductor Layered Structure
JPH05166724A (en) Silicon substrate compound semiconductor device and its manufacture
JPH0488627A (en) Deposition of epitaxial layer
JPH031546A (en) Field-effect transistor
JPH0461286A (en) Semiconductor device
JPH04241413A (en) Semiconductor substrate, its manufacture, and semiconductor device
JPH06188189A (en) Semiconductor device
JPH01117017A (en) Gaas epitaxial growth method on si substrate
JPH0620968A (en) Metal film/compound semiconductor laminated structure on element semiconductor substrate and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees