JPS63291416A - Semiconductor substrate - Google Patents

Semiconductor substrate

Info

Publication number
JPS63291416A
JPS63291416A JP12773287A JP12773287A JPS63291416A JP S63291416 A JPS63291416 A JP S63291416A JP 12773287 A JP12773287 A JP 12773287A JP 12773287 A JP12773287 A JP 12773287A JP S63291416 A JPS63291416 A JP S63291416A
Authority
JP
Japan
Prior art keywords
layer
silicon
substrate
insulating layer
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12773287A
Other languages
Japanese (ja)
Other versions
JP2813978B2 (en
Inventor
Atsushi Kudo
淳 工藤
Masayoshi Koba
木場 正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP62127732A priority Critical patent/JP2813978B2/en
Publication of JPS63291416A publication Critical patent/JPS63291416A/en
Application granted granted Critical
Publication of JP2813978B2 publication Critical patent/JP2813978B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To improve the mechanical strength and thermal conductivity of a substrate and have a favorable insulation property by forming a single crystal compound semiconductor layer on an insulation layer where a semiconductor substrate consisting of a single element is dielectrically isolated through a semiconductor layer which has the same quality as that of a very thin filmed substrate. CONSTITUTION:After forming an insulating layer 2 consisting of amorphous SiO2 on a silicon substrate 1, an opening 3 for seeding is formed at the prescribed position of the insulating layer 2 with a photolithographical technique by using a resist formed on the insulating layer 2 as a mask. Then, after forming a silicon layer 4 having a 5000 Angstrom film thickness with a LPCVD technique and the like on the insulating layer 2 including the inside of the opening 3, this layer is crystallized to form a single crystal by a melting recrystallization technique using a laser or an electron beam. And then, the oxidation of a silicon single crystal layer in an atmosphere of dry oxygen at a temperature of 1100 deg.C allows a thermal oxide film 5 to grow about 9500 Angstrom film thickness at the silicon layer 4 and its film 5 is removed by etching with an etchant of buffer hydrofluoric acid (HF+NH4F) and the silicon layer 4 having the desired very thin film remains on the insulating layer 2. Further, this approach grows compound semiconductors such as GaAs, InP and the like on the very thin filmed silicon layer 4.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は半導体基板に関し、特に単一の元素よりなる
半導体基板と化合物半導体層との複合構造よりなる半導
体基板に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor substrate, and more particularly to a semiconductor substrate having a composite structure of a semiconductor substrate made of a single element and a compound semiconductor layer.

し従来の技術] 化合物半導体、特に■−v族化合物半導体は高速性、低
消*電力性、低雑音性等においてシリコン半導体より優
れており、その特徴を生かしたデバイスの開発が最近活
発に進められている。
[Conventional technology] Compound semiconductors, especially ■-V group compound semiconductors, are superior to silicon semiconductors in terms of high speed, low power consumption, low noise, etc., and the development of devices that take advantage of these characteristics has been actively promoted recently. It is being

ところが、これらの化合物半導体は高価でかつ大面積基
板の入手が困難であり、また機械的に脆く熱伝導率が低
い等の問題を有している。
However, these compound semiconductors are expensive, it is difficult to obtain large-area substrates, and they also have problems such as mechanical brittleness and low thermal conductivity.

こうした背景から、シリコン基板上にQaΔS等の■−
■化合物半導体をヘテロエピタキシャル成長させる技術
(III−Yon  3i )が急速に進展しつつある
From this background, QaΔS etc.
(3) Technology for heteroepitaxial growth of compound semiconductors (III-Yon 3i) is rapidly progressing.

[発明が解決しようとする問題点] 上記のような従来のへテロエピタキシャル基板を高速デ
バイス用として使用するには、化合物半導体単体の半絶
縁性のバルク基板上に形成した従来の素子との比較から
下記の問題点を有する。
[Problems to be Solved by the Invention] In order to use the conventional heteroepitaxial substrate as described above for high-speed devices, it is necessary to compare it with a conventional element formed on a semi-insulating bulk substrate of a single compound semiconductor. This has the following problems.

ヘテロエピタキシャル基板のベースとなるシリコン基板
が低抵抗なことに起因して、 ■ 伝搬損失および伝搬遅延等の特性が悪くなり、また
、 ■ 素子間の分離特性が低下する。
Due to the low resistance of the silicon substrate that is the base of the heteroepitaxial substrate, (1) characteristics such as propagation loss and propagation delay deteriorate, and (2) isolation characteristics between elements deteriorate.

この発明はかかる問題点を解決するためになされたもの
で、このようなヘデOエピタキシャル構造であっても、
基板の実効的な高抵抗化を実現し、超高速素子や集積回
路等への応用に適した半導体基板を提供することを目的
とする。
This invention was made to solve this problem, and even with such a HedeO epitaxial structure,
The aim is to effectively increase the resistance of the substrate and provide a semiconductor substrate suitable for application to ultra-high-speed devices, integrated circuits, etc.

[問題点を解決するための手段] この発明に係る半導体基板は、単一の元素よりなる単結
晶の半導体基板上に非晶質の絶縁層を介して半導体基板
と同質の単結晶の半導体層を形成し、さらにその上に単
結晶の化合物半導体層を形成する構造とし、その半導体
層の厚さを化合物半導体層の厚さに比して十分小さくし
たものである。
[Means for Solving the Problems] A semiconductor substrate according to the present invention includes a single-crystal semiconductor layer made of a single element and a single-crystal semiconductor layer having the same quality as the semiconductor substrate, with an amorphous insulating layer interposed therebetween. is formed, and a single crystal compound semiconductor layer is further formed thereon, and the thickness of the semiconductor layer is made sufficiently smaller than the thickness of the compound semiconductor layer.

[作用] この発明においては、低抵抗である半導体基板と化合物
半導体層とは絶縁層によって分離され、絶縁層上の半導
体層は化合物半導体層に比べて十分薄いので、化合物半
導体の高抵抗特性を低下させない。
[Function] In this invention, the low-resistance semiconductor substrate and the compound semiconductor layer are separated by an insulating layer, and since the semiconductor layer on the insulating layer is sufficiently thinner than the compound semiconductor layer, the high-resistance characteristics of the compound semiconductor can be maintained. Don't lower it.

[実施例] 以下に説明する実施例において基板となる単結晶シリコ
ンは、できるだけ高い抵抗率を有すること望ましい。す
なわち、配線抵抗と容量のカップリングによる伝導損失
や基板内のキャリアと7tfm波とのカップリングを低
減するためには、その厚みをH(μm)、抵抗率ρ(Ω
am)としたときρ・H≧104の関係を満たすことが
好ましい。また、同様の理由から、非晶質絶縁層の膜厚
h (μIl)もその成長方法が許す限り厚い方が望ま
しい。
[Example] It is desirable that single crystal silicon serving as a substrate in the examples described below has as high a resistivity as possible. In other words, in order to reduce conduction loss due to coupling between wiring resistance and capacitance and coupling between carriers in the board and 7tfm waves, the thickness should be set to H (μm) and resistivity ρ (Ω).
am), it is preferable to satisfy the relationship ρ·H≧104. Further, for the same reason, it is desirable that the thickness h (μIl) of the amorphous insulating layer be as thick as the growth method allows.

さらに、非晶質絶縁層上に形成される単結晶シリコン層
もできる限り高抵抗であることが好ましい。
Furthermore, it is preferable that the single crystal silicon layer formed on the amorphous insulating layer also has as high resistance as possible.

なお、この単結晶シリコン層は溶融再結晶法により形成
されるが、その抵抗は通常10〜100ΩClと、従来
の半絶縁性m−■化合物と比較して1QS〜106程度
低抵抗のため、そこを通じて伝搬損失や伝搬遅延の原因
となる。この発明ではこれを防止するために該単結晶シ
リコン層を超薄膜となしている。ここで超薄膜とは、1
000A以下、望ましくは100A程度の膜厚を意味す
る。
This single crystal silicon layer is formed by a melt recrystallization method, but its resistance is usually 10 to 100ΩCl, which is about 1QS to 106 lower than that of conventional semi-insulating m-■ compounds. This causes propagation loss and propagation delay. In the present invention, in order to prevent this, the single crystal silicon layer is made into an ultra-thin film. Here, ultra-thin film means 1
This means a film thickness of 000A or less, preferably about 100A.

該シリコン単結晶層が伝搬損失や伝搬遅延を低減し得る
には、そのシート抵抗が半絶縁性■−v化合物の場合と
等価的な値を持つことが必要であり、上記の膜厚はこれ
を満たすものである。
In order for the silicon single crystal layer to be able to reduce propagation loss and propagation delay, it is necessary that its sheet resistance has a value equivalent to that of a semi-insulating ■-v compound, and the above film thickness is It satisfies the following.

第1A図〜第1D図はこの発明の一実施例を示す概略製
造工程図であΦ。
FIGS. 1A to 1D are schematic manufacturing process diagrams showing one embodiment of the present invention.

以下、図を参照して製造方法について説明する。The manufacturing method will be described below with reference to the drawings.

まず、厚さ300μm、比抵抗100〜1000Ωcm
および直径2インチの要件を備えたp型のシリコン基板
1(100)を準備する。最上層に形成される化合物半
導体層はこのシリコン基板1の結晶性を引継いだ単結晶
となるが、これをシングルドメインの高品質結晶とする
ために、シリコン基板1は(110)方向に2〜56傾
いた表面を有するものを用いるのが有用である。シリコ
ン基板1上にAPCVDSLPCVDまたは75X’?
CVD法等で膜厚1〜4μmの非晶質S10□よりなる
絶縁層2を形成した侵、その上に形成したレジストをマ
スクとしてフォトリングラフィ工程で種付用の開口部3
を絶縁層2の所定位置に形成する。次に、開口部3内部
を含み絶縁層2上にLpcvo法等で膜#5000Aの
シリコン層4を形成した後、レーザまたは電子ビームを
用いた溶融再結晶化法によってこれをIn結晶化させる
。この実施例においては、10KeVの電子ビームを走
査しながらシリコン層4を照射してこれを1400℃以
上まで加熱して溶融させた後、再結晶化させて単結晶の
シリコン層4を形成している。なお、本工程における基
板温度は400〜500℃程度に保つことが望ましい。
First, the thickness is 300 μm and the specific resistance is 100 to 1000 Ωcm.
A p-type silicon substrate 1 (100) having a diameter of 2 inches is prepared. The compound semiconductor layer formed as the top layer will be a single crystal that inherits the crystallinity of this silicon substrate 1, but in order to make it a single domain high quality crystal, the silicon substrate 1 is 56 It is useful to use one with an inclined surface. APCVDSLPCVD or 75X' on silicon substrate 1?
An insulating layer 2 made of amorphous S10□ with a thickness of 1 to 4 μm is formed by a CVD method or the like, and an opening 3 for seeding is formed in a photolithography process using the resist formed thereon as a mask.
is formed at a predetermined position on the insulating layer 2. Next, a #5000A silicon layer 4 is formed on the insulating layer 2 including inside the opening 3 by the Lpcvo method or the like, and then In is crystallized by a melting recrystallization method using a laser or an electron beam. In this embodiment, the silicon layer 4 is irradiated with a scanning electron beam of 10 KeV, heated to 1400° C. or higher to melt it, and then recrystallized to form a single crystal silicon layer 4. There is. Note that it is desirable to maintain the substrate temperature in this step at about 400 to 500°C.

このような方法であれば、極付部となる開口部3による
ラテラルシーディング法で比較的容易に大面積のシリコ
ン単結晶層を得ることができる。
With such a method, a silicon single crystal layer with a large area can be obtained relatively easily by the lateral seeding method using the openings 3 that serve as poled portions.

なお、この場合良好な単結晶を得られるがどうかは、上
記の極付部の開口部3の形状をいかに適切に選定できる
かにかかつている。たとえば、開口部を幅5μmのライ
ン形状とし、これを10へ・100μm間隔に互いに平
行に設けることにより良好な溶融再結晶化を行なうこと
ができるが、さらに望ましい間口部としては2〜10μ
m角のドツト形状を有するものである。なぜなら、微小
面積のドツト状の開口部は溶融再結晶化過程において開
口部から溶融時の熱が急速にシリコン基板へ逃げること
を防ぐので、シーディング機構を維持しつつ、さらに種
付部での急激な温度変化の防止から溶融再結晶化過程の
不安定化の防止に役立つからである。
In this case, whether a good single crystal can be obtained depends on how appropriately the shape of the opening 3 of the poled portion can be selected. For example, good melting and recrystallization can be achieved by forming the openings in a line shape with a width of 5 μm and arranging them parallel to each other at intervals of 10 to 100 μm.
It has an m-square dot shape. This is because the dot-shaped openings with minute areas prevent the heat from molten silicon from escaping rapidly from the openings to the silicon substrate during the melting and recrystallization process, while maintaining the seeding mechanism. This is because it helps prevent sudden temperature changes and destabilization of the melt recrystallization process.

この実施例では、開口部として5μm角のドツト形状で
200X300μIl1間隔で面状に配置したものを用
いており、1X11オーダの大面積の単結晶のシリコン
層4が良好に形成されている(第1A図参照)。
In this example, the openings are 5 μm square dots arranged planarly at intervals of 200×300 μl1, and a single crystal silicon layer 4 with a large area on the order of 1×11 is well formed (first A (see figure).

このようにして得られたシリコン層4は10〜100Ω
Cl1l程度の導電率を有するが、次にこのシリコン層
を5000八から20OAに超Rfil化する。薄膜化
の方法としてこの実施例では、シリコン単結晶層を11
00℃のドライ酸素中雰囲気での酸化によりシリコン層
4に熱酸化II!I5を膜厚9500A程度成長させ(
第1B図参照)、これを緩衝弗M(HF+N1−14F
)を用いてエツチング除去し、所望の超薄膜のシリコン
層4を絶縁層2の上に残している(第1C図参照)。
The silicon layer 4 obtained in this way has a resistance of 10 to 100Ω.
Although it has a conductivity of about Cl11, this silicon layer is then made into a super Rfil from 5000 to 20 OA. In this example, as a method for thinning the silicon single crystal layer, 11
Thermal oxidation II on the silicon layer 4 by oxidation in a dry oxygen atmosphere at 00°C! Grow I5 to a film thickness of about 9500A (
(see Figure 1B), and buffer this (HF+N1-14F
) to leave the desired ultra-thin silicon layer 4 on the insulating layer 2 (see FIG. 1C).

なお、上記のような熱酸化法を用いずに単に熱リン酸等
を用いてシリコン層4の表面をエツチング除去すること
によっても超薄膜化は可能である。
Note that it is also possible to make the silicon layer 4 ultra-thin by simply etching the surface of the silicon layer 4 using hot phosphoric acid or the like without using the thermal oxidation method described above.

以上のシリコン層4の超薄膜化によってシリコン層に1
MΩ/口以上の高いシート抵抗を付与することができる
By making the silicon layer 4 ultra-thin as described above, the silicon layer has a
A high sheet resistance of MΩ/mouth or higher can be provided.

続いて、超1tll膜化されたシリコン層4上にQaA
s、InP等の化合物半導体を成長させるが、これには
MOC:VD法等の適用が可能である。以下、MOCV
D法でInPを中間層を介してヘテロエピタキシャル成
長させる場合について説明するが、InPを直接シリコ
ン層4に成長さ「て1層の化合物半導体層とすることも
可能である。
Subsequently, QaA is deposited on the silicon layer 4, which has a thickness exceeding 1tll.
A compound semiconductor such as S, InP, etc. is grown, and the MOC:VD method or the like can be applied to this. Below, MOCV
A case will be described in which InP is heteroepitaxially grown via an intermediate layer using the D method, but it is also possible to grow InP directly on the silicon layer 4 to form a single compound semiconductor layer.

超薄膜化されたシリコン層4の表面を)−IFによって
洗浄した後、MOCVD装置内のサセプタに装填し、P
H,(50%H2希釈)およびH2を総量で6〜7SL
M流しつつ、1000℃まで温度上昇させて10分間熱
処理を行なう。次に、温度を650〜700℃に下げた
状態でTEGa(トリエチルガリウム)およびPH,、
さらにH2を同時に導入して、Ialで6〜7SLM流
し、100〜200A/1nの成長速度で約50〜10
0AのQa Pよりなる第1の化合物半導体層6をシリ
コン層4上に形成する。さらに、第1の化合物半導体層
6の形成時と同じPH,の流量および総流量を固定し、
各々Ga PではTEGa、InPではTMIn(t−
リメチルインジウム)へのバブリングH2ガス供給mを
m*することによって、〜60X/minの成長速度で
3〜9秒間隔にてTMInおよびTEGaのリアクタへ
のガス導入切換を行なうことで、In P/Ga Pの
超格子層よりなる第2の化合物半導体層7を第1の化合
物半導体層6上に形成する。
After cleaning the surface of the ultra-thin silicon layer 4 with )-IF, it is loaded into a susceptor in an MOCVD apparatus, and P
H, (50% H2 dilution) and H2 in total amount 6-7SL
While flowing M, the temperature is raised to 1000° C. and heat treatment is performed for 10 minutes. Next, with the temperature lowered to 650-700°C, TEGa (triethyl gallium) and PH,
Furthermore, H2 was introduced at the same time, 6-7 SLM was flowed with Ial, and about 50-10
A first compound semiconductor layer 6 made of QaP of 0A is formed on the silicon layer 4. Furthermore, the same flow rate and total flow rate of PH as when forming the first compound semiconductor layer 6 are fixed,
TEGa for GaP and TMIn(t-
By changing the bubbling H2 gas supply m to m* to InP and switching the gas introduction to the TMIn and TEGa reactors at intervals of 3 to 9 seconds at a growth rate of ~60X/min. A second compound semiconductor layer 7 made of a superlattice layer of /Ga 2 P is formed on the first compound semiconductor layer 6 .

最後に、上記と同様にPH,の流量および総流量を固定
し、成長速度が200〜300A/1nとなるようにT
MTnへのト12ガス供給堡を設定することにより、1
〜2μmのlnPよりなる第3の化合物半導体層8を第
2の化合物半導体層7上にエピタキシャル成長させる。
Finally, fix the flow rate of PH and the total flow rate in the same way as above, and adjust T so that the growth rate is 200 to 300 A/1n.
By setting the 12 gas supply barrier to MTn, 1
A third compound semiconductor layer 8 made of lnP with a thickness of ~2 μm is epitaxially grown on the second compound semiconductor layer 7 .

以上の結果、シングルドメインで鏡面を有し、バルクに
近いキャリア移動度を有する高品質なInPの単結晶層
が得られることになる(第1D図参照)。
As a result of the above, a high-quality InP single crystal layer having a single domain, a mirror surface, and a carrier mobility close to that of the bulk can be obtained (see FIG. 1D).

なお、上記実施例では単一元素の基板としてシリコンを
、化合物半導体としてIn PlGa Pを用いている
が、他の単一元素よりなる半導体や他の化合物半導体で
あっても同一機能を有するものであれば適用でき、同様
の効果を奏することは言うまでもない。
In the above embodiment, silicon is used as the single-element substrate and InPlGaP is used as the compound semiconductor, but other single-element semiconductors or other compound semiconductors may have the same function. Needless to say, it can be applied if there is a similar effect.

[発明の効果] この発明は以上説明したとおり、絶縁層で単一元素より
なる半導体基板を絶縁分離した上に超薄膜化した基板と
同質の半導体層を介して単結晶の化合物半導体層を形成
するので化合物半導体の優れた特性はそのままに基板の
機械強度や熱伝導率が向上し、しかも良好な絶縁性を有
した半導体基板となる効果がある。
[Effects of the Invention] As explained above, the present invention insulates and separates a semiconductor substrate made of a single element with an insulating layer, and then forms a single crystal compound semiconductor layer via an ultra-thin semiconductor layer of the same quality as the substrate. Therefore, the mechanical strength and thermal conductivity of the substrate are improved while maintaining the excellent properties of compound semiconductors, and the semiconductor substrate has the effect of having good insulation properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図〜第1D図はこの発明の一実施例を示す概略製
造工程図である。 図において、1はシリコン基板、2は絶縁層、3は開口
部、4はシリコン層、6は第1の化合物半導体層、7は
第2の化合物半導体層、8は第3の化合物半導体層であ
る。 なお、各図中同一符号は同一または相当部分を示す。 第1A図 第1B図 貴 第10図
FIGS. 1A to 1D are schematic manufacturing process diagrams showing an embodiment of the present invention. In the figure, 1 is a silicon substrate, 2 is an insulating layer, 3 is an opening, 4 is a silicon layer, 6 is a first compound semiconductor layer, 7 is a second compound semiconductor layer, and 8 is a third compound semiconductor layer. be. Note that the same reference numerals in each figure indicate the same or corresponding parts. Figure 1A Figure 1B Figure 10

Claims (1)

【特許請求の範囲】 単一の元素よりなる単結晶の半導体基板と、前記半導体
基板上に形成された非晶質の絶縁層と、 前記絶縁層上に形成された前記半導体基板と同質の単結
晶の半導体層と、 前記半導体層上に形成された単結晶の化合物半導体層と
を備え、 前記半導体層の厚さは、前記化合物半導体層の厚さに比
して十分小さい、半導体基板。
[Scope of Claims] A single-crystal semiconductor substrate made of a single element, an amorphous insulating layer formed on the semiconductor substrate, and a monocrystalline semiconductor substrate formed on the insulating layer of the same quality as the semiconductor substrate. A semiconductor substrate comprising: a crystalline semiconductor layer; and a single-crystalline compound semiconductor layer formed on the semiconductor layer, wherein the thickness of the semiconductor layer is sufficiently smaller than the thickness of the compound semiconductor layer.
JP62127732A 1987-05-25 1987-05-25 Semiconductor substrate Expired - Fee Related JP2813978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62127732A JP2813978B2 (en) 1987-05-25 1987-05-25 Semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62127732A JP2813978B2 (en) 1987-05-25 1987-05-25 Semiconductor substrate

Publications (2)

Publication Number Publication Date
JPS63291416A true JPS63291416A (en) 1988-11-29
JP2813978B2 JP2813978B2 (en) 1998-10-22

Family

ID=14967320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62127732A Expired - Fee Related JP2813978B2 (en) 1987-05-25 1987-05-25 Semiconductor substrate

Country Status (1)

Country Link
JP (1) JP2813978B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154512A (en) * 1987-12-11 1989-06-16 Hitachi Ltd Semiconductor crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566444A (en) * 1979-06-28 1981-01-23 Chiyou Lsi Gijutsu Kenkyu Kumiai Production of semiconductor device
JPS60140813A (en) * 1983-12-28 1985-07-25 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566444A (en) * 1979-06-28 1981-01-23 Chiyou Lsi Gijutsu Kenkyu Kumiai Production of semiconductor device
JPS60140813A (en) * 1983-12-28 1985-07-25 Fujitsu Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154512A (en) * 1987-12-11 1989-06-16 Hitachi Ltd Semiconductor crystal

Also Published As

Publication number Publication date
JP2813978B2 (en) 1998-10-22

Similar Documents

Publication Publication Date Title
JPS6163017A (en) Manufacture of semiconductor thin film crystal layer
JP2785918B2 (en) Method of manufacturing semiconductor device having growth layer on insulating layer
JPH02191320A (en) Crystal product and its manufacture
JPS63291416A (en) Semiconductor substrate
JPH0475649B2 (en)
JPS6163018A (en) Manufacture of semiconductor thin film crystal layer
JPS59121823A (en) Fabrication of single crystal silicon film
JPS60234312A (en) Formation of soi film
JPH01187873A (en) Manufacture of semiconductor device
JP2981777B2 (en) Semiconductor substrate manufacturing method
JPH03292723A (en) Manufacture of silicon singe crystal thin film
JPH01123410A (en) Compound semiconductor substrate and manufacture thereof
JPH04192322A (en) Forming method of crystal article
JPS6398120A (en) Crystal growth method
JPS5893224A (en) Preparation of semiconductor single crystal film
JPH01216519A (en) Manufacture of semiconductor device
JPS6151820A (en) Manufacture of semiconductor device
JPH03167824A (en) Manufacture of semiconductor device
JPH05275328A (en) Method for forming semiconductor substrate
JPH11340141A (en) Manufacture of semiconductor substrate
JPS6079711A (en) Manufacture of semiconductor device
JPS62130510A (en) Manufacture of semiconductor substrate
JPH01291420A (en) Manufacture of semiconductor substrate
JPS63111610A (en) Semiconductor substrate
JPS61241911A (en) Compound semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees