JPS6230372A - Manufacture of semiconductor integrated circuit - Google Patents

Manufacture of semiconductor integrated circuit

Info

Publication number
JPS6230372A
JPS6230372A JP61034807A JP3480786A JPS6230372A JP S6230372 A JPS6230372 A JP S6230372A JP 61034807 A JP61034807 A JP 61034807A JP 3480786 A JP3480786 A JP 3480786A JP S6230372 A JPS6230372 A JP S6230372A
Authority
JP
Japan
Prior art keywords
layer
region
collector
epitaxial layer
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61034807A
Other languages
Japanese (ja)
Other versions
JPH0618202B2 (en
Inventor
Teruo Tabata
田端 輝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61034807A priority Critical patent/JPH0618202B2/en
Priority to CN86102691.8A priority patent/CN1004456B/en
Publication of JPS6230372A publication Critical patent/JPS6230372A/en
Priority to US07/119,668 priority patent/US4780425A/en
Publication of JPH0618202B2 publication Critical patent/JPH0618202B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To reduce the occupying are of an upper diffused layer and to improve the integration by diffusing a lower diffused layer of an elevationally separating region and a deep element diffused region from the surface of an epitaxial layer in the epitaxial layer, and then diffusing the upper diffused layer of the separating region. CONSTITUTION:An N<+> type buried layer 3, a collector buried layer 5 and a lower diffused layer 4' are formed on a substrate 1, and an epitaxial layer 2 is grown on the substrate 1. The entire substrate 1 is heated to diffuse the layers 4', 3 and 5, and a collector region 6 is simultaneously deeply diffused. Phosphorus ions are then implanted to the region 6 to form a base region 7, the upper diffused layer 4'' of an elevationally separating region 4 is diffused together with a collector leading region 8 from the layer 2 to couple the region 4, thereby P-N separating the layer 2. Since the layer 4'' becomes shallow and the diffusing time of the layer 4'' is shortened, the lateral diffusion of the layer 4'' can be largely reduced. Thus, the occupying area of the layer 2 can be largely reduced to remarkably improve the integration.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は半導体集積回路の製造方法、特に縦型PNPト
ランジスタを組み込んだ半導体集積回路の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a method of manufacturing a semiconductor integrated circuit, and particularly to a method of manufacturing a semiconductor integrated circuit incorporating a vertical PNP transistor.

(ロ)従来の技術 従来の半導体集積回路の製造方法を第3図A乃至第3図
りを参照して詳述する。
(B) Prior Art A conventional method for manufacturing a semiconductor integrated circuit will be described in detail with reference to FIGS. 3A to 3.

先ず第3図Aに示す如く、半導体基板(41)としてP
型のシリコン基板を用い、基板(41)表面上に選択的
にアンチモンをデポジションしてN“型の埋め込み層(
43)を形成し、この埋め込み層(43)を囲む基板(
41)表面にはボロンをデポジションして上下分離領域
(44)の上拡散層(44’)を形成しておく。
First, as shown in FIG. 3A, P is used as a semiconductor substrate (41).
An N" type buried layer (
43) and a substrate (43) surrounding this buried layer (43).
41) Boron is deposited on the surface to form an upper diffusion layer (44') of the upper and lower separation regions (44).

次に第3図Bに示す如く、基板(41)上にN型のエピ
タキシャル層(42)を成長させる。エピタキシャル層
(42)表面には下拡散M(44’)と対応する位置に
ボロンをデポジションして上下分離領域(44)の上拡
散層(44”)を形成する。
Next, as shown in FIG. 3B, an N-type epitaxial layer (42) is grown on the substrate (41). On the surface of the epitaxial layer (42), boron is deposited at a position corresponding to the lower diffusion M (44') to form an upper diffusion layer (44'') of the upper and lower isolation regions (44).

次に第3図Cに示す如く、基板(41)を加熱して上下
分離領域り44)の上拡散層(44“)および上拡散層
(44’)と埋め込み層(43)をエピタキシャル層(
42)内にはい上げて拡散し、上拡散層(44″)と上
拡散層(44’ンを連結して上下分離領域(44)を形
成する。この拡散工程は約1100°Cで3〜4時間行
い、エピタキシャル層(42)の厚みを13μとすると
上拡散層(44”〉は約10μの深さに拡散され、上拡
散層(44’ )は約5μの・深さにはい上げられてい
る。
Next, as shown in FIG. 3C, the substrate (41) is heated to form an epitaxial layer (
42), and connects the upper diffusion layer (44'') with the upper diffusion layer (44') to form an upper and lower separation region (44). This diffusion process is performed at approximately 1100°C for 3~ When the epitaxial layer (42) is 13μ thick, the upper diffusion layer (44'') is diffused to a depth of approximately 10μ, and the upper diffusion layer (44') is raised to a depth of approximately 5μ. ing.

更に第3図りに示す如く、上下分離領域(44)で囲ま
れたエピタキシャル層(42)で形成される島領域(4
5)表面にP型のベース領域(46)とN型のエミッタ
領域(47)を拡散し、島領域(45)表面にはコレク
クコンタクト領域(48)をエミッタ拡散で形成してい
る。
Further, as shown in the third diagram, an island region (4) formed of an epitaxial layer (42) surrounded by a top and bottom separation region (44) is formed.
5) A P-type base region (46) and an N-type emitter region (47) are diffused on the surface, and a collector contact region (48) is formed on the surface of the island region (45) by emitter diffusion.

斯上した工程によりNPNトランジスタを島領域〈45
)に形成できる。なお上下分離方法としては特公昭45
−14015号公報、特公昭49−45629号公報等
で知られている。
By the above process, the NPN transistor is formed into an island region〈45
) can be formed. Note that the method for separating the upper and lower parts is
It is known from Japanese Patent Publication No. 14015, Japanese Patent Publication No. 49-45629, etc.

次に従来の縦型PNP トランジスタは第4図に示す如
く、P型のシリコン半導体基板(51)上に成長させた
N型エピタキシャル層(52)と、基板(51)上に設
けたN1型の埋め込み層(53〉と、この埋め込み層(
53)を完全に囲む様にエピタキシャル層(52)を貫
通したP+型の上下分離領域(54)と、基板(51)
の埋め込み層(53)上に重ねて設けたP+型のコレク
タ領域(55)と、エピタキシャル層(52)表面より
コレクタ領域(55)に達するPゝ型のコレクタ導出領
域(56)と、コレクタ領域(55)とコレクタ導出領
域り56)で完全に囲まれて且つエピタキシャル層(5
2)で形成されるベース領域(57)と、ベース領域(
57)表面に形成したP+型のエミッタ領域(58)、
エピタキシャル層(52)表面を被覆する酸化膜(59
)と、この酸化膜(59)の電極孔を介してコレクタ導
出領域(56)ベースコンタクト領域(60)およびエ
ミッタ領域(58)に夫々オーミンク接触するコレクタ
電極(61)ベース電極り62)およびエミッタ電極(
63)より構成されている。斯る縦型PNPトランジス
タは例えば、特開昭59−172738号公報等に示さ
れている。
Next, as shown in FIG. 4, the conventional vertical PNP transistor consists of an N-type epitaxial layer (52) grown on a P-type silicon semiconductor substrate (51), and an N1-type epitaxial layer (52) grown on a P-type silicon semiconductor substrate (51). The embedding layer (53) and this embedding layer (
A P+ type upper and lower separation region (54) penetrating the epitaxial layer (52) so as to completely surround the substrate (53) and the substrate (51).
A P+ type collector region (55) provided overlappingly on the buried layer (53), a P type collector lead-out region (56) reaching the collector region (55) from the surface of the epitaxial layer (52), and the collector region (55) and the collector lead-out region 56), and is completely surrounded by the epitaxial layer (56).
2) and the base region (57) formed in
57) P+ type emitter region (58) formed on the surface;
Oxide film (59) covering the surface of the epitaxial layer (52)
), a collector electrode (61), a base electrode (62) and an emitter which are in ohmink contact with the collector lead-out region (56), the base contact region (60) and the emitter region (58) through the electrode hole of this oxide film (59), respectively. electrode(
63). Such a vertical PNP transistor is disclosed, for example, in Japanese Patent Laid-Open No. 59-172738.

斯上した縦型PNP トランジスタでは活性なベース領
域(57)がエピタキシャル層(52)で形成されるの
で、l Q ”cm−’以下と低不純物濃度であり且つ
ベース巾も広いため利得帯域山積(rT)が低い欠点が
ある。またエピタキシャル層(52)の比抵抗あるいは
厚みのばらつきがそのまま活性なベース領域(57)の
不純物濃度あるいはベース巾のばらつきとなるので、縦
型PNPトランジスタのhFtのばらつきとなって現れ
る欠点がある。
In the above-mentioned vertical PNP transistor, the active base region (57) is formed of the epitaxial layer (52), so the impurity concentration is low (l Q "cm-" or less) and the base width is wide, so that the gain band mass ( rT) is low.Furthermore, variations in the resistivity or thickness of the epitaxial layer (52) directly result in variations in the impurity concentration or base width of the active base region (57), resulting in variations in hFt of the vertical PNP transistor. There is a drawback that appears as follows.

斯る欠点を改善した縦型PNPトランジスタを第5図に
示す。この縦型PNPトランジスタは、P型のシリコン
半導体基板(71)と、基板(71)上に積層されたN
型のエピタキシャル層(72)と、基板(71)上に設
けたN4型の埋め込み/I(73)と、この埋め込みJ
i (73)を完全に囲む様にエピタキシャル層(72
)を貫通したP1型の上下分離領域(74)と、埋め込
み層(73)上に設けられたP+型のコレクタ領域(7
5)と、エピタキシャル層(72)表面からコレクタ領
域(75)まで達するP+型のコレクタ導出領域(76
)と、コレクタ領域(75)とコレクタ導出領域(76
)で完全に囲まれ且つエピタキシャル層(72)で形成
されたベース領域(77)と、ベース領域(77)表面
に設けられたP1型のエミッタ領域(78)と、ベース
領域(77〉表面に形成したN4型のベースコンタクト
領域(80)と、エピタキシャル! (72)表面を被
覆する酸化膜(79)と、この酸化膜(79)の電極孔
を介してコレクタ導出領域(76)ベースコンタクト領
域(80)およびエミッタ領域(78)に夫々オーミッ
ク接触したコレクタ電極(81)ベース電極(82)お
よびエミッタ電極(83)とを具備し、ベース領域(7
7)表面に設けたベース領域(77)より高不純物濃度
のN型のイオン注入領域(84)より構成される。
FIG. 5 shows a vertical PNP transistor that has improved this drawback. This vertical PNP transistor consists of a P-type silicon semiconductor substrate (71) and an N layered on the substrate (71).
type epitaxial layer (72), N4 type embedding/I (73) provided on the substrate (71), and this embedding J
The epitaxial layer (72) completely surrounds i (73).
) and a P+ type collector region (74) provided on the buried layer (73).
5) and a P+ type collector lead-out region (76) that reaches from the surface of the epitaxial layer (72) to the collector region (75).
), collector area (75) and collector derivation area (76
) and formed of an epitaxial layer (72), a P1 type emitter region (78) provided on the surface of the base region (77), and a base region (77) formed on the surface of the base region (77). The formed N4 type base contact region (80), the oxide film (79) covering the epitaxial! (72) surface, and the collector lead-out region (76) base contact region through the electrode hole of this oxide film (79). A collector electrode (81), a base electrode (82), and an emitter electrode (83) are in ohmic contact with the base region (80) and the emitter region (78), respectively.
7) Consisting of an N-type ion implantation region (84) with a higher impurity concentration than the base region (77) provided on the surface.

斯上した構造に依れば第6図に示す不純物濃度分布特性
から明らかな様に、従来のベース領域のエピタキシャル
層(72)表面側にN型のイオン注入領域(84)が形
成される。このイオン注入領域(84)はエピタキシャ
ル層(72)の不純物濃度に比べて約10倍程度高不純
物濃度に設定きれ、且つベース領域(77)はイオン注
入領域(84)とエピタキシャル層(72)で形成きれ
ている。このためベース領域(77)の不純物分布はエ
ミッタ領域(78)からコレクタ領域(75〉に向って
低不純物濃度になっていくので、内部にドリフト1界が
生じてホールは加速される。この結果縦型PNPトラン
ジスタは従来のfTが50M旧から100 Ml(Zま
で向上できる。
According to the above structure, as is clear from the impurity concentration distribution characteristics shown in FIG. 6, an N-type ion implantation region (84) is formed on the surface side of the epitaxial layer (72) of the conventional base region. This ion implantation region (84) can be set to an impurity concentration approximately 10 times higher than that of the epitaxial layer (72), and the base region (77) is composed of the ion implantation region (84) and the epitaxial layer (72). Completely formed. For this reason, the impurity distribution in the base region (77) becomes lower in impurity concentration from the emitter region (78) toward the collector region (75>), so a drift 1 field is generated inside and the holes are accelerated. The fT of the vertical PNP transistor can be improved from the conventional 50M to 100Ml (Z).

またエピタキシャル層(72)の厚さや比抵抗がばらつ
いても、縦型PNP トランジスタのhFtはほぼイオ
ン注入領域(84)の深さで決定されるので、h□のば
らつきはイオン注入により大巾に減少できる。具体的に
は従来のばらつきの約半分以下となる。
Furthermore, even if the thickness and resistivity of the epitaxial layer (72) vary, the hFt of the vertical PNP transistor is almost determined by the depth of the ion implantation region (84), so the variation in h□ can be greatly affected by the ion implantation. Can be reduced. Specifically, the variation is about half or less of the conventional variation.

(ハ)発明が解決しようとする問題点 しかしながら前述した上下分離方式の従来の半導体集積
回路の製造方法では上側分離方式に比べて拡散時間の短
縮を図れるが、上下分離方式でも上拡散層(44″〉と
上拡散層(44’)の拡散を同時に行っているので、不
純物濃度等の関係で上拡散層(44″)を上拡散層(4
4’)よりかなり深く拡散する必要があった。このため
拡散時間が3〜4時間と長く、上拡散層(44”)の横
方向拡散も大きくなりエピタキシャル層(42)表面の
上拡散層(44“)の占有面積が大きく集積度があまり
向上できない欠点があった。
(c) Problems to be Solved by the Invention However, in the above-mentioned conventional method for manufacturing semiconductor integrated circuits using the upper and lower separation method, the diffusion time can be shortened compared to the upper separation method. Since the diffusion of the upper diffusion layer (44') and the upper diffusion layer (44') is performed at the same time, the upper diffusion layer (44') is
4') It was necessary to diffuse much deeper. For this reason, the diffusion time is as long as 3 to 4 hours, and the lateral diffusion of the upper diffusion layer (44'') is also large, and the area occupied by the upper diffusion layer (44'') on the surface of the epitaxial layer (42) is large, and the degree of integration is not much improved. There was a drawback that it could not be done.

また前述した改善された従来の縦型PNP)ランリスタ
に於いても、エピタキシャル層(72)でベース領域(
77)を形成するのでベース領域(77)の巾が太きく
ftを更に向上することができず、またエピタキシャル
層(72)の厚みのばらつきによりhFxが変動しやす
く、更にコレクタ領域(75)の不純物濃度がIQ”c
Tn−’と低いのでコレクタエミッタ飽和電圧■。、(
sat)が大きくなり製造し難い欠点があった。
Furthermore, in the improved conventional vertical PNP (PNP) run lister mentioned above, the epitaxial layer (72) has a base region (
77), the width of the base region (77) is large, making it impossible to further improve ft, and hFx tends to fluctuate due to variations in the thickness of the epitaxial layer (72). Impurity concentration is IQ”c
Since Tn-' is low, the collector-emitter saturation voltage ■. ,(
sat) becomes large, making it difficult to manufacture.

(ニ)問題点を解決するための手段 本発明は斯上した欠点に鑑みてなされ、上下分離領域の
上拡散層およびエピタキシャル層表面からの深い素子拡
散領域をエピタキシャル層内に拡散した後に上下分離領
域の上拡散層を拡散することにより従来の欠点を大巾に
改善した半導体集積回路の製造方法を提供するものであ
る。
(d) Means for Solving the Problems The present invention was made in view of the above-mentioned drawbacks, and the upper diffusion layer of the upper and lower isolation regions and the deep element diffusion region from the surface of the epitaxial layer are diffused into the epitaxial layer, and then the upper and lower regions are separated. The present invention provides a method for manufacturing a semiconductor integrated circuit which greatly improves the conventional drawbacks by diffusing the upper diffusion layer of the region.

また本発明では従来の縦型PNP トランジスタの欠点
に鑑みてなされ、エピタキシャル層表面からイオン注入
で形成しコレクタ埋め込み層まで達するコレクタ領域表
面にベース領域およびエミッタ領域を二重拡散する縦型
PNP トランジスタを組み込んだ半導体集積回路の製
造方法を提供するものである。
In addition, the present invention has been made in view of the drawbacks of conventional vertical PNP transistors, and is a vertical PNP transistor in which the base region and emitter region are double-diffused on the surface of the collector region, which is formed by ion implantation from the surface of the epitaxial layer and reaches the collector buried layer. A method of manufacturing a semiconductor integrated circuit incorporating the present invention is provided.

(ホ)作用 本発明に依れば上下分離領域の上拡散層および素子拡散
領域を十分に深くエピタキシャル層内に拡散した後に上
下分離領域の上拡散層を拡散するので、上下分離領域の
上拡散層を十分に浅く形成でき且つ素子拡散領域を十分
に深く形成できる。
(E) Function According to the present invention, the upper diffusion layer of the upper and lower isolation regions is diffused after the upper diffusion layer of the upper and lower isolation regions and the element diffusion region are diffused sufficiently deeply into the epitaxial layer, so that the upper diffusion layer of the upper and lower isolation regions is diffused. The layer can be formed sufficiently shallow and the element diffusion region can be formed sufficiently deep.

この結果上拡散層の占有面積の減少を図れ、集積度を向
上できる。
As a result, the area occupied by the diffusion layer can be reduced, and the degree of integration can be improved.

また本発明に依ればコレクタ領域表面にベース領域およ
びエミッタ領域を二重拡散する製造方法を採るので、ベ
ース巾を狭く形成できるとともにばらつきを小さくでき
るのである。
Further, according to the present invention, since a manufacturing method is adopted in which the base region and the emitter region are double-diffused on the surface of the collector region, the base width can be narrowed and variations can be reduced.

(へ)実施例 本発明に依る半導体集積回路の製造方法の第1の実施例
を第1図A乃至第1図Fを参照して詳述する。
(F) Embodiment A first embodiment of the method for manufacturing a semiconductor integrated circuit according to the present invention will be described in detail with reference to FIGS. 1A to 1F.

先ず第1図Aに示す如く、半導体基板(1)としてP型
のシリコン基板を用い、基板(1)表面上に選択的にア
ンチモンをデポジションしてN+型の埋め込み層(3〉
を形成し、埋め込み層(3)上および埋め込み層〈3〉
を囲む基板(1)表面にはボロンをデポジションしてコ
レクタ埋め込み層(5)と上下分離領域(4)の上拡散
層(4゛)も形成する。
First, as shown in FIG. 1A, a P-type silicon substrate is used as a semiconductor substrate (1), and antimony is selectively deposited on the surface of the substrate (1) to form an N+ type buried layer (3).
on the buried layer (3) and on the buried layer <3>
Boron is deposited on the surface of the substrate (1) surrounding the substrate (1) to form a collector buried layer (5) and an upper diffusion layer (4') of the upper and lower separation regions (4).

次に第1図Bに示す如く、基板(1)上にN型のエピタ
キシャル層(2)を約7μm厚に成長きせる。このとき
埋め込み層(3)、コレクタ埋め込み層(5)および上
下分離領域(4)の下拡散ff1(4’)は上下方向に
若干拡散され、具体的には上下分離領域(4)の上拡散
層(4′)およびコレクタ埋め込み層(5)は約1.5
μm程度はい上がる。なお本工程ではエピタキシャル層
(2)表面のコレクタ埋め込み層(5)上に対応する領
域に選択的にボロンをイオン注入して素子拡散領域の1
つであるコレクタ領域(6)を付着しておく。このイオ
ン注入はボロンをドーズ量I Q I S 〜l Q 
I ficrn−1で加速電圧80〜200KeVで行
う。
Next, as shown in FIG. 1B, an N-type epitaxial layer (2) is grown on the substrate (1) to a thickness of about 7 μm. At this time, the buried layer (3), the collector buried layer (5), and the lower diffusion ff1 (4') of the upper and lower separation regions (4) are slightly diffused in the vertical direction, specifically, the upper diffusion of the upper and lower separation regions (4). Layer (4') and collector buried layer (5) are approximately 1.5
It increases by about μm. In this step, boron ions are selectively implanted into a region corresponding to the collector buried layer (5) on the surface of the epitaxial layer (2) to form one of the element diffusion regions.
A collector region (6) is attached. This ion implantation uses boron at a dose of I Q I S ~ l Q
It is carried out at I ficrn-1 and an acceleration voltage of 80 to 200 KeV.

次に第1図Cに示す如く、基板(1)全体を約1200
″Cに加熱して上下分離領域(4)の上拡散層(4°)
、埋め込み層(3)およびコレクタ埋め込み層(5)ヲ
エビタキシャル層(2)内にはい上がらせて拡散し、同
時にコレクタ領域(6)をエピタキシャル層<2〉内に
深く拡散する。具体的には上下分離領域(4)の上拡散
層(4′)およびコレクタ埋め込み層(5)はエピタキ
シャル層(2〉下面から約5μmはどはい上がらせ、コ
レクタ領域(6)はエピタキシャル層(2)表面から約
4μmの深芒にドライブインされる。従ってコレクタ領
域(6)はコレクタ埋め込み層(5)まで完全に到達す
る。
Next, as shown in Figure 1C, the entire board (1) is
″C and upper diffusion layer (4°) of upper and lower separation region (4)
, the buried layer (3) and the collector buried layer (5) are raised and diffused into the epitaxial layer (2), and at the same time, the collector region (6) is deeply diffused into the epitaxial layer <2>. Specifically, the upper diffusion layer (4') and collector buried layer (5) of the upper and lower isolation regions (4) are raised approximately 5 μm from the bottom surface of the epitaxial layer (2), and the collector region (6) is raised from the epitaxial layer (2) by approximately 5 μm from the bottom surface. 2) Drive-in to a depth of approximately 4 μm from the surface. Therefore, the collector region (6) completely reaches the collector buried layer (5).

次に第1図りに示す如く、コレクタ領域(6)表面には
リンをイオン注入してベース領域(7)を形成する。こ
のイオン注入はリンをドーズ量1016w l Q ”
cm−”で加速電圧60〜100KeVで行い、ベース
領域(7〉をコレクタ領域(6)表面に付着している。
Next, as shown in the first diagram, phosphorus ions are implanted into the surface of the collector region (6) to form a base region (7). This ion implantation has a phosphorus dose of 1016 w l Q ”
cm-'' at an accelerating voltage of 60 to 100 KeV, and the base region (7) is attached to the surface of the collector region (6).

次に第1図Eに示す如く、エピタキシャル層(2)表面
より上下分離領域(4)の上拡散層(4“)とコレクタ
導出領域(8)を同時に拡散し、上下分離領域(4)を
連結させてエピタキシャル!(2)をPN分離する。ま
たこのコレクタ導出領域(8)はコレクタ埋め込み層(
5)まで達し、コレクタ導出領域(8)はコレクタ領域
(6)全周を囲んでいる。更にこの拡散で前工程で形成
したベース領域(7)をドライブインして約2.5μm
の深さのベース領域(7)を形成している。
Next, as shown in FIG. 1E, the upper diffusion layer (4'') and the collector lead-out region (8) of the upper and lower isolation regions (4) are simultaneously diffused from the surface of the epitaxial layer (2) to form the upper and lower isolation regions (4). The epitaxial!
5), and the collector derivation region (8) surrounds the entire periphery of the collector region (6). Furthermore, by this diffusion, the base region (7) formed in the previous step is driven in to a thickness of about 2.5 μm.
It forms a base region (7) with a depth of .

本工程は本発明の特徴とする工程で、上下分離領域(4
)の上拡散層(4′)を十分にはい上げた後に上拡散層
(4“)を拡散しているので、上拡散層(4“)の深さ
を約3μmと浅くでき、上拡散層(4”)の拡散時間を
約1200°Cで1時間に短縮できる。このため上拡散
層(4“)の横方向の拡散を大巾に低減でき、拡散孔周
端より約3μm以内に納められ上拡散層(4″)の表面
占有面積を大巾に縮少できる。
This step is a characteristic step of the present invention, in which the upper and lower separation regions (4
) Since the upper diffusion layer (4") is diffused after the upper diffusion layer (4') is sufficiently lifted up, the depth of the upper diffusion layer (4") can be made shallow to about 3 μm, and the upper diffusion layer (4") can be shortened to 1 hour at approximately 1200°C. Therefore, the lateral diffusion of the upper diffusion layer (4") can be greatly reduced, and the diffusion time can be reduced to within approximately 3 μm from the peripheral edge of the diffusion hole. As a result, the surface area occupied by the upper diffusion layer (4'') can be greatly reduced.

更にまた第1図Fに示す如く、ベース領域り7)表面お
よびコレクタ導出領域(8)表面にはエミッタ領域(9
)およびコレクタコンタクト領域(10)を拡散する。
Furthermore, as shown in FIG.
) and the collector contact region (10).

この拡散はNPN トランジスタのベース拡散工程で行
う。その後ベース領域(7)表面にはNPN トランジ
スタのエミッタ拡散工程でベースコンタクト領域(11
〉を形成している。エミッタ領域(9)は約2μmの深
さに、ベースコンタクト領域(11)は約1.5μmの
深さに形成されている。
This diffusion is performed in the base diffusion process of the NPN transistor. Thereafter, the base contact region (11) is formed on the surface of the base region (7) by the emitter diffusion process of the NPN transistor.
> is formed. The emitter region (9) is formed to a depth of approximately 2 μm, and the base contact region (11) is formed to a depth of approximately 1.5 μm.

次に本発明に依る半導体集積回路の製造方法の第2の実
施例を第2図A乃至第2図Fを参照して詳述する。
Next, a second embodiment of the method for manufacturing a semiconductor integrated circuit according to the present invention will be described in detail with reference to FIGS. 2A to 2F.

先ず第2図Aに示す如く、半導体基板(21)としてP
型のシリコン基板を用い、基板(21)上に選択的にア
ンチモンをデポジションしてN+型の埋め込み層(23
)を形成し、埋め込み層(23)上および埋め込み層(
23)を囲む基板(21)表面にはボロンをデポジショ
ンしてコレクタ埋め込み層(25)と上下分離領域(2
4)の下拡散Jim(24’)も行っておく。
First, as shown in FIG. 2A, P is used as a semiconductor substrate (21).
Using a type silicon substrate, antimony is selectively deposited on the substrate (21) to form an N+ type buried layer (23).
) on the buried layer (23) and on the buried layer (23).
Boron is deposited on the surface of the substrate (21) surrounding the collector buried layer (25) and the upper and lower separation regions (23).
4) Lower diffusion Jim (24') is also performed.

次に第2図Bに宗す如く、基板(21)上にエピタキシ
ャル層(22)を約7μ厚程度に成長させる。その後基
板(21)を加熱処理して埋め込み層(23)、コレク
タ埋め込み層(25)および上下分離領域(24)の上
拡散層(24’)を上下方向に拡散させ、所定の[1コ
を有する埋め込み層(23)、コレクタ埋め込み層(2
5)を形成する。具体的には上下分離領域(24)の上
拡散層(24°)は約5μmはどエピタキシャル層(2
2)下面よりはい上がる。
Next, as shown in FIG. 2B, an epitaxial layer (22) is grown on the substrate (21) to a thickness of about 7 μm. Thereafter, the substrate (21) is heat-treated to diffuse the buried layer (23), the collector buried layer (25), and the upper diffusion layer (24') of the upper and lower separation region (24) in the vertical direction. a buried layer (23), a collector buried layer (2
5) Form. Specifically, the upper diffusion layer (24°) of the upper and lower isolation regions (24) is about 5 μm thick and the epitaxial layer (2
2) Crawling up from the bottom.

続いて第2図Cに示す如く、本発明の特徴とするイオン
注入によりコレクタ領域(26)を形成する。このイオ
ン注入はボロンをドーズ量1013〜IQ”cm−2で
加速電圧80〜200KeVで行い、コレクタ埋め込み
層(25)上のエピタキシャル層(22)表面に不純物
をイオン注入した後約4μmの深きにドライブインして
コレクタ埋め込み層(25)まで到達させる。なおこの
ドライブインは前述した上下分離領域(24〉の下拡散
層(24’)の拡散と同時に行うのが簡便である。
Subsequently, as shown in FIG. 2C, a collector region (26) is formed by ion implantation, which is a feature of the present invention. This ion implantation is performed with boron at a dose of 1013 to IQ"cm-2 and an acceleration voltage of 80 to 200 KeV. After the impurity ions are implanted into the surface of the epitaxial layer (22) on the collector buried layer (25), the impurity is implanted to a depth of about 4 μm. It is driven in to reach the collector buried layer (25).This drive-in is conveniently performed at the same time as the diffusion of the lower diffusion layer (24') of the upper and lower separation regions (24>) described above.

更にコレクタ領域り26)表面にはリンをイオン注入し
てベース領域(28)を形成する。このイオン注入はリ
ンをドーズ量10′6〜IQ”an−”で加速電圧60
〜100KeVで行い、深さ約2.5μmにドライブイ
ンしてベース領域(8)を形成している。
Further, phosphorus ions are implanted into the surface of the collector region (26) to form a base region (28). In this ion implantation, the phosphorus dose is 10'6 to IQ "an-" and the acceleration voltage is 60.
The base region (8) is formed by driving in to a depth of about 2.5 μm.

なおベース領域(28)のドライブインは後の上下分離
領域(24)の上拡散層(24“)の拡散と同時に行う
と簡便である。
Note that it is convenient to drive in the base region (28) at the same time as the subsequent diffusion of the upper diffusion layer (24'') of the upper and lower separation regions (24).

更に第2図りに示す如く、エピタキシャル層(22)表
面より上下分離領域(24)の上拡散H(24”)とコ
レクタ導出領域(27)を同時に拡散し、上下分離領域
(24)を連結させてエピタキシャル層(22>をPN
分離する。またこのコレクタ導出領域(27)はコレク
タ埋め込み層(25)まで達し、コレクタ導出領域〈2
7)はコレクタ領域(26)全周を囲んでいる。具体的
に上拡散層(24”)は約1200°Cで1時間の拡散
で約3μmの深さに拡散きれる。
Furthermore, as shown in the second diagram, the upper diffusion H (24'') of the upper and lower isolation regions (24) and the collector lead-out region (27) are simultaneously diffused from the surface of the epitaxial layer (22) to connect the upper and lower isolation regions (24). The epitaxial layer (22> is PN
To separate. In addition, this collector lead-out region (27) reaches the collector buried layer (25), and the collector lead-out region <2
7) surrounds the entire periphery of the collector region (26). Specifically, the upper diffusion layer (24'') can be diffused to a depth of about 3 μm by diffusion at about 1200° C. for 1 hour.

更にまた第2図Eに示す如く、ベース領域(28)表面
およびコレクタ導出領域(27)表面にはエミッタ領域
(30)およびコレクタコンタク1へ領域り31)を拡
散する。この拡散はNPN)−ランリスタのベース拡散
工程で行う。その後ベース領域(28)表面にはNPN
 l−ランリスタのエミッタ拡散工程でベースコンタク
ト領域(29)を形成している。具体的にはベース領域
(28)は約2.5μm、エミッタ領域(30)は約2
μm1ベースコンタクト領域(29)は約1.5μmの
深さに形成きれている。
Furthermore, as shown in FIG. 2E, a region 31) is diffused into the emitter region (30) and the collector contact 1 on the surface of the base region (28) and the surface of the collector lead-out region (27). This diffusion is performed in the base diffusion step of the NPN)-run lister. After that, NPN is applied to the surface of the base region (28).
A base contact region (29) is formed in the emitter diffusion process of the L-run lister. Specifically, the base region (28) has a thickness of approximately 2.5 μm, and the emitter region (30) has a thickness of approximately 2.5 μm.
The μm1 base contact region (29) has been formed to a depth of approximately 1.5 μm.

更にまた第2図Fに示す如く、周知の蒸着技術げより蒸
着アルミニウムでコレクタttM(s3)、ベース電極
(34)およびエミッタ電極(35)を形成する。
Furthermore, as shown in FIG. 2F, a collector ttM (s3), a base electrode (34), and an emitter electrode (35) are formed of vapor-deposited aluminum using a well-known vapor deposition technique.

斯上した本発明の製造方法に依る縦型PNP l−ラン
リスタは、P型のシリコン半導体基板(21)と、基板
(21)上に積層きれたN型のエピタキシャル層(22
)と、基板(21)上に設けたN+型の埋め込み層(2
3)と、この埋め込み層(23)を完全に囲む様にエピ
タキシャル層(22)を貫通したP+型の上下分離領域
(24)と、埋め込み層(23)上に設けられたP″″
型のコレクタ埋め込み!(25)と、エピタキシャル層
(22)表面からコレクタ埋め込み層(25)まで達す
るイオン注入で形成されたP型のコレクタ領域(26〉
と、エピタキシャル層り22)表面からコレクタ埋め込
み層<25)まで達するP+型のコレクタ導出領域(2
7)と、コレクタ領域(26)表面にイオン注入で形成
させたN型のベース領域(28)と、ベース領域(28
)表面に形成されたN“型のベースコンタクト領域(2
9)と、ベース領域(28)表面に形成されたP型のエ
ミッタ領域(30)と、コレクタ導出領域(27〉表面
に重畳して形成されたP+型のコレクタコンタクト領域
(31)と、エピタキシャル層(22)表面を被覆する
酸化膜(32)と、この酸化膜(32)に設けたコンタ
クト孔を介してコレクタコンタクト領域(31)ベース
コンタクト領域(29)およびエミッタ領域(30)に
夫々オーミンク接触するコレクタ電極(33)ベース電
極(34)およびエミッタ電極(35)より構成されて
いる。
The vertical PNP l-run lister according to the manufacturing method of the present invention described above includes a P-type silicon semiconductor substrate (21) and an N-type epitaxial layer (22) laminated on the substrate (21).
) and an N+ type buried layer (2) provided on the substrate (21).
3), a P+ type upper and lower separation region (24) penetrating the epitaxial layer (22) so as to completely surround this buried layer (23), and a P'''' provided on the buried layer (23).
Embedding type collector! (25) and a P-type collector region (26) formed by ion implantation from the surface of the epitaxial layer (22) to the collector buried layer (25).
and a P+ type collector lead-out region (2) reaching from the epitaxial layer 22) surface to the collector buried layer <25).
7), an N-type base region (28) formed by ion implantation on the surface of the collector region (26), and a base region (28).
) N” type base contact region (2) formed on the surface
9), a P-type emitter region (30) formed on the surface of the base region (28), a P+-type collector contact region (31) formed superimposed on the surface of the collector lead-out region (27), and an epitaxial An oxide film (32) covering the surface of the layer (22) and contact holes formed in this oxide film (32) are used to connect the collector contact region (31), the base contact region (29), and the emitter region (30), respectively. It is composed of a collector electrode (33), a base electrode (34), and an emitter electrode (35) that are in contact with each other.

斯る縦型PNPトランジスタはエピタキシャル層(22
)を全部イオン注入で形成したコレクタ領域(26)と
して用いる点に特徴があり、このコレクタ領域(26)
にベース領域(28)およびエミッタ領域(30)を二
重拡散することにより拡散型のベース領域とばらつきの
少いベース巾を実現していまず。
Such a vertical PNP transistor has an epitaxial layer (22
) is used as the collector region (26), which is entirely formed by ion implantation.
First, by double-diffusing the base region (28) and emitter region (30), a diffused base region and a base width with little variation are realized.

(ト)発明の効果 本発明に依れば、上下分離領域(4)の下拡散層(4゛
)およびコレクタ領域(6)の深い拡散を十分に行った
後に上下分離領域(4)の上拡散層(4”)を拡散して
いるので、上下分離領域(4〉の上拡散層(4′)を浅
く形成でき、上下分離領域(4)の上拡散J?!?(4
”)の横方向への拡散を約3μm以下に抑えられ、上拡
散層(4“)のエピタキシャル層(2)表面の占有面積
を大巾に減少でき、集積度を大巾に向上できる。
(G) Effects of the Invention According to the present invention, after the lower diffusion layer (4') of the upper and lower isolation regions (4) and the collector region (6) are sufficiently deep diffused, the upper and lower regions of the upper and lower isolation regions (4) are Since the diffusion layer (4") is diffused, the upper diffusion layer (4') of the upper and lower isolation regions (4) can be formed shallowly, and the upper diffusion layer (4') of the upper and lower isolation regions (4) can be formed shallowly.
'') can be suppressed to about 3 μm or less, the area occupied by the upper diffusion layer (4'') on the surface of the epitaxial layer (2) can be greatly reduced, and the degree of integration can be greatly improved.

また本発明に依れば上下分離領域(4)の上拡散層(4
′″)が下拡散層(4゛)より大巾に浅いので、上下分
離領域(4)の上拡散層(4”)の拡散時間を従来の3
〜4時間より約1時間に大巾に短縮できる。この結果エ
ピタキシャル層(2)表面への熱ストレスやダメージを
大巾に減少でき、トランジスタの微小電流時のhFKの
低下を防止でき、ノイズを大巾に減少できる。
Further, according to the present invention, the upper diffusion layer (4) of the upper and lower separation region (4)
Since the diffusion layer (4'') is much shallower than the lower diffusion layer (4''), the diffusion time of the upper diffusion layer (4'') of the upper and lower separation region (4) is shorter than the conventional 3''.
It can be drastically shortened from ~4 hours to about 1 hour. As a result, thermal stress and damage to the surface of the epitaxial layer (2) can be greatly reduced, a decrease in hFK at the time of a small current in the transistor can be prevented, and noise can be greatly reduced.

更に本発明に依ればベース領域(28)を従来のエピタ
キシャル層による均一ベース構造から拡散ベース構造と
なり、ドリフ)〜電界を発生できる。
Further, according to the present invention, the base region (28) changes from the conventional uniform base structure formed by an epitaxial layer to a diffused base structure, thereby making it possible to generate a drift electric field.

またベース巾はベース領域(28)とエミッタ領域(3
0)の二重拡散構造で制御できるので、ベース巾を従来
のものより大巾に狭く形成でき、その製造上のばらつき
も大巾に小さくできる。この結果本発明の縦型PNPト
ランジスタのf?を約200MH2まで大巾に向上でき
る利点を有する。
Also, the base width is the base area (28) and the emitter area (3
Since the double diffusion structure of 0) can be controlled, the base width can be made much narrower than the conventional one, and the manufacturing variations can be greatly reduced. As a result, f? of the vertical PNP transistor of the present invention? It has the advantage of being able to greatly improve the current to about 200MH2.

更に本発明に依ればベース領域(28)とエミッタ領域
(30〉を二重拡散で形成できるので、ベース巾のばら
つきがエピタキシャル層でベース巾を形成する従来のも
のに比較して大巾に減少でき、hFKの製造上のばらつ
きを大巾に低減できる。
Furthermore, according to the present invention, since the base region (28) and the emitter region (30) can be formed by double diffusion, the variation in the base width is much wider than in the conventional method in which the base width is formed with an epitaxial layer. It is possible to greatly reduce manufacturing variations in hFK.

更に本発明に依ればコレクタ埋め込み層(25)を十分
にはい上げて拡散できるので、コレクタ領域(26)を
コレクタ埋め込み!(25)まで十分に到達でき、且つ
コレクタ領域り26)をコレクタ埋め込み層(25)と
コレクタ導出領域(27)で囲んでいるので、飽和電圧
Vex(sat)を大巾に低下できる。
Furthermore, according to the present invention, since the collector burying layer (25) can be sufficiently raised and diffused, the collector region (26) can be buried in the collector! (25), and since the collector region 26) is surrounded by the collector buried layer (25) and the collector lead-out region (27), the saturation voltage Vex(sat) can be greatly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A乃至第1図Fは本発明の半導体集積回路の製造
方法の第1の実施例を説明する断面図、第2図A乃至第
2図Fは本発明の第2の実施例を説明する断面図、第3
図A乃至第3図りは従来の半導体集積回路の製造方法を
説明する断面図、第4図および第5図は従来の縦型PN
P l−ランリスタを説明する断面図、第6図は第5図
の従来の縦型PNP トランジスタの不純物プロファイ
ルを説明する特性図である。 (1)は半導体基板、(2)はエピタキシャル層、(3
)は埋め込み層、(4)は上下分離領域、(4′〉は下
拡散層、(4”)は上拡散層、(5)はコレクタ埋め込
み層、(6)はコレクタ領域、(7)はベース領域、(
9)はエミッタ領域、(21)は半導体基板、(22)
はエピタキシャル層、(23)は埋め込み層、(24)
は上下分離領域、(24’)は下拡散層、(24”)は
上拡散層、(25)はコレクタ埋め込み層、(26)は
コレクタ領域、(28)はベース領域、(30)はエミ
ッタ領域である。 出願人 三洋電機株式会社 外1名 代理人 弁理士  佐 野 静 夫 第1図へ 第1図B          − 第1図C 第1図り 第1AF 第1AF 第2図A ζ 第2図B 第2図C 第2図D 第2図E 第2図F 第3図A 44”            42 44”第3図C 第4図 第5図
1A to 1F are cross-sectional views for explaining a first embodiment of the method for manufacturing a semiconductor integrated circuit according to the present invention, and FIGS. 2A to 2F are sectional views for explaining a second embodiment of the present invention. Sectional diagram to explain, 3rd
Figures A to 3 are cross-sectional views explaining the conventional method for manufacturing semiconductor integrated circuits, and Figures 4 and 5 are conventional vertical PN
FIG. 6 is a cross-sectional view illustrating the P l-run lister, and FIG. 6 is a characteristic diagram illustrating the impurity profile of the conventional vertical PNP transistor shown in FIG. (1) is a semiconductor substrate, (2) is an epitaxial layer, (3
) is the buried layer, (4) is the upper and lower separation region, (4') is the lower diffusion layer, (4'') is the upper diffusion layer, (5) is the collector buried layer, (6) is the collector region, (7) is the base area, (
9) is the emitter region, (21) is the semiconductor substrate, (22)
is an epitaxial layer, (23) is a buried layer, (24)
(24') is the lower diffusion layer, (24'') is the upper diffusion layer, (25) is the collector buried layer, (26) is the collector region, (28) is the base region, (30) is the emitter Applicant Sanyo Electric Co., Ltd. and one other representative Patent attorney Shizuo Sano Go to Figure 1 Figure 1 B - Figure 1 C Figure 1 Diagram 1 AF 1 AF Figure 2 A ζ Figure 2 B Fig. 2 C Fig. 2 D Fig. 2 E Fig. 2 F Fig. 3 A 44" 42 44" Fig. 3 C Fig. 4 Fig. 5

Claims (2)

【特許請求の範囲】[Claims] (1)一導電型の半導体基板表面に逆導電型の埋め込み
層を付着し且つ該埋め込み層を囲んで前記基板表面に上
下分離領域の一導電型の下拡散層を付着する工程、 前記基板表面に逆導電型のエピタキシャル層を積層する
工程、 前記埋め込み層および前記上下分離領域の下拡散層を前
記エピタキシャル層内にはい上がらせて拡散し、同時に
前記エピタキシャル層表面より前記上下分離領域の上拡
散層より深い素子拡散領域を拡散する工程、 前記エピタキシャル層表面より上下分離領域の一導電型
の上拡散層を拡散し前記下拡散層に到達させる工程とを
具備することを特徴とする半導体集積回路の製造方法。
(1) A step of attaching a buried layer of an opposite conductivity type to the surface of a semiconductor substrate of one conductivity type, and attaching a lower diffusion layer of one conductivity type in an upper and lower separation region to the substrate surface surrounding the buried layer; a step of laminating an epitaxial layer of opposite conductivity type on the surface of the epitaxial layer; causing the buried layer and the diffusion layer below the upper and lower isolation regions to crawl up and diffuse into the epitaxial layer; and at the same time, to diffuse above the upper and lower isolation regions from the surface of the epitaxial layer; A semiconductor integrated circuit comprising the steps of: diffusing an element diffusion region deeper than the epitaxial layer; and diffusing an upper diffusion layer of one conductivity type in the upper and lower separation regions from the surface of the epitaxial layer to reach the lower diffusion layer. manufacturing method.
(2)一導電型の半導体基板表面に逆導電型の埋め込み
層を形成し且つ該埋め込み層に重畳して一導電型のコレ
クタ埋め込み層を形成した後前記基板表面に逆導電型の
エピタキシャル層を積層する工程、 前記エピタキシャル層表面から一導電型の不純物をイオ
ン注入し前記コレクタ埋め込み層まで達する様に拡散し
てトランジスタのコレクタ領域を形成する工程、 前記コレクタ領域表面に逆導電型の不純物をイオン注入
してトランジスタのベース領域を形成する工程、 該ベース領域表面に一導電型の不純物を拡散してトラン
ジスタのエミッタ領域を形成する工程とを具備すること
を特徴とする半導体集積回路の製造方法。
(2) After forming a buried layer of the opposite conductivity type on the surface of a semiconductor substrate of one conductivity type and forming a collector buried layer of one conductivity type by overlapping the buried layer, an epitaxial layer of the opposite conductivity type is formed on the surface of the substrate. a step of stacking layers; a step of ion-implanting impurities of one conductivity type from the surface of the epitaxial layer and diffusing them to reach the collector buried layer to form a collector region of the transistor; and a step of ion-implanting impurities of the opposite conductivity type to the surface of the collector region. 1. A method for manufacturing a semiconductor integrated circuit, comprising: forming a base region of a transistor by implanting the base region; and forming an emitter region of the transistor by diffusing an impurity of one conductivity type into the surface of the base region.
JP61034807A 1985-04-19 1986-02-18 Method for manufacturing semiconductor integrated circuit Expired - Lifetime JPH0618202B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61034807A JPH0618202B2 (en) 1985-04-19 1986-02-18 Method for manufacturing semiconductor integrated circuit
CN86102691.8A CN1004456B (en) 1985-04-19 1986-04-19 Semiconductor device and method of producing same
US07/119,668 US4780425A (en) 1985-04-19 1987-11-12 Method of making a bipolar transistor with double diffused isolation regions

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP60084830 1985-04-19
JP60-84830 1985-04-19
JP61034807A JPH0618202B2 (en) 1985-04-19 1986-02-18 Method for manufacturing semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS6230372A true JPS6230372A (en) 1987-02-09
JPH0618202B2 JPH0618202B2 (en) 1994-03-09

Family

ID=26373654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61034807A Expired - Lifetime JPH0618202B2 (en) 1985-04-19 1986-02-18 Method for manufacturing semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH0618202B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350686A (en) * 1976-10-19 1978-05-09 Mitsubishi Electric Corp Production of semiconductor integrated circuit
JPS5619653A (en) * 1979-07-27 1981-02-24 Hitachi Ltd Bipolar cmos semiconductor device and manufacture thereof
JPS586168A (en) * 1981-07-02 1983-01-13 Matsushita Electronics Corp Semiconductor integrated circuit
JPS5965465A (en) * 1982-10-06 1984-04-13 Matsushita Electronics Corp Manufacture of semiconductor device
JPS59211270A (en) * 1983-05-17 1984-11-30 Sanyo Electric Co Ltd Vertical p-n-p type transistor
JPS6167959A (en) * 1984-09-11 1986-04-08 Nec Corp Manufacture of semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350686A (en) * 1976-10-19 1978-05-09 Mitsubishi Electric Corp Production of semiconductor integrated circuit
JPS5619653A (en) * 1979-07-27 1981-02-24 Hitachi Ltd Bipolar cmos semiconductor device and manufacture thereof
JPS586168A (en) * 1981-07-02 1983-01-13 Matsushita Electronics Corp Semiconductor integrated circuit
JPS5965465A (en) * 1982-10-06 1984-04-13 Matsushita Electronics Corp Manufacture of semiconductor device
JPS59211270A (en) * 1983-05-17 1984-11-30 Sanyo Electric Co Ltd Vertical p-n-p type transistor
JPS6167959A (en) * 1984-09-11 1986-04-08 Nec Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPH0618202B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
JPS6230372A (en) Manufacture of semiconductor integrated circuit
JPS62216356A (en) Manufacture of semiconductor integrated circuit
JPS63202965A (en) Semiconductor device
JP2627289B2 (en) Method for manufacturing semiconductor integrated circuit
KR900005562B1 (en) Semiconductor integrated circuit and manufacturing method thereof
JPS62214662A (en) Manufacture of vertical pnp transistor
JPS6347965A (en) Semiconductor integrated circuit
JPS61244066A (en) Vertical-type pnp transistor
JPS62295456A (en) Vertical pnp transistor
JPS62216357A (en) Manufacture of semiconductor integrated circuit
JPS62216355A (en) Manufacture of semiconductor injection integrated logic circuit device
JP2613073B2 (en) Semiconductor device and manufacturing method thereof
JPS62214657A (en) Manufature of semiconductor integarated circuit device
JP2517237B2 (en) Method for manufacturing semiconductor integrated circuit
JPH025429A (en) Manufacture of lateral pnp transistor
JPS632379A (en) Manufacture of vertical type pnp transistor
JPS62295434A (en) Junction separating structure for semiconductor integrated circuit
JPS6376359A (en) Manufacture of semiconductor integrated circuit
JPS6343357A (en) Semiconductor integrated circuit
JPH0451067B2 (en)
JPS632380A (en) Semiconductor integrated circuit
JPH03235369A (en) Manufacture of semiconductor
JPS63128751A (en) Vertical-type pnp transistor
JPS6343360A (en) Semiconductor integrated circuit
JPS62219556A (en) Manufacture of semiconductor integrated circuit

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term