JPS62219556A - Manufacture of semiconductor integrated circuit - Google Patents

Manufacture of semiconductor integrated circuit

Info

Publication number
JPS62219556A
JPS62219556A JP61062452A JP6245286A JPS62219556A JP S62219556 A JPS62219556 A JP S62219556A JP 61062452 A JP61062452 A JP 61062452A JP 6245286 A JP6245286 A JP 6245286A JP S62219556 A JPS62219556 A JP S62219556A
Authority
JP
Japan
Prior art keywords
diffusion layer
region
epitaxial layer
diffused layers
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61062452A
Other languages
Japanese (ja)
Other versions
JPH0577299B2 (en
Inventor
Teruo Tabata
田端 輝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61062452A priority Critical patent/JPS62219556A/en
Publication of JPS62219556A publication Critical patent/JPS62219556A/en
Publication of JPH0577299B2 publication Critical patent/JPH0577299B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0214Particular design considerations for integrated circuits for internal polarisation, e.g. I2L
    • H01L27/0229Particular design considerations for integrated circuits for internal polarisation, e.g. I2L of bipolar structures
    • H01L27/0233Integrated injection logic structures [I2L]
    • H01L27/0244I2L structures integrated in combination with analog structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To enable upper diffused layers to be made shallow and to signicantly enhance the integration degree of the titled integrated circuit inhibiting the lateral diffusion of the upper diffused layers by a method wherein, after the lower diffused layers are made to creep up in advance over half of the thickness of an epitaxial layer, the upper diffused layers are formed. CONSTITUTION:The lower diffused layers 4 of vertical isolation regions 3 are diffused being made to creep up over half of the thickness of an epitaxial layer 5 by applying a 2hr heat treatment to a whole substrate 1 at about 1,200 deg.C, and at the same time, the base region 6 of an IIL is driven in. Then, the upper diffused layers 7 of the vertical isolation regions 3 are selectively diffused from the surface of the epitaxial layer 5, coupled with the lower diffused layers 4 and first and second island regions 8 and 9 are formed. The upper diffused layers 7 can be made shallower in about 3mum without being limited by the base region 6. Thereby, the lateral diffusion of the upper diffused layers 7 can be inhibited to about 3mum and the surface occupation areas of the vertical isolation regions can be significantly reduced.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はI I L (Integrated Inj
ection Logic)と通常のバイポーラNPN
トランジ誠夕とを組み込んだ半導体集積回路の製造方法
の改良に関する。
[Detailed description of the invention] (a) Industrial application field The present invention is directed to I
(ection Logic) and normal bipolar NPN
The present invention relates to an improvement in a method for manufacturing a semiconductor integrated circuit incorporating a transistor.

(ロ)従来の技術 従来の半導体集積回路の製造方法を第2図(イ)乃至第
2図(*)を用いて説明する。
(B) Prior Art A conventional method for manufacturing a semiconductor integrated circuit will be explained with reference to FIGS. 2(a) to 2(*).

先ず第2図(イ)に示す如く、半導体基板(1)として
P型のシリコン基板を用い、基板(1)上に選択的にア
ンチモン(Sb)をデポジットして複数個の埋込M(2
)を形成し、埋込層(2)を囲む基板(1)表面にはポ
ロン(B)をデポジットして上下分離領域(3〉の上拡
散層(4)を形成する。
First, as shown in FIG. 2(A), a P-type silicon substrate is used as the semiconductor substrate (1), antimony (Sb) is selectively deposited on the substrate (1), and a plurality of embedded M(2) are formed.
), and poron (B) is deposited on the surface of the substrate (1) surrounding the buried layer (2) to form an upper diffusion layer (4) of the upper and lower separation regions (3).

次に第2図(ロ)に示す如く、基板(1)全面に周知の
気相成長法によりN型のエピタキシャル層(5)を所定
厚きに積層する。この時埋込層(2)および上拡散層(
4)は」二下方向に若干拡散きれる。
Next, as shown in FIG. 2(B), an N-type epitaxial layer (5) is laminated to a predetermined thickness over the entire surface of the substrate (1) by a well-known vapor phase growth method. At this time, the buried layer (2) and the upper diffusion layer (
4) can be slightly diffused in the downward direction.

次に第2図(ハ)に示す如く、エピタキシャル層(1)
表面に選択的にポロンをイオン注入し、IILのベース
領域(6〉を付着する。このイオン注入はドーズ量10
′3〜IQ”cn+−”、加速電圧80〜100KeV
で行う。
Next, as shown in FIG. 2(c), an epitaxial layer (1) is formed.
The base region (6) of the IIL is deposited by selectively implanting poron into the surface. This ion implantation is performed at a dose of 10
'3~IQ"cn+-", acceleration voltage 80~100KeV
Do it with

次に第2図(ニ)に示す如く、エピタキシャル層(5)
表面から上下分離領域(3)の上拡散層(7〉を約12
00°C13〜4時間で選択拡散し、同時に埋込層(2
)と上拡散層(7)及びIILのベース領域(6)をド
ライブインする。本工程で上拡散層(7)は上拡散層(
4)と連結し、エピタキシャル層(5)を接合分離して
第1、第2の島領域(8)(9)を形成する。IILの
ベース領域(6)は濃度差により上拡散層より浅く形成
きれる。具体的にはエピタキシャル層(5)の厚みが1
3μmであれば、上拡散層(7)は約9μm、上拡散層
(4)は約7μmの深さに形成され、ベース領域り6〉
は約4μmの深さに形成される。
Next, as shown in FIG. 2(d), an epitaxial layer (5) is formed.
The upper diffusion layer (7) of the upper and lower separation regions (3) from the surface is approximately 12
Selective diffusion was carried out at 00°C for 13 to 4 hours, and at the same time the buried layer (2
), the upper diffusion layer (7) and the base region (6) of the IIL are driven in. In this step, the upper diffusion layer (7) is changed to the upper diffusion layer (
4), and the epitaxial layer (5) is junction-separated to form first and second island regions (8) and (9). The base region (6) of the IIL can be formed shallower than the upper diffusion layer due to the concentration difference. Specifically, the thickness of the epitaxial layer (5) is 1
If the depth is 3 μm, the upper diffusion layer (7) is formed to a depth of approximately 9 μm, the upper diffusion layer (4) is formed to a depth of approximately 7 μm, and the base region 6>
is formed to a depth of approximately 4 μm.

次に第2図(*〉に示す如く、エピタキシへ・ル層(5
)表面よりポロン(B)を選択的に拡散し、第1の島領
域(8)にはNPN トランジスタのベース領域(10
)を、第2の島領域(9)にはIILのインジェクタ領
域(11)とベースコンタクト領域(12)を夫々形成
し、続いてリン(P)を選択拡散して第1の島領域(8
)にはNPN トランジスタのエミッタ領域(13)と
コレクタコンタクト領域(14)を、第2の島領域(9
)にはコレクタ領域(15)を夫々形成する。
Next, as shown in Figure 2 (*>), an epitaxial layer (5
) is selectively diffused from the surface of the NPN transistor base region (10) to the first island region (8).
), an IIL injector region (11) and a base contact region (12) are respectively formed in the second island region (9), and then phosphorus (P) is selectively diffused to form the first island region (8).
), the emitter region (13) and collector contact region (14) of the NPN transistor are placed in the second island region (9).
) are respectively formed with collector regions (15).

この様に形成した装置では、NPN l−ランジスタの
耐圧をある程度に保ちつつ、IILでは活性ベースを低
濃度で深く形成したベース領域(6)で形成するので高
い逆βが得られ、高速性を保てる。
In the device formed in this way, while maintaining the breakdown voltage of the NPN l-transistor to a certain level, in IIL, the active base is formed in the base region (6) formed deeply with low concentration, so a high inverse β is obtained, and high speed is achieved. I can keep it.

尚斯る構造は、例えば特願昭60−206971号に記
載されている。
Such a structure is described, for example, in Japanese Patent Application No. 60-206971.

(ハ)発明が解決しようとする問題点 しかしながら、従来の製造方法では上下分離領域(3)
の上拡散層(7)を形成すると同時にIILのベース領
域(6)をドライブインしている。そのためNPN I
−ランジスタ、IIL共に更に高速化を求めてエピタキ
シヤルM(5)を薄くしても、IILの逆βを所定の値
にするため、上拡散層(7)の拡散工程には低濃度のベ
ース領域(6)を十分に深くするだけの処理時間が要求
される。しかも上拡散M(7)と上拡散層(4)とでは
、上拡散層(7)の方が供給される不純物が多い状態、
即ちポロン(B)を多量に含む拡散源膜を付着したまま
の状態で拡散するため、どうしても上拡散層(7)の方
が上拡散層(4)より深く形成きれてしまう。
(c) Problems to be solved by the invention However, in the conventional manufacturing method, the upper and lower separated regions (3)
At the same time as forming the upper diffusion layer (7) of the IIL, the base region (6) of the IIL is driven in. Therefore, NPN I
- Even if the epitaxial M (5) is made thinner in order to further increase the speed of both the transistor and the IIL, in order to maintain the inverse β of the IIL to a predetermined value, a low concentration base is used in the diffusion process of the upper diffusion layer (7). Processing time is required to make region (6) sufficiently deep. Furthermore, between the upper diffusion layer M(7) and the upper diffusion layer (4), the upper diffusion layer (7) is supplied with more impurities than the upper diffusion layer (7).
That is, since the diffusion source film containing a large amount of poron (B) is diffused while remaining attached, the upper diffusion layer (7) is inevitably formed deeper than the upper diffusion layer (4).

従ってエピタキシャル層(5)を薄くしても上拡散層(
7)はかなり深く形成しなければならず、横方向拡散が
大で集積度を向上できない欠点があった。
Therefore, even if the epitaxial layer (5) is made thinner, the upper diffusion layer (
7) had the disadvantage that it had to be formed quite deep and the lateral diffusion was large, making it impossible to improve the degree of integration.

=4− (ニ)問題点を解決するための手段 本発明は斯上した欠点に鑑みてなされ、上下分離領域(
3〉の上拡散層(7)をエピタキシャル層(5)の厚み
の半分以上はい上げて拡散し、同時にIILのベース領
域(6)を十分に深くドライブインした後、上下分離領
域(3)の上拡散層(4)を形成することにより、集積
度を大幅に向上した、バイボー    □うNPNトラ
ンジスタとIILとを共存させた半導体集積回路の製造
方法を提供するものである。
=4- (d) Means for solving the problems The present invention has been made in view of the above-mentioned drawbacks, and includes a top and bottom separation area (
3> Raise and diffuse the upper diffusion layer (7) by more than half the thickness of the epitaxial layer (5), and at the same time drive in the base region (6) of the IIL sufficiently deeply, and then By forming an upper diffusion layer (4), the present invention provides a method for manufacturing a semiconductor integrated circuit in which a biborder NPN transistor and an IIL coexist, and the degree of integration is greatly improved.

(ホ)作用 本発明によれば、あらかじめ上拡散層(4)とベース領
域(6)とを十分に深く拡散した後、上拡散層(7)を
形成するので、上拡散層(7)はベース領域(6)とは
無関係に浅くでき、その横方向拡散を抑制できる。よっ
てIILの特性を劣化許せずに集積度を大幅に向上でき
る。
(E) Function According to the present invention, the upper diffusion layer (7) is formed after the upper diffusion layer (4) and the base region (6) are sufficiently deeply diffused in advance. It can be made shallow independently of the base region (6), and its lateral diffusion can be suppressed. Therefore, the degree of integration can be greatly improved without allowing the IIL characteristics to deteriorate.

(へ)実施例 以下、本発明の一実施例を第1図(イ)乃至第1図(へ
)を用いて説明する。
(F) Example An embodiment of the present invention will be described below with reference to FIG. 1(A) to FIG. 1(F).

先ず第1図(イ)に示す如く、半導体基板(1)として
P型のシリコン基板を用い、基板(1)上に選択的にア
ンチモン(Sb)をデポジットして複数個の埋込層(2
)を形成し、埋込層(2)を囲む基板(1)表面にはボ
ロン(B)をデポジットして上下分離領域(3)の上拡
散層(4)を形成する。
First, as shown in FIG. 1(A), a P-type silicon substrate is used as a semiconductor substrate (1), antimony (Sb) is selectively deposited on the substrate (1), and a plurality of buried layers (2) are formed.
) is formed, and boron (B) is deposited on the surface of the substrate (1) surrounding the buried layer (2) to form an upper diffusion layer (4) of the upper and lower separation regions (3).

次に第1図(ロ)に示す如く、基板(1)全面に周知の
気相成長法によりN型のエピタキシャル層(5)を約7
μm厚に積層する。この時埋込層(2)および上拡散層
(4)は上下方向に若干拡散される。
Next, as shown in FIG. 1(b), an N-type epitaxial layer (5) is deposited on the entire surface of the substrate (1) by a well-known vapor phase epitaxy method for about 70 cm.
Laminated to a thickness of μm. At this time, the buried layer (2) and the upper diffusion layer (4) are slightly diffused in the vertical direction.

次に第1図(ハ)に示す如く、エピタキシャル層(5)
表面に選択的にボロンをイオン注入し、工■Lのベース
領域(6)を付着する。このイオン注入はドーズ量10
’″〜l Q ”cm−’、加速電圧80〜100Ke
Vで行う。
Next, as shown in FIG. 1(c), an epitaxial layer (5) is formed.
Boron ions are selectively implanted into the surface to attach the base region (6) of the process L. This ion implantation has a dose of 10
'''~l Q "cm-', acceleration voltage 80~100Ke
Do it with V.

次に第1図(ニ)に示す如く、基板(1)全体に約12
00℃、2時間の熱処理を加えることにより上下分離領
域(3)の上拡散層(4)をエピタキシャル層(5)の
厚みの半分以上はい上げて拡散し、同時にIILのベー
ス領域(6)をドライブインする。具体的には、上拡散
層(4)は基板(1)表面より約5μmはい上げ、ベー
ス領域(6)は約3μmドライブインする。
Next, as shown in Figure 1 (d), about 12
By applying heat treatment at 00°C for 2 hours, the upper diffusion layer (4) of the upper and lower separation regions (3) is increased and diffused by more than half the thickness of the epitaxial layer (5), and at the same time, the base region (6) of the IIL is expanded. Drive in. Specifically, the upper diffusion layer (4) is elevated by about 5 μm from the surface of the substrate (1), and the base region (6) is driven in by about 3 μm.

次に第1図(ホ)に示す如く、エピタキシャル層(5)
表面より上下分離領域(3)の上拡散層(7)を選択拡
散し、上拡散層(4〉と連結して第1、第2の島領域(
8)(9)を形成する。
Next, as shown in FIG. 1 (e), an epitaxial layer (5) is formed.
The upper diffusion layer (7) of the upper and lower separation regions (3) is selectively diffused from the surface, and connected to the upper diffusion layer (4>) to form the first and second island regions (
8) Form (9).

本工程は本発明の特徴とする工程で、あらかじめ上拡散
層(4〉をエピタキシャル層(5〉の厚みの半分以上は
い上げて拡散し、同時にIILのベース領域(6)をド
ライブインした後に上拡散層(7)を形成しているので
、上拡散層(7)はベース領域(6)に制限されずに約
3μmと浅くでき、拡散時間を約1時間と短くできる。
This step is a characteristic step of the present invention, in which the upper diffusion layer (4) is raised and diffused in advance by more than half the thickness of the epitaxial layer (5), and at the same time the base region (6) of the IIL is driven in, and then the upper diffusion layer (4) is raised and diffused. Since the diffusion layer (7) is formed, the upper diffusion layer (7) can be made shallow to about 3 μm without being limited by the base region (6), and the diffusion time can be shortened to about 1 hour.

このため上拡散層(7)の横方向拡散を約3μmに抑え
ることができ、それらの表面占有面積を大幅に縮小でき
る。具体的には、拡散窓の幅が4μmであれば上拡散層
(7)の幅は約10μmに形成される。尚上拡散層(4
)は上拡散層(7)より深く拡散した分だけ幅広になり
、幅は約14μmに形成される。
Therefore, the lateral diffusion of the upper diffusion layer (7) can be suppressed to about 3 μm, and the surface area occupied by the upper diffusion layer (7) can be significantly reduced. Specifically, if the width of the diffusion window is 4 μm, the width of the upper diffusion layer (7) is approximately 10 μm. Furthermore, the diffusion layer (4
) becomes wider as it is diffused deeper than the upper diffusion layer (7), and has a width of approximately 14 μm.

次に第1図≦へ)に示す如く、エピタキシャル層(5)
表面よりボロン(B)を選択的に拡散し、第1δ島領域
(8)にはNPN)ランジスタのベース領域(10)を
、第2の島領域(9)にはIILのインジェクタ領域(
11)とベースコンタクト領域(12)を約2μmの深
さに夫々形成し、続いてリン(P)を選択拡散して第1
の島領域(8)にはNPN)ランジスタのエミッタ領域
(13)とコレクタフンタクト領域(14)を、第2の
島領域(9)にはコレクタ領域(15)を夫々的1.5
μmの深さに形成する。
Next, as shown in Figure 1≦), an epitaxial layer (5) is formed.
Boron (B) is selectively diffused from the surface, and the first δ island region (8) is provided with the base region (10) of the NPN) transistor, and the second island region (9) is provided with the IIL injector region (
11) and base contact region (12) to a depth of approximately 2 μm, and then phosphorus (P) is selectively diffused to form the first
The island region (8) has an emitter region (13) and a collector contact region (14) of the NPN transistor, and the second island region (9) has a collector region (15) of 1.5
Formed to a depth of μm.

この様にして形成した半導体集積回路では、上拡散層(
7)を浅くできるので、その横方向拡散を抑え、表面占
有面積を大幅に縮小できる。この時下拡散層(4)を上
拡散層(7)より幅広に形成するものの、上拡散層(4
)の周端部は横方向拡散によって湾曲し、基板(1)表
面から上方向に向って徐々に幅狭になるので基板(1)
表面で約14μmの幅があっても上拡散層(4)最上部
では拡散窓の線幅である約4μmになる。従って幅広に
形成した上拡散層(4)はエピタキシャル層(5)表面
における集積度の向上を防げず、上下分離領域(3)の
表面占省面積は上拡散層(7)のみで決定できるので集
積度を大幅に向上できる。
In the semiconductor integrated circuit formed in this way, the upper diffusion layer (
7) can be made shallow, suppressing its lateral diffusion and greatly reducing the surface area occupied. At this time, although the lower diffusion layer (4) is formed wider than the upper diffusion layer (7), the upper diffusion layer (4) is formed wider than the upper diffusion layer (7).
) is curved due to lateral diffusion and gradually becomes narrower upward from the surface of the substrate (1).
Even if the width is about 14 μm at the surface, the line width at the top of the upper diffusion layer (4) becomes about 4 μm, which is the line width of the diffusion window. Therefore, the upper diffusion layer (4) formed wide cannot prevent an increase in the degree of integration on the surface of the epitaxial layer (5), and the surface area occupied by the upper and lower separation regions (3) can be determined only by the upper diffusion layer (7). The degree of integration can be greatly improved.

さらに第2の島領域(9)に形成したIILでは、イオ
ン注入により形成する低濃度のベース領域(6)を上拡
散層(4)と同時にドライブインするので十分に深く形
成できる。従って、ベース幅が広くても十分に低濃度で
あることと、エピタキシャル層(5)を薄くできるので
ベース領域(6〉底部から埋込層(2)までの距離が短
いことから、fTが高く更に高速のIILが得られる。
Further, in the IIL formed in the second island region (9), the low concentration base region (6) formed by ion implantation is driven in at the same time as the upper diffusion layer (4), so that it can be formed sufficiently deep. Therefore, even if the base width is wide, the concentration is sufficiently low, and since the epitaxial layer (5) can be made thin, the distance from the bottom of the base region (6) to the buried layer (2) is short, resulting in a high fT. Even faster IIL can be obtained.

そうして第1の島領域(8)には、IILのベースコン
タクト領域(12)と同時に形成したベース領域(10
)と、IILのコレクタ領域(15)と同時に形成した
エミッタ領域(13)及びコレクタコンタクト領域(1
4)とで構成するバイポーラNPN)ランジスタが、I
ILと一体化共存されている。
The first island region (8) has a base region (10) formed at the same time as the base contact region (12) of the IIL.
), an emitter region (13) and a collector contact region (1) formed at the same time as the collector region (15) of IIL.
4) A bipolar NPN) transistor consisting of I
It is integrated and coexists with IL.

(ト)発明の詳細 な説明した如く本発明によれば、あらかじめ上拡散層(
4)をエピタキシャル層(5)の厚みの半分以上はい上
げて拡散した後、上拡散層(7)を形成するので、上拡
散層(7)を浅くでき、その横方向拡散を抑えて集積度
を大幅に向上できるという利点を有する。
(g) As described in detail, according to the present invention, the upper diffusion layer (
4) is increased by more than half the thickness of the epitaxial layer (5) and then diffused, and then the upper diffusion layer (7) is formed, so the upper diffusion layer (7) can be made shallow, suppressing its lateral diffusion and increasing the integration density. It has the advantage of being able to significantly improve

さらに本発明によれば、ベース領域(6)は下拡散層(
4)と同時にドライブインするのでエピタキシャル層(
5)を薄くしても十分に深く且つ低濃度に設定でき、更
に高速化したIILとバイポーラNPN l−ランジス
タとを一体化共存できるという利点をも有する また本発明によれば、上拡散!(7)の拡散時間が短い
ので熱拡散によるエピタキシヤルM (5)表面の結晶
欠陥が少く、さらに下拡散層(4)を上拡散層(7〉よ
り幅広に形成するので、多少のマスクずれがあっても完
全な接合分離が得られるという利点をも有する。
Furthermore, according to the invention, the base region (6) is formed by the lower diffusion layer (
4) Since it is driven in at the same time as the epitaxial layer (
5) can be set sufficiently deep and at a low concentration even if it is thinned, and has the advantage that a faster IIL and a bipolar NPN l-transistor can coexist in an integrated manner.Furthermore, according to the present invention, upper diffusion! (7) Epitaxial M due to thermal diffusion is short because the diffusion time is short. (5) There are few crystal defects on the surface, and since the lower diffusion layer (4) is formed wider than the upper diffusion layer (7>), some mask misalignment may occur. It also has the advantage that complete junction separation can be obtained even if there is

【図面の簡単な説明】[Brief explanation of drawings]

第1図(イ)乃至(へ)は本発明による製造方法を説明
するための断面図、第2図(イ)乃至第2図(ホ)は従
来の製造方法を説明するための断面図である。 (1)は半導体基板、 (2)は埋込層、  (4)は
上下分離領域(3)の下拡散層、 (5)はエピタキシ
ャル層、 (6〉はIILのベース領域、 (7)は上
下分離領域(3)の上拡散層である。 出願人 三洋電機株式会社外1名 代理人 弁理士 西野卓嗣 外1名 @        銖 @              派 堤             法 味         壕  ゛ 区 へ 七や 鵠5
Figures 1 (A) to (F) are cross-sectional views for explaining the manufacturing method according to the present invention, and Figures 2 (A) to (E) are cross-sectional views for explaining the conventional manufacturing method. be. (1) is the semiconductor substrate, (2) is the buried layer, (4) is the lower diffusion layer of the upper and lower isolation region (3), (5) is the epitaxial layer, (6> is the base region of IIL, (7) is This is the upper diffusion layer of the upper and lower separation regions (3). Applicant Sanyo Electric Co., Ltd. and one other agent Patent attorney Takuji Nishino and one other person

Claims (1)

【特許請求の範囲】[Claims] (1)一導電型の半導体基板表面に複数の埋込層を形成
する逆導電型の不純物を付着し、該埋込層を囲んで上下
分離領域の下拡散層を形成する一導電型の不純物を付着
する工程、前記基板全面に逆導電型のエピタキシャル層
を積層する工程、 前記エピタキシャル層表面にIILのベース領域を形成
する一導電型の不純物を付着する工程、前記基板全体を
加熱処理して前記下拡散層を前記エピタキシャル層の厚
みの半分以上はい上らせて拡散し、同時に前記ベース領
域をドライブインする工程、 前記エピタキシャル層表面より前記上下分離領域の上拡
散層を形成し、前記下拡散層に到達させて第1、第2の
島領域を形成する工程、 前記エピタキシャル層表面より一導電型の不純物を選択
拡散し、前記第1の島領域にはベース領域を、前記II
Lのベース領域が作り込まれた第2の島領域にはインジ
ェクタ領域及びベースコンタクト領域を形成する工程、 前記エピタキシャル層表面より逆導電型の不純物を選択
拡散し、前記第1の島領域にはエミッタ領域を、前記第
2の島領域にはコレクタ領域を形成する工程とを具備す
ることを特徴とする半導体集積回路の製造方法。
(1) Impurities of opposite conductivity type that form multiple buried layers are attached to the surface of a semiconductor substrate of one conductivity type, and impurities of one conductivity type that surround the buried layers to form a lower diffusion layer in the upper and lower separation regions. a step of depositing an epitaxial layer of the opposite conductivity type on the entire surface of the substrate; a step of depositing an impurity of one conductivity type to form a base region of the IIL on the surface of the epitaxial layer; and a step of heat-treating the entire substrate. a step of increasing the lower diffusion layer by more than half the thickness of the epitaxial layer and driving in the base region at the same time; forming an upper diffusion layer of the upper and lower separation regions from the surface of the epitaxial layer; forming first and second island regions by reaching the diffusion layer; selectively diffusing impurities of one conductivity type from the surface of the epitaxial layer;
forming an injector region and a base contact region in the second island region in which the base region of L is formed; selectively diffusing impurities of the opposite conductivity type from the surface of the epitaxial layer; A method of manufacturing a semiconductor integrated circuit, comprising the step of forming an emitter region and a collector region in the second island region.
JP61062452A 1986-03-19 1986-03-19 Manufacture of semiconductor integrated circuit Granted JPS62219556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61062452A JPS62219556A (en) 1986-03-19 1986-03-19 Manufacture of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61062452A JPS62219556A (en) 1986-03-19 1986-03-19 Manufacture of semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS62219556A true JPS62219556A (en) 1987-09-26
JPH0577299B2 JPH0577299B2 (en) 1993-10-26

Family

ID=13200610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61062452A Granted JPS62219556A (en) 1986-03-19 1986-03-19 Manufacture of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS62219556A (en)

Also Published As

Publication number Publication date
JPH0577299B2 (en) 1993-10-26

Similar Documents

Publication Publication Date Title
JPS6342169A (en) N-p-n bipolar transistor and manufacture of the same
JPS62219556A (en) Manufacture of semiconductor integrated circuit
JPH02283028A (en) Semiconductor device and its manufacture
JPS62216356A (en) Manufacture of semiconductor integrated circuit
JP2627289B2 (en) Method for manufacturing semiconductor integrated circuit
JPS62216355A (en) Manufacture of semiconductor injection integrated logic circuit device
JPS62216357A (en) Manufacture of semiconductor integrated circuit
JP2653019B2 (en) Bipolar transistor and method of manufacturing the same
JPH0577301B2 (en)
JPH0577300B2 (en)
JPS6376359A (en) Manufacture of semiconductor integrated circuit
JP2656125B2 (en) Method for manufacturing semiconductor integrated circuit
JPS6347965A (en) Semiconductor integrated circuit
JPH025429A (en) Manufacture of lateral pnp transistor
JPS62214662A (en) Manufacture of vertical pnp transistor
JPS62295449A (en) Semiconductor-implanted integrated logic circuit
JPH0727969B2 (en) Method for manufacturing semiconductor integrated circuit
JPH0439787B2 (en)
JPS62193143A (en) Manufacture of semiconductor integrated circuit device
JPS62214657A (en) Manufature of semiconductor integarated circuit device
JPS62295450A (en) Semiconductor integrated circuit
JPS62193142A (en) Manufacture of semiconductor integrated circuit device
JPH0451067B2 (en)
JPS6267855A (en) Semiconductor integrated injection logic circuit device
JPS63155656A (en) Semiconductor integrated circuit and its manufacture

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term