JPS62214657A - Manufature of semiconductor integarated circuit device - Google Patents

Manufature of semiconductor integarated circuit device

Info

Publication number
JPS62214657A
JPS62214657A JP5744086A JP5744086A JPS62214657A JP S62214657 A JPS62214657 A JP S62214657A JP 5744086 A JP5744086 A JP 5744086A JP 5744086 A JP5744086 A JP 5744086A JP S62214657 A JPS62214657 A JP S62214657A
Authority
JP
Japan
Prior art keywords
layer
region
diffusion layer
diffused
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5744086A
Other languages
Japanese (ja)
Inventor
Teruo Tabata
田端 輝夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5744086A priority Critical patent/JPS62214657A/en
Publication of JPS62214657A publication Critical patent/JPS62214657A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To improve the integration of a semiconductor integrated circuit device by diffusing the lower diffused layer of upper and lower separating regions at the position deeper than the half of the thickness of an epitaxial layer, driving in a base region, and then diffusing the upper diffused layer of the separating regions until it arrives at the lower diffused layer. CONSTITUTION:A P-type emitter region 30 of approx. 1.5mum of diffusing depth is formed on a base region 27, and an N<+> type base contact region 31 of approx. 1.0mum of diffusing depth is then formed. The region 30 is formed in the step of diffusing the base of a normal NPN transistor, and the region 31 is formed in the step of diffusing the emitter of the normal NPN transistor. In this vertical NPN transistor, upper and lower separating regions 23 are coupled at the position shallower than the half of the thickness of an epitaxial layer 26, and a lower diffused layer 25 is formed wider than an upper diffused layer 28. Accordingly, the base region 27 of one of an element forming region is diffused sufficiently deeply, while the layer 28 and a collector leading region 29 can be formed shallow to suppress the lateral diffusion, thereby largely contracting the surface occupying area.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は半導体集積回路装置の製造方法、特に縦型PN
PトランジスタやIILを組み込んだ装置の製造方法は
関する。
Detailed Description of the Invention (a) Industrial Application Field The present invention relates to a method of manufacturing a semiconductor integrated circuit device, particularly a vertical PN
A method of manufacturing a device incorporating a P transistor or an IIL is related.

(ロ)従来の技術 従来の縦型PNP トランジスタを組み込んだ半導体集
積回路の製造方法を第3図(イ〉乃至第3図(*)を参
照して説明する。
(B) Prior Art A method of manufacturing a semiconductor integrated circuit incorporating a conventional vertical PNP transistor will be described with reference to FIGS. 3(a) to 3(*).

先ず第3図(イ)に示す如く、半導体基板(1)として
P型のシリコン基板を用い、基板(1)上に選択的にア
ンチモン(Sb)をデポジットしそN+型の埋込層(2
)を形成し、埋込層(2)上および埋込層(2)を囲む
基板(1)表面にはボロン(B)をデポジットしてコレ
クタ埋込層(3)と上下分離領域(4)の下拡散!(5
)を形成、する。
First, as shown in FIG. 3(A), a P-type silicon substrate is used as the semiconductor substrate (1), antimony (Sb) is selectively deposited on the substrate (1), and an N+ type buried layer (2) is deposited.
), and boron (B) is deposited on the buried layer (2) and on the surface of the substrate (1) surrounding the buried layer (2) to form a collector buried layer (3) and upper and lower separation regions (4). Spread below! (5
) to form, do.

次に第3図(ロ)に示す如く、基板(1)全面に周知の
気相成長法によりN−型のエピタキシャル層(6)を所
定厚さに形成する。この時埋込層(2)、コレク夕埋込
層(3)および上拡散層(5)は上下方向に若干拡散さ
れる。
Next, as shown in FIG. 3(B), an N-type epitaxial layer (6) is formed to a predetermined thickness over the entire surface of the substrate (1) by a well-known vapor phase growth method. At this time, the buried layer (2), collector buried layer (3) and upper diffusion layer (5) are slightly diffused in the vertical direction.

次に第3図(ハ)に示す如く、エピタキシャル層(6〉
表面のコレクタ埋込層(3)上に対応する領域に選択的
にリン(P)をイオン注入して素子形成領域の1つであ
るベース領域(7)を付着する。このイオン注入はリン
(P)をドーズ量101!、、 10IScrI′、 
−8で加速電圧80〜100KeVで行う。
Next, as shown in FIG. 3(c), an epitaxial layer (6) is formed.
Phosphorus (P) is selectively ion-implanted into a region corresponding to the collector buried layer (3) on the surface to attach a base region (7), which is one of the element formation regions. This ion implantation uses phosphorus (P) at a dose of 101! ,, 10IScrI′,
-8 and an acceleration voltage of 80 to 100 KeV.

次に第3図(ニ)に示す如く、エピタキシャル層(6〉
表面から上下分離領域(4)の上拡散層(8)とコレク
タ導出領域(9)を約1200°C,3〜4時間で拡散
し、同時に埋込層(2)とコレクタ埋込層(3)及び上
拡散層(5)をエピタキシャル層(6)内にはい上らせ
て拡散し、ベース領域(7)をドライブインする。この
工程で上拡散層(8〉は上拡散層(5)と連結してエピ
タキシャル層(6)を接合分離し、コレクタ導出領域(
9)はコレクタ埋込層(3)まで達してベース領域(7
〉全周を囲む。具体的には、エピタキシャル層(6)の
厚みを13μmとすると上拡散層(8)は約9μmの深
さに拡散され、上拡散層(5)は約7μmの深さにはい
上げられる。またコレクタ埋込M(3)は約7μm、埋
込層(2)は約3μmの深さにはい上げられ、ベース領
域(7)は不純物濃度の差により上拡散Ji(8)より
浅く約4μmの深さに拡散される。
Next, as shown in FIG. 3(d), an epitaxial layer (6) is formed.
From the surface, the upper diffusion layer (8) and the collector lead-out region (9) of the upper and lower separation regions (4) are diffused at about 1200°C for 3 to 4 hours, and at the same time the buried layer (2) and the collector buried layer (3 ) and an upper diffusion layer (5) are crawled up into the epitaxial layer (6) and diffused to drive in the base region (7). In this step, the upper diffusion layer (8) is connected to the upper diffusion layer (5), the epitaxial layer (6) is junction-separated, and the collector lead-out region (
9) reaches the collector buried layer (3) and forms the base region (7).
〉Surround all around. Specifically, when the thickness of the epitaxial layer (6) is 13 μm, the upper diffusion layer (8) is diffused to a depth of about 9 μm, and the upper diffusion layer (5) is raised to a depth of about 7 μm. In addition, the collector embedding M (3) is raised to a depth of about 7 μm, the buried layer (2) is raised to a depth of about 3 μm, and the base region (7) is shallower than the upper diffusion Ji (8) to a depth of about 4 μm due to the difference in impurity concentration. is diffused to a depth of

次に第3図(ネ)に示す如く、ベース領域(7)表面に
拡散深き約2μmのP型エミッタ領域(10)を形成し
、続いて拡散深さ約1.5μmのN+型ベースコンタク
ト領域(11)を形成する。尚エミッタ領域(10)は
NPNトランジスタのベース拡散工程で形成し、ベース
コンタクト領域(11)はNPN トランジスタのエミ
ッタ拡散工程で形成する。
Next, as shown in FIG. 3(N), a P-type emitter region (10) with a diffusion depth of approximately 2 μm is formed on the surface of the base region (7), followed by an N+ type base contact region with a diffusion depth of approximately 1.5 μm. (11) is formed. The emitter region (10) is formed by the base diffusion process of the NPN transistor, and the base contact region (11) is formed by the emitter diffusion process of the NPN transistor.

この様に形成した縦型PNP トランジスタにおいては
、活性ベースの大部分をイオン注入により形成したベー
ス領域(7)で形成するので、その不純物濃度が内部に
ドリフト電界を生じさせてエミッタから注入したホール
を加速する方向に働き、高い利得帯域幅積f1が得られ
る。また縦型PNPトランジスタのh□はほぼイオン注
入したベース領域(7)で決定きれるので、エピタキシ
ャル層(6)の比抵抗や厚さがばらついてもり、はあま
りばらつかない。
In the vertical PNP transistor formed in this way, most of the active base is formed in the base region (7) formed by ion implantation, so the impurity concentration generates an internal drift electric field and holes injected from the emitter. , and a high gain-bandwidth product f1 can be obtained. Furthermore, since h□ of the vertical PNP transistor is determined almost entirely by the ion-implanted base region (7), it does not vary much even if the resistivity and thickness of the epitaxial layer (6) vary.

局所る縦型PNPトランジスタは、例えば特開昭59−
211270号公報に記載されている。
Local vertical PNP transistors are described, for example, in Japanese Patent Application Laid-Open No. 1983-
It is described in No. 211270.

次に従来のIILを組み込んだ半導体集積回路装置の製
造方法を第4図(イ)乃至第4図(*)を用いて説明す
る。
Next, a method of manufacturing a semiconductor integrated circuit device incorporating a conventional IIL will be described with reference to FIGS. 4(a) to 4(*).

先ず第4図(りに示す如く、半導体基板(1)としてP
型のシリコン基板を用い、基板(1)上に選択的にアン
チモン(Sb)をデポジットしてN0型の埋込層(2)
を形成し、埋込層(2)を囲む基板(1)表面にはボロ
ン(B)をデポジットして上下分離領域(4)の上拡散
層(5)を形成する。
First, as shown in Figure 4, P is used as the semiconductor substrate (1).
Using a type silicon substrate, antimony (Sb) is selectively deposited on the substrate (1) to form an N0 type buried layer (2).
Boron (B) is deposited on the surface of the substrate (1) surrounding the buried layer (2) to form an upper diffusion layer (5) of the upper and lower separation regions (4).

次に第4図(ロ)に示す如く、基板(1)全面に周知の
気相成長法によりN−型のエピタキシャル層(6)を所
定厚さに形成する。この時埋込層(2)および上拡散層
(5)は上下方向に若干拡散される。
Next, as shown in FIG. 4(b), an N-type epitaxial layer (6) is formed to a predetermined thickness over the entire surface of the substrate (1) by a well-known vapor phase growth method. At this time, the buried layer (2) and the upper diffusion layer (5) are slightly diffused in the vertical direction.

次に第4図(ハ)に示す如く、エピタキシャル層(6)
表面に選択的にボロン(B)をイオン注入し、素子形成
領域の1つであるベース領域(7)を付着する。このイ
オン注入はドーズ量10’A〜1014cTn1で加速
電圧80〜100KeVで行う。
Next, as shown in FIG. 4(c), an epitaxial layer (6) is formed.
Boron (B) ions are selectively implanted into the surface to form a base region (7), which is one of the element formation regions. This ion implantation is performed at a dose of 10'A to 1014cTn1 and an acceleration voltage of 80 to 100 KeV.

次に第4図(ニ)に示す如く、エピタキシャル層(6)
表面から上下分離領域(4)の上拡散層(8)を約12
00℃、3〜4時間で拡散し、同時に埋込層(2)と上
拡散層(5)をエピタキシャル層(6)内にはい上らせ
て拡散し、ベース領域(7)をドライブインする。この
工程で上拡散層(8)は上拡散層(5)と連結してエピ
タキシャル層(6)を接合分離し、ベース領域(7)は
濃度差があるために上拡散1(8)より浅く形成きれる
。具体的には、エピタキシャル層(6)の厚みを13μ
mとすると上拡散層(8)は約9μmの深啓に拡散され
、上拡散層(5)は約7μmの深きにはい上げられる。
Next, as shown in FIG. 4(d), an epitaxial layer (6) is formed.
The upper diffusion layer (8) of the upper and lower separation regions (4) from the surface is about 12
Diffusion takes place at 00°C for 3 to 4 hours, and at the same time, the buried layer (2) and upper diffusion layer (5) are crawled up into the epitaxial layer (6) and diffused, and the base region (7) is driven in. . In this step, the upper diffusion layer (8) is connected to the upper diffusion layer (5) to separate the epitaxial layer (6), and the base region (7) is shallower than the upper diffusion layer 1 (8) due to the concentration difference. Can be formed. Specifically, the thickness of the epitaxial layer (6) was set to 13μ.
If m, the upper diffusion layer (8) is diffused to a depth of approximately 9 μm, and the upper diffusion layer (5) is raised to a depth of approximately 7 μm.

またベース領域(7)は約4μmの深さに拡散され、埋
込層(2〉は約3μmはい上げられる。
Furthermore, the base region (7) is diffused to a depth of about 4 μm, and the buried layer (2>) is raised by about 3 μm.

次に第4図(*)に示す如く、拡散深さ約2μmのP型
のインジェクタ領域(12)およびベースコンタクト領
域(13)を同時に拡散し、続いて拡散深さ約1.5μ
mのN+型コレクタ領域(14)を形成する。
Next, as shown in FIG. 4 (*), the P-type injector region (12) and base contact region (13) are simultaneously diffused to a diffusion depth of approximately 2 μm, and then to a diffusion depth of approximately 1.5 μm.
m N+ type collector regions (14) are formed.

尚インジェクタ領域(12)およびベースコンタクト領
域(13)はNPN l−ランジスタのベース拡散工程
で形成し、コレクタ領域(14)はNPN トランジス
タのエミッタ拡散工程で形成する。
Note that the injector region (12) and base contact region (13) are formed by the base diffusion process of the NPN l-transistor, and the collector region (14) is formed by the emitter diffusion process of the NPN transistor.

コノ様に形成したIII、においては、活性ベースがイ
オン注入により形成した低濃度のベース領域(7)で形
成されるので、高い逆方向電流増幅率逆βが得られ、且
つコレクタ領域(14)のばらつきによる逆βのばらつ
きを抑えられる。
In III, which is formed in a similar manner, the active base is formed by the low concentration base region (7) formed by ion implantation, so a high reverse current amplification factor inverse β can be obtained, and the collector region (14) Variations in inverse β due to variations in can be suppressed.

面断るIILは、例えば特願昭60−209387号に
記載されている。
IIL, which cuts the surface, is described in, for example, Japanese Patent Application No. 60-209387.

(ハ)発明が解決しようとする問題点 しかしながら、従来の製造方法では上下分離領域(4)
の上拡散層(8)と下拡散H(5)および素子形成領域
の1つであるベース領域(7)(7)を同時に拡散して
いるので、低濃度のベース領域(7)(7)を十分に深
く拡散するため、そして上拡散層(8)より上拡散層(
5)の方が供給きれる不純物が少い状態で拡散されるた
め、上拡散層(8)を上拡散層(5)よりかなり深く拡
散する必要があった。従って拡散時間が長く、上拡散層
(8)の横方向拡散も長くなるのでエピタキシャル層(
6)表面での占有面積が大きく集積度を更に向上できな
い欠点があった。
(c) Problems to be solved by the invention However, in the conventional manufacturing method, the upper and lower separated regions (4)
Since the upper diffusion layer (8) and the lower diffusion layer H (5) and the base region (7) (7), which is one of the element formation regions, are simultaneously diffused, the low concentration base region (7) (7) In order to diffuse sufficiently deeply, and the upper diffusion layer (8) is
In case 5), since the impurities that can be supplied are diffused in a smaller amount, it was necessary to diffuse the upper diffusion layer (8) considerably deeper than the upper diffusion layer (5). Therefore, the diffusion time is longer and the lateral diffusion of the upper diffusion layer (8) is also longer, so the epitaxial layer (8) is
6) There was a drawback that the surface area occupied was large and the degree of integration could not be further improved.

(ニ)問題点を解決するための手段 本発明は斯上したこれらの欠点に鑑みてなきれ、上下分
離領域(24)の上拡散層(25)をエピタキシャル層
(26)の厚みの半分以上深くはい上げて拡散し、同時
に素子形成領域の1つであるベース領域(27)(27
)をドライブインした後、上下分離領域(24)の上拡
散層(28)を上拡散層(25)に達するまで拡散する
ことにより、集積度を大幅に向上した半導体集積回路装
置の製造方法を提供するものである。
(d) Means for Solving the Problems The present invention has been developed in view of the above-mentioned drawbacks, and the upper diffusion layer (25) of the upper and lower separation regions (24) is formed by forming the upper diffusion layer (25) of the upper and lower separation regions (24) to be more than half the thickness of the epitaxial layer (26). The base region (27) (27) is one of the element forming regions.
) is driven in, and then the upper diffusion layer (28) of the upper and lower separation regions (24) is diffused until it reaches the upper diffusion layer (25). This is what we provide.

(ネ)作用 本発明によれば、あらかじめ上拡散層(25)をエピタ
キシャルR(26)の厚みの半分以上深くはい上げて拡
散し1.同時に素子形成領域をドライブインしてから上
下分離領域(24)の上拡散層(28)を形成するので
、低濃度のベース領域(27)(27)を所定の特性が
得られるように十分に深く形成できる一方で、上拡散層
(28)を上拡散層(25)より浅く拡散できる。この
結果、素子の特性劣化を招かずに上拡散[(28)の横
方向拡散を抑えて集積度を大幅に向上できる。
(f) Function According to the present invention, the upper diffusion layer (25) is raised in advance to a depth of at least half the thickness of the epitaxial layer R (26) and diffused.1. Since the upper diffusion layer (28) of the upper and lower isolation regions (24) is formed after driving in the element formation region at the same time, the low concentration base regions (27) (27) are sufficiently While it can be formed deeply, the upper diffusion layer (28) can be diffused shallower than the upper diffusion layer (25). As a result, the degree of integration can be significantly improved by suppressing the lateral diffusion of the upper diffusion [(28)] without causing deterioration of the characteristics of the element.

(へ)実施例 以下、本発明の第1の実施例である縦型PNPトランジ
スタの製造方法を第1図(イ)乃至第1図(へ)を用い
て説明する。
(F) Embodiment A method for manufacturing a vertical PNP transistor, which is a first embodiment of the present invention, will be described below with reference to FIGS. 1(A) to 1(F).

先ず第1図(イ)に示す如く、半導体基板(21)とし
てP型のシリコン基板を用い、基板(21)上に選択的
にアンチモン(Sb)をデポジットしてN+型の埋込層
(22)を形成し、埋込層(22)上および埋込層(2
2)を囲む基板(21)表面にはボロン(B)をデポジ
ットしてコレクタ埋込層(23)と上下分離領域(24
)の上拡散層(25)を形成する。
First, as shown in FIG. 1(A), a P-type silicon substrate is used as the semiconductor substrate (21), antimony (Sb) is selectively deposited on the substrate (21), and an N+ type buried layer (22) is formed. ) on the buried layer (22) and on the buried layer (2
2), boron (B) is deposited on the surface of the substrate (21) surrounding the collector buried layer (23) and the upper and lower separation regions (24).
) to form an upper diffusion layer (25).

次に第1図(ロ)に示す如く、基板(21)全面に周知
の気相成長法によりN−型のエピタキシャル層(26)
を約7μm厚に形成する。この時埋込層(22)、コレ
クタ埋込M3(23)および上拡散層(25)は上下方
向に若干拡散される。
Next, as shown in FIG. 1(b), an N-type epitaxial layer (26) is formed on the entire surface of the substrate (21) by a well-known vapor phase growth method.
is formed to have a thickness of about 7 μm. At this time, the buried layer (22), collector buried M3 (23), and upper diffusion layer (25) are slightly diffused in the vertical direction.

次に第1図(ハ)に示す如く、エピタキシャル層(26
)表面のコレクタ埋込層(23)上に対応する領域に選
択的にリン(P)をイオン注入して素子形成領域の1つ
であるベース領域(27)を付着する。このイオン注入
はリン(P)をドーズ量1011〜IQ”am−1で加
速電圧80〜100KeVで行う。
Next, as shown in FIG. 1(c), an epitaxial layer (26
) Phosphorus (P) is selectively ion-implanted into a region corresponding to the collector buried layer (23) on the surface to attach a base region (27), which is one of the element forming regions. This ion implantation is performed at a dose of phosphorus (P) of 1011 to IQ"am-1 and an acceleration voltage of 80 to 100 KeV.

次に第1図(ニ)に示す如く、基板(21)全体に約1
200℃、2時間の熱処理を加えることにより上下分離
領域(24)の上拡散層(25)とコレクタ埋込層(2
3)とをエピタキシャル層(26)の厚みの半分以上深
くはい上げて拡散し、同時にベース領域(27)を上拡
散層(28)と同程度かそれより深く拡散する。
Next, as shown in FIG. 1(d), approximately 1
By applying heat treatment at 200°C for 2 hours, the upper diffusion layer (25) of the upper and lower separation regions (24) and the collector buried layer (2) are heated.
3) is raised to a depth of more than half the thickness of the epitaxial layer (26) and diffused, and at the same time, the base region (27) is diffused to a depth equal to or deeper than the upper diffusion layer (28).

具体的には、上拡散層(25)とコレクタ埋込層(23
)は基板(21)表面から各々約5μm、4 、5μm
はい上げて拡散し、ベース領域(27)はエピタキシャ
ル層(26)表面から約3μm拡散する。従ってベース
領域(27)はコレクタ埋込層(23)まで完全に到達
する。尚埋込層(22)も基板(21)表面から約2μ
mはい上げて拡散する。
Specifically, the upper diffusion layer (25) and the collector buried layer (23)
) are approximately 5 μm, 4, and 5 μm from the surface of the substrate (21), respectively.
The base region (27) is diffused by about 3 μm from the surface of the epitaxial layer (26). Therefore, the base region (27) completely reaches the collector buried layer (23). The buried layer (22) is also approximately 2μ from the surface of the substrate (21).
m Crawling up and spreading.

次に第1図(*)に示す如く、エピタキシャル層(26
)表面から上下分離領域(24)の上拡散層(28)と
コレクタ導出領域(29)とを同時に選択拡散し、上下
分離領域(24)をエピタキシャルJl(26)の厚み
の半分より浅い位置で連結させてこれを接合分離する。
Next, as shown in Figure 1 (*), an epitaxial layer (26
) The upper diffusion layer (28) and the collector lead-out region (29) of the upper and lower isolation regions (24) are simultaneously selectively diffused from the surface, and the upper and lower isolation regions (24) are formed at a position shallower than half the thickness of the epitaxial layer (26). Connect them and separate them.

またコレクタ導出領域(29)はコレクタ埋込層(23
)まで達し、ベース領域(27)を完全に囲む。
In addition, the collector lead-out region (29) is a collector buried layer (23).
) and completely surrounds the base area (27).

本工程は本発明の特徴とする工程で、あらかじめ前の工
程で上広散層(25)とベース領域(27)とを十分に
深く拡散した後に上拡散層(28)を形成しているので
、上拡散層(28)を約3μmと浅くでき、上拡散層(
28)の拡散時間を約1200℃、1時間に短縮できる
。このため上拡散層(28)の横方向拡散を約3μmに
抑えることができ、上拡散層(28)の表面占有面積を
大幅に縮小できる。具体的には、拡散窓の大きさが4μ
mであれば、上広散層(25)が幅約14μmに形成さ
れるのに対して上拡散Jm(28)の幅は約10μmに
なる。またコレクタ導出領域(29)も上拡散層(28
)と同様に浅く形成でき、表面占有面積を大幅に縮小で
きる。
This step is a characteristic step of the present invention, since the upper diffusion layer (28) is formed after the upper diffusion layer (25) and the base region (27) have been sufficiently deeply diffused in the previous step. , the upper diffusion layer (28) can be made as shallow as approximately 3 μm, and the upper diffusion layer (28) can be made as shallow as approximately 3 μm.
The diffusion time of 28) can be shortened to about 1200°C and 1 hour. Therefore, the lateral diffusion of the upper diffusion layer (28) can be suppressed to about 3 μm, and the surface area occupied by the upper diffusion layer (28) can be significantly reduced. Specifically, the size of the diffusion window is 4μ.
m, the upper diffusion layer (25) is formed to have a width of approximately 14 μm, whereas the width of the upper diffusion layer Jm (28) is approximately 10 μm. In addition, the collector lead-out region (29) is also the upper diffusion layer (28).
), it can be formed shallowly, and the surface area occupied can be significantly reduced.

次に第1図(へ)に示す如く、ベース領域(27)表面
に拡散深さ約1.5μmのP型エミッタ領域(30)を
形成し、続いて拡散深さ約1.0μmのN+型ベースコ
ンタクト領域(31)を形成する。尚エミッタ領域(3
0)は通常のNPNトランジスタのベース拡散工程で形
成し、ベースコンタクト領域(31)は通常のNPN 
)ランジスタのエミッタ拡散工程で形成する。
Next, as shown in FIG. 1(f), a P-type emitter region (30) with a diffusion depth of approximately 1.5 μm is formed on the surface of the base region (27), and then an N+ type emitter region (30) with a diffusion depth of approximately 1.0 μm is formed on the surface of the base region (27). A base contact region (31) is formed. Furthermore, the emitter area (3
0) is formed by a normal NPN transistor base diffusion process, and the base contact region (31) is formed by a normal NPN transistor base diffusion process.
) Formed in transistor emitter diffusion process.

この様に形成した縦型PNPトランジスタは、上下分離
領域(24)がエピタキシャル層(26)の厚みの半分
より浅い位置で連結され且つ上広散層(25)は上拡散
層(28)より幅広に形成される。またコレクタ埋込層
(23)も大きくはい上げられ且つコレクタ導出領域(
29)は浅く形成される。そしてベース領域(27)は
コレクタ埋込層(23)に達するまで十分に深く拡散き
れ、コレクタ埋込層(23)とコレクタ導出領域(29
)とで完全に囲まれる。
In the vertical PNP transistor formed in this way, the upper and lower isolation regions (24) are connected at a position shallower than half the thickness of the epitaxial layer (26), and the upper diffusion layer (25) is wider than the upper diffusion layer (28). is formed. In addition, the collector buried layer (23) is also largely raised and the collector lead-out region (
29) is formed shallowly. The base region (27) has been diffused sufficiently deep to reach the collector buried layer (23) and the collector lead-out region (29).
) is completely surrounded by

従って本実施例によれば、素子形成領域の1つであるベ
ース領域(27)を十分に深く拡散する一方で、上拡散
層(28)とコレクタ導出領域(29)を浅くでき、そ
れらの横方向拡散を抑えて表面占有面積を大幅に縮小す
ることができる。しかも上下分離領域(24)の上広散
層(25)は幅広に形成するものの、上広散層(25)
とコレクタ導出領域(29)、又は上広散!(25)と
コレクタ埋込層(23)とはそれらの周端部が横方向拡
散により湾曲しており、エピタキシャル層(26)深部
においである程度の離間距離が保たれているので、上広
散層(25)はエピタキシャルJl(26)表面での集
積度の向上をあまり防げず、上拡散層(28)とコレク
タ導出領域(29)との離間距離を狭めることができる
。よって縦型PNPトランジスタのパターンサイズを大
幅に縮小できる。
Therefore, according to this embodiment, the base region (27), which is one of the element forming regions, can be sufficiently deeply diffused, while the upper diffusion layer (28) and the collector lead-out region (29) can be made shallow, and the lateral regions thereof can be made shallow. Directional diffusion can be suppressed and the surface area occupied can be significantly reduced. Moreover, although the upper diffusion layer (25) of the upper and lower separation regions (24) is formed wide, the upper diffusion layer (25)
and the collector derivation area (29), or upper wide dispersion! (25) and the collector buried layer (23) have their peripheral edges curved due to lateral diffusion, and a certain distance is maintained in the deep part of the epitaxial layer (26). The layer (25) does not significantly prevent an increase in the degree of integration on the surface of the epitaxial Jl (26), and can narrow the distance between the upper diffusion layer (28) and the collector lead-out region (29). Therefore, the pattern size of the vertical PNP transistor can be significantly reduced.

また、コレクタ埋込層(23)が上広散JW(25)と
同様大きくはい上がり、ベース領域(27)がこれに到
達するまで十分に深く拡散されるので活性ベースが全て
イオン注入により形成した低濃度のベース領域(27)
のみで形成される。よってその一部をエピタキシャル層
(26)で形成していた従来のものよりfアを更に向上
でき、且つエピタキシャル層(26)のばらつきによる
り。のばらつきを抑えることができる。きらにコレクタ
埋込層(23)が大きくはい上るので、コレクタ抵抗が
減少し、低いVct(Sat)が得られる。
In addition, the collector buried layer (23) rises greatly like the upper diffused JW (25), and the base region (27) is diffused deeply enough to reach this layer, so that the active base is entirely formed by ion implantation. Low concentration base region (27)
Formed only by. Therefore, the f-a can be further improved compared to the conventional one in which part of the epitaxial layer (26) is formed, and the variation in the epitaxial layer (26) can be improved. It is possible to suppress the variation in Since the collector buried layer (23) rises significantly, the collector resistance decreases and a low Vct (Sat) can be obtained.

尚斯上した実施例ではベース領域(27)の不純物濃度
を比較的高くしてコレクタ埋込層(23)に完全に到達
させているが、その不純物濃度を低くしてエミッタ領域
(30)より深くコレクタ埋込/1l(23>より浅い
構造としても微細化を目的とした本発明の効果が十分に
達成できる。
In the above-described embodiment, the impurity concentration in the base region (27) is relatively high so that it completely reaches the collector buried layer (23), but the impurity concentration is lowered so that the impurity concentration is lower than that in the emitter region (30). Even with a structure shallower than deep collector embedding/1l (23>), the effect of the present invention aimed at miniaturization can be fully achieved.

次に本発明の第2の実施例であるIILを組み込んだ半
導体集積回路装置の製造方法を第2図(イ)乃至第2[
l!J(へ)を用いて説明する。
Next, a method for manufacturing a semiconductor integrated circuit device incorporating an IIL, which is a second embodiment of the present invention, is shown in FIGS.
l! This will be explained using J (to).

先ず第2図(りに示す如く、半導体基板(21)として
P型のシリコン基板を用い、基板(21)上に選択的に
アンチモン(Sb)をデポジットしてN1型の埋込Jl
(22)を形成し、埋込層(22)を囲む基板(21)
表面にはボロン(B)をデポジットして上下分離領域(
24)の上広散層(25)を形成する。
First, as shown in FIG. 2, a P-type silicon substrate is used as the semiconductor substrate (21), and antimony (Sb) is selectively deposited on the substrate (21) to form an N1-type buried Jl.
(22) and a substrate (21) surrounding the buried layer (22)
Boron (B) is deposited on the surface to create upper and lower separation areas (
24) Form an upper diffusion layer (25).

次に第2図(ロ)に示す如く、基板(21)全面に周知
の気相成長法によりN−型のエピタキシャル層(26)
を7μm厚に形成する。この時埋込層(22)および軍
拡散層(25)は上下方向に若干拡散される。
Next, as shown in FIG. 2(b), an N-type epitaxial layer (26) is formed on the entire surface of the substrate (21) by a well-known vapor phase growth method.
is formed to have a thickness of 7 μm. At this time, the buried layer (22) and the diffusion layer (25) are slightly diffused in the vertical direction.

次に第2図(ハ)に示す如く、エピタキシャル層(26
)表面に選択的にボロン(B)をイオン注入し、素子形
成領域の1つであるベース領域(27)を付着する゛。
Next, as shown in FIG. 2(c), an epitaxial layer (26
) Boron (B) ions are selectively implanted into the surface to form a base region (27), which is one of the element forming regions.

このイオン注入はドーズ量10Is〜10I4cITl
−2で加速電圧80〜100KeVで行う。
This ion implantation has a dose of 10Is to 10I4cITl.
-2 and an acceleration voltage of 80 to 100 KeV.

次に第2図(ニ)に示す如く、基板(21)全体に約1
200°C12時間の熱処理を加えて上下分離領域(2
4)の軍拡散層(25)と埋込層(22)とをエピタキ
シャル層(26)内にはい上げて拡散し、同時にベース
領域(27)をドライブインする。具体的には、軍拡散
層(25)は基板(21)表面から約5μm、埋込層(
22)は約2μmはい上げて拡散し、ベース領域(27
)はエピタキシャル層(26)表面から約3μm拡散す
る。
Next, as shown in FIG. 2(d), approximately 1
The upper and lower separated regions (2
4) The diffusion layer (25) and the buried layer (22) are crawled into the epitaxial layer (26) and diffused, and the base region (27) is driven in at the same time. Specifically, the diffusion layer (25) is approximately 5 μm from the surface of the substrate (21), and the buried layer (
22) is raised by about 2 μm and diffused, and the base region (27
) diffuses approximately 3 μm from the surface of the epitaxial layer (26).

次に第2図(ネ)に示す如く、エピタキシャル層(26
)表面から上下分離領域(24)の上拡散層(28)を
選択拡散し、上下分離領域(24)をエピタキシャル層
(26)の厚みの半分より浅い位置で連結させてこれを
接合分離する。
Next, as shown in FIG. 2(N), an epitaxial layer (26
) The upper diffusion layer (28) of the upper and lower isolation regions (24) is selectively diffused from the surface, and the upper and lower isolation regions (24) are connected at a position shallower than half the thickness of the epitaxial layer (26) to junction-isolate them.

本工程は本発明の特徴とする工程で、あらかじめ前の工
程で軍拡散層(25)とベース領域(27)を十分に深
く拡散した後に上拡散層(28)を形成しているので、
上拡散層(28)を約3μmと浅くでき、上拡散層(2
8)の拡散時間を約1200°Cで1時間に短縮できる
。このため上拡散層(28)の横方向拡散を約3μmに
抑えることができ、上拡散層(28)の表面占有面積を
大幅に縮小できる。具体的には、拡散窓の大きさが4μ
mであれば、軍拡散層(25)の幅が約14μmに形成
されるのに対して上拡散層(28)の幅は約110l1
になる。
This step is a characteristic step of the present invention, in which the upper diffusion layer (28) is formed after the diffusion layer (25) and the base region (27) have been sufficiently deeply diffused in the previous step.
The upper diffusion layer (28) can be made as shallow as approximately 3 μm, and the upper diffusion layer (28) can be made as shallow as approximately 3 μm.
8) The diffusion time can be shortened to 1 hour at about 1200°C. Therefore, the lateral diffusion of the upper diffusion layer (28) can be suppressed to about 3 μm, and the surface area occupied by the upper diffusion layer (28) can be significantly reduced. Specifically, the size of the diffusion window is 4μ.
m, the width of the military diffusion layer (25) is approximately 14 μm, while the width of the upper diffusion layer (28) is approximately 110 μm.
become.

次に第2図(へ)に示す如く、拡散深さ約2μmのP型
のインジェクタ領域(32)およびベースコンタクト領
域(33)を同時に拡散し、続いて拡散深さ約1.5μ
mのN゛型コレクタ領域(34)を形成する。尚インジ
ェクタ領域(32)およびベースコンタクト領域(33
)はNPNトランジスタのベース拡散工程で形成し、コ
レクタ領域(34)はNPNトランジスタのエミッタ拡
散工程で形成する。
Next, as shown in FIG. 2(f), the P-type injector region (32) and base contact region (33) are simultaneously diffused to a diffusion depth of approximately 2 μm, and then to a diffusion depth of approximately 1.5 μm.
An N-type collector region (34) of m is formed. Note that the injector area (32) and base contact area (33)
) is formed by the base diffusion process of the NPN transistor, and the collector region (34) is formed by the emitter diffusion process of the NPN transistor.

この様に形成したIILは、上下分離領域(24)がエ
ピタキシャル層(26)の厚みの半分より浅い位置で連
結され且つ軍拡散層(25)は上拡散層(28)より幅
広に形成される。またベース領域(27)はベースコン
タクト領域(33)より深く拡散される。
In the IIL formed in this way, the upper and lower isolation regions (24) are connected at a position shallower than half the thickness of the epitaxial layer (26), and the military diffusion layer (25) is formed wider than the upper diffusion layer (28). . The base region (27) is also diffused deeper than the base contact region (33).

従って本実施例によれば、素子形成領域の1つであるベ
ース領域(27)を十分に深く拡散する一方で、上下分
離領域(24)の上拡散層(28)を浅くでき、横方向
拡散を抑えて表面占有面積を大幅に縮小できる。しかも
上下分離領域(24)の上広散Ji(25)は幅広に形
成するものの、軍拡散層(25)とベース領域(27)
とはそれらの周端部が横方向拡散により湾曲しており、
エピタキシャル層(26)深部においである程度の離間
距離が保たれているので、軍拡散層(25〉はエピタキ
シャル層(26)表面での集積度の向上をあまり防げず
、上拡散層(28)とベース領域(27)又は上拡散!
(28)とベースコンタクト領域(33)との離間距離
を狭めることができる。よってIILのパターンサイズ
を大幅に縮小できる。
Therefore, according to this embodiment, while the base region (27), which is one of the element formation regions, can be diffused sufficiently deeply, the upper diffusion layer (28) of the vertical separation region (24) can be made shallow, and the lateral diffusion can significantly reduce the surface area. Moreover, although the upper wide dispersion Ji (25) of the upper and lower separation regions (24) is formed wide, the military dispersion layer (25) and the base region (27)
is that their peripheral edges are curved due to lateral diffusion,
Since a certain distance is maintained in the deep part of the epitaxial layer (26), the military diffusion layer (25) cannot significantly prevent the degree of integration from increasing on the surface of the epitaxial layer (26), and the upper diffusion layer (28) Base area (27) or spread over!
(28) and the base contact region (33) can be narrowed. Therefore, the IIL pattern size can be significantly reduced.

また、上拡散層(28)を浅く形成する一方で、ベース
領域(27)を十分に低濃度に且つ十分に深く形成でき
るので、高い逆βが得られ、コレクタ領域(34)のば
らつきによる逆βのばらつきを抑えることができる。
In addition, while forming the upper diffusion layer (28) shallowly, the base region (27) can be formed sufficiently low concentration and sufficiently deep, so that a high inverse β can be obtained, and the inverse Variations in β can be suppressed.

(ト)発明の詳細 な説明した如く、本発明によればあらかじめ上広散J!
(25)をエピタキシャル層(26)の厚みの半分以上
はい上げて拡散してから上拡散層(28)を形成するの
で、上拡散層(28)の横方向拡散を抑え、その表面占
有面積を減少してパターンサイズを大幅に縮小できると
いう利点を有する。さらに上拡散層(28)を浅くする
一方で、素子形成領域の1つであるベース領域(27)
を十分に低濃度に且つ十分に深く形成でき、それによっ
て特性良好な縦型PNP)−ランジスタやIIL等が得
られるという利点を有する。
(G) As described in detail, according to the present invention, the Kamihiro San J!
(25) is increased by more than half the thickness of the epitaxial layer (26) and then diffused before forming the upper diffusion layer (28), suppressing lateral diffusion of the upper diffusion layer (28) and reducing its surface area. This has the advantage that the pattern size can be reduced significantly. Furthermore, while the upper diffusion layer (28) is made shallower, the base region (27), which is one of the element formation regions,
It has the advantage that it can be formed at a sufficiently low concentration and sufficiently deep, thereby producing vertical PNP transistors, IILs, etc. with good characteristics.

そして上拡散層(28)の拡散時間が短くて済むので、
熱拡散によるエピタキシャル層(26)表面の結晶欠陥
が抑えられるという利点を有し、きらに上拡散層(28
)より軍拡散層(25)を幅広に形成したので、多少の
マスクずれがあっても完全な接合分離が得られる利点を
有する。
And since the diffusion time of the upper diffusion layer (28) is short,
It has the advantage that crystal defects on the surface of the epitaxial layer (26) due to thermal diffusion are suppressed, and the upper diffusion layer (28)
) Since the diffusion layer (25) is formed to be wider, it has the advantage that complete junction separation can be obtained even if there is some mask misalignment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(イ)乃至第1図(へ)は本発明の第1の実施例
を説明するための工程断面図、第2図(イ)乃至第2図
(へ)は本発明の第2の実施例を説明するための工程断
面図、第3図(イ)乃至第3図(ホ)は従来の縦型PN
P トランジスタの製造方法を説明するための工程断面
図、第4図(り乃至第4図(*)は従来のIILの製造
方法を説明するための工程断面図である。 (21)は半導体基板、 (22)は埋込層、 (23
)はコレクタ埋込層、 (25)は上下分離領域(24
)の軍拡散層、 (28)は上下分離領域(24)の上
拡散層、(27)(27)は素子形成領域の1つである
ベース領域である。 出願人 三洋電機株式会社外1名 代理人 弁理士 西野卓嗣 外1名 第  1   図   Eイフ 第1図(口2 第 1 閏 (ハ) 第1図にノ 第1 rye ($) 第 1 図 (へ) 第2図(伺 第2図(ロ) 第 2図 (ハ) 第2図(二2 第21!I (ホノ 第3図(イ) 第 3 図 (ロ) 第  3 図  (ハン 第3 し4 にン 第3図咋) 第4図(スン 第 4 図 (ロ) 第 4 図 (ハ) 第4図(二] 第4 図 (ホ)
1(A) to 1(F) are process sectional views for explaining the first embodiment of the present invention, and FIGS. 2(A) to 2(F) are process sectional views for explaining the first embodiment of the present invention. 3(a) to 3(e) are process cross-sectional views for explaining the embodiment of the conventional vertical PN.
FIG. 4 (*) is a process cross-sectional view for explaining a method for manufacturing a P transistor. (21) is a process cross-sectional view for explaining a conventional method for manufacturing an IIL. , (22) is the embedded layer, (23
) is the collector buried layer, (25) is the upper and lower separation region (24
), (28) is the upper diffusion layer of the upper and lower separation region (24), (27) (27) is the base region which is one of the element forming regions. Applicant Sanyo Electric Co., Ltd. and one other agent Patent attorney Takuji Nishino and one other person Figure 1 ) Figure 2 (See Figure 2 (B) Figure 2 (C) Figure 2 (22) Figure 4 (Sun Figure 4 (B) Figure 4 (C) Figure 4 (2) Figure 4 (E)

Claims (1)

【特許請求の範囲】[Claims] (1)一導電型の半導体基板表面に逆導電型の埋込層を
形成する逆導電型の不純物を付着し、該埋込層を囲んで
一導電型の上下分離領域の下拡散層を形成する一導電型
の不純物を前記基板表面に付着する工程、 前記基板全面に逆導電型のエピタキシャル層を積層する
工程、 前記エピタキシャル層表面に素子形成領域を形成する一
導電型または逆導電型の不純物を付着する工程、 前記基板を加熱処理して前記下拡散層を前記エピタキシ
ャル層の厚みの半分以上はい上がらせて拡散し、同時に
前記素子形成領域をドライブインする工程、 前記エピタキシャル層表面より前記上下分離領域を形成
する上拡散層を形成し、前記下拡散層へ到達させる工程
とを具備することを特徴とする半導体集積回路装置の製
造方法。
(1) Impurities of opposite conductivity type are deposited on the surface of a semiconductor substrate of one conductivity type to form a buried layer of opposite conductivity type, and a diffusion layer below the upper and lower separation regions of one conductivity type is formed surrounding the buried layer. a step of depositing an impurity of one conductivity type on the surface of the substrate; a step of laminating an epitaxial layer of an opposite conductivity type over the entire surface of the substrate; an impurity of one conductivity type or an opposite conductivity type forming an element formation region on the surface of the epitaxial layer. a step of heat-treating the substrate to raise the lower diffusion layer by half or more of the thickness of the epitaxial layer and diffusing it, and simultaneously driving in the element forming region; 1. A method of manufacturing a semiconductor integrated circuit device, comprising the steps of: forming an upper diffusion layer forming an isolation region, and causing the upper diffusion layer to reach the lower diffusion layer.
JP5744086A 1986-03-14 1986-03-14 Manufature of semiconductor integarated circuit device Pending JPS62214657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5744086A JPS62214657A (en) 1986-03-14 1986-03-14 Manufature of semiconductor integarated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5744086A JPS62214657A (en) 1986-03-14 1986-03-14 Manufature of semiconductor integarated circuit device

Publications (1)

Publication Number Publication Date
JPS62214657A true JPS62214657A (en) 1987-09-21

Family

ID=13055716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5744086A Pending JPS62214657A (en) 1986-03-14 1986-03-14 Manufature of semiconductor integarated circuit device

Country Status (1)

Country Link
JP (1) JPS62214657A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350686A (en) * 1976-10-19 1978-05-09 Mitsubishi Electric Corp Production of semiconductor integrated circuit
JPS5384578A (en) * 1976-12-29 1978-07-26 Fujitsu Ltd Semiconductor integrated circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350686A (en) * 1976-10-19 1978-05-09 Mitsubishi Electric Corp Production of semiconductor integrated circuit
JPS5384578A (en) * 1976-12-29 1978-07-26 Fujitsu Ltd Semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
JPS62214657A (en) Manufature of semiconductor integarated circuit device
JP2627289B2 (en) Method for manufacturing semiconductor integrated circuit
JPS62216356A (en) Manufacture of semiconductor integrated circuit
JP2656125B2 (en) Method for manufacturing semiconductor integrated circuit
JPS62216357A (en) Manufacture of semiconductor integrated circuit
JPS62214662A (en) Manufacture of vertical pnp transistor
KR900005562B1 (en) Semiconductor integrated circuit and manufacturing method thereof
KR100194654B1 (en) Semiconductor device and manufacturing method thereof
JPH01187868A (en) Semiconductor device
JPS62193142A (en) Manufacture of semiconductor integrated circuit device
JPS62216355A (en) Manufacture of semiconductor injection integrated logic circuit device
JPH09275154A (en) Semiconductor device and its manufacturing method
JPH025429A (en) Manufacture of lateral pnp transistor
JPS62193143A (en) Manufacture of semiconductor integrated circuit device
JPS63144567A (en) Manufacture of semiconductor device
JPS62219557A (en) Manufacture of semiconductor integrated circuit
JPH02181931A (en) Manufacture of semiconductor device
JPH0451067B2 (en)
JPH02232929A (en) Semiconductor device with buried layer
JPS6230372A (en) Manufacture of semiconductor integrated circuit
JPH0281438A (en) Bipolar integrated circuit
JPH01184947A (en) Semiconductor integrated circuit and manufacture thereof
JPH0577301B2 (en)
JPH03194963A (en) Manufacture of semiconductor device
JPS62219556A (en) Manufacture of semiconductor integrated circuit