JPS62298497A - Method for preventing spoiling of marine organisms by intermittent injection of phage - Google Patents

Method for preventing spoiling of marine organisms by intermittent injection of phage

Info

Publication number
JPS62298497A
JPS62298497A JP14319686A JP14319686A JPS62298497A JP S62298497 A JPS62298497 A JP S62298497A JP 14319686 A JP14319686 A JP 14319686A JP 14319686 A JP14319686 A JP 14319686A JP S62298497 A JPS62298497 A JP S62298497A
Authority
JP
Japan
Prior art keywords
seawater
water
closed loop
sea water
phage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14319686A
Other languages
Japanese (ja)
Other versions
JPH0334993B2 (en
Inventor
Michiro Araki
荒木 道郎
Kazuo Kamimura
上村 一雄
Shigemi Inage
稲毛 重美
Masaki Hirano
正樹 平野
Masaaki Ikeda
正明 池田
Yushin Minamide
南出 雄伸
Itaru Kimura
格 木村
Masaaki Negoro
正明 根来
Hideki Kamiyoshi
秀起 神吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP14319686A priority Critical patent/JPS62298497A/en
Publication of JPS62298497A publication Critical patent/JPS62298497A/en
Publication of JPH0334993B2 publication Critical patent/JPH0334993B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To sterilize the spoiling microorganisms in a closed loop by isolating a sea water system in a plant from the sea water intake area and release area of said plant and injecting bacteriophage intermittently into the sea water retained in the closed loop obtd. in such a manner during the stop of the sea water flow. CONSTITUTION:An intake shut off gate 8 and a release water shut off gate 9 are closed to provide the closed loop of the sea water system in the plant during the stoppage of the sea water flow in the plant utilizing the sea water. The bacteriophage 7 is intermittently injected into the sea water retained in the closed loop to sterilize the spoiling microorganisms existing in the closed loop. As a result, the spoiling of the marine organisms is effectively prevented without giving any ill effects at all to the other marine organisms.

Description

【発明の詳細な説明】 3発明の詳細な説明 〔産業上の利用分野〕 本発明は、臨海発電所などのように冷却のために海水を
利用する装置、その他臨海プラントにおける各種装置か
らの熱回収冷却装置、LNG基地でのLNG気化装置、
船舶における駆動装置の冷却装置等における海洋生物汚
損防止方法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention is directed to the cooling of equipment that uses seawater for cooling, such as coastal power plants, and other equipment that uses seawater for cooling. Recovery cooling equipment, LNG vaporization equipment at LNG terminals,
This invention relates to a method for preventing marine biofouling in a cooling device for a drive device in a ship.

〔従来の技術〕[Conventional technology]

従来技術について、火力発電所を例にとシ、第3図に沿
って以下説明する。
The conventional technology will be explained below with reference to FIG. 3, taking a thermal power plant as an example.

取水海域より得た取水(海水)1は、スクリーン設備2
によって海藻、貝類などの固形物を除去した後、取水ポ
ンプ3によって復水器aa。
Intake water (seawater) 1 obtained from the intake area is passed through screen equipment 2
After removing solid substances such as seaweed and shellfish, the intake pump 3 pumps the condenser aa.

4bに送られ、熱交換後放流水5として放流海発電所で
は、電力需要の日間変動および週間変動に対応するため
に、発電負荷の減少、Dis (Daily 5tar
t and 5toop)またはWSS (Weekl
yStart and 5top)で運用されている。
4b, and after heat exchange, the water is discharged as effluent 5. At the sea power plant, in order to respond to daily and weekly fluctuations in power demand, the power generation load is reduced, Dis (Daily 5tar
t and 5toop) or WSS (Weekl
yStart and 5top).

それに伴って、一部の復水器への海水の供給を停止した
シ、あるいはDSSまたはWSSのように夜間または週
末には海水系統が全部停止される。
Accordingly, the supply of seawater to some condensers has been stopped, or the entire seawater system, such as DSS or WSS, is stopped at night or on weekends.

このような海水系統の運転において、フジッボ、カキ、
ムラサキイガイ等の貝類、フサコケムシ等の虫類の大型
生物や細菌などの微生物が取水側の水路壁、管路内壁、
熱交換器水室内に好んで繁殖する。これらの汚損性生物
の付着過程は、■構造物表面への細菌の付着、■付着細
菌の増殖による生物汚損皮膜の増加と菌体外粘質物の生
成による微粒子(微生物や無機物)の付着促進、■酵母
やカビ等の発生による複雑な生物汚損皮膜の形成、およ
び■種々のブランクる。
In the operation of such a seawater system, Fujibo, oysters,
Large organisms such as shellfish such as mussels, insects such as bulrushes, and microorganisms such as bacteria are present on the water intake side walls, pipe inner walls,
Preferably breeds in the water chamber of a heat exchanger. The adhesion process of these fouling organisms is: ■ Attachment of bacteria to the surface of the structure; ■ Increase in the biofouling film due to the proliferation of attached bacteria and promotion of attachment of fine particles (microorganisms and inorganic substances) due to the production of extracellular mucilage; ■Formation of complex biofouling films due to the growth of yeast and mold, and ■Various blanking.

上記汚損性生物の付着生育による現象は、海水系統の損
失水頭の増大を招くだけでなく、機器や分岐管の閉塞、
復水器や冷却器細管の閉塞、細管内保護被膜の破壊によ
る潰食の助長および局部腐食をも招く。
The phenomenon caused by the adherent growth of the above-mentioned fouling organisms not only causes an increase in head loss in the seawater system, but also causes blockage of equipment and branch pipes,
It also causes blockage of the condenser and condenser tubules, and destruction of the protective coating inside the tubules, promoting erosion and local corrosion.

このような問題を解決する手段として、従来、次のよう
なものが知られていた。
Conventionally, the following methods have been known as means for solving such problems.

(1)塩素、オゾン、臭素、塩化臭素、過酸化水素、過
マンガン酸塩、ヒ酸塩、亜ヒ酸塩、シアン化合物、金属
塩、有機金属化合物、フェノールのような化合物を含む
防汚剤を、直接取水に混入したシ、構造物表面に塗付し
て付着生物を殺す方法。
(1) Antifouling agents containing compounds such as chlorine, ozone, bromine, bromine chloride, hydrogen peroxide, permanganates, arsenates, arsenites, cyanide compounds, metal salts, organometallic compounds, and phenols. A method of killing attached organisms by mixing directly into the intake water and applying it to the surface of the structure.

12)防汚剤を用いない生物汚損の防止方法として、温
水処理法、浸透圧衝撃法、紫外線照射法、超音波振動法
、スポンジポール又はプラ上記(1)の防汚剤を用いる
方法は、防汚剤はコストが高い上に、生物汚損に関与し
ない海洋生物に対しても毒性があるため、環境保全の見
地からもその使用が制限される。また、一部の防汚剤は
、常用することによって海洋生物体内に蓄積され、二次
公害を起こす可能性がある。
12) Methods for preventing biological fouling without using an antifouling agent include hot water treatment, osmotic shock method, ultraviolet irradiation method, ultrasonic vibration method, sponge pole or plastic method using the antifouling agent described in (1) above. Antifouling agents are expensive and are also toxic to marine organisms that are not involved in biofouling, so their use is restricted from the standpoint of environmental conservation. In addition, some antifouling agents can accumulate in marine organisms through regular use, potentially causing secondary pollution.

上記(2)の方法は、ブラシによる機械的洗浄法が取水
側の水路壁および大口径の管路内壁や熱交換器の伝熱管
内壁等の除貝に、スポンジポールによる機械的洗浄法が
熱交換器氷室・細管のスライム除去に採用されているだ
けで、その他の方法はコストおよび防汚効果上実用性に
乏しい。また、過度に行なえば構造物表面を傷付けかえ
って腐食または生物汚損を進行させるが、洗浄回数が少
なければ付着した微生物を十分に除去できないという欠
点もある。
In method (2) above, the mechanical cleaning method using a brush removes shellfish from water intake side walls, the inner walls of large-diameter pipes, and the inner walls of heat transfer tubes in heat exchangers, while the mechanical cleaning method using a sponge pole removes shellfish using heat. This method is only used to remove slime from exchanger ice chambers and thin tubes; other methods are impractical due to cost and antifouling effects. Furthermore, if the cleaning is carried out excessively, the surface of the structure may be damaged and corrosion or biological fouling may progress, but if the number of cleanings is too small, attached microorganisms cannot be sufficiently removed.

上記の各方法も、上述したように環境保全の〔問題点を
解決するための手段〕 本発明は、上記問題点を、 (1)発電負荷減少時またはDSSまたはWSS運用時
を利用して、海水の供給を停止した復水器内を循環する
ラインを設け、バクテリオファージを間歇的に注入する
か、 +2)DSSまたはWSS運用時を利用して、発電所内
の全海水系統を、取水区域と放流区域からそれぞれ隔離
して、上記海水系統の循環ラインを設け、バクテリオフ
ァージを間歇的に注入する ことによシ解決する木のであシ、先願に係る基本発明(
特開昭60−159596号公報参照)の実用化検討を
実施する過程でなされたものである。
Each of the above methods also solves the problems of environmental conservation as described above. The present invention solves the above problems by: Either install a circulation line inside the condenser where the seawater supply has been stopped and inject bacteriophage intermittently, or +2) Use DSS or WSS operation to transform the entire seawater system within the power plant into a water intake area. The basic invention related to the earlier application (
This was done in the process of studying the practical application of Japanese Patent Laid-Open Publication No. 159596/1983).

すなわち本発明は、 (1)海水を利用するプラントにおいて、海水通プ内保
有海水にバクテリオファージを間歇的に注入して、該閉
ループ中に存在する汚損性微生物を殺菌することを特徴
とするバクテリオファージ間歇注入による海洋生物汚損
の防止方法および (2)海水を利用する装置において海水通水停止時に該
装置を該装置海水取水域および放流域から隔離して、装
置内海水の閉ループを設け、該閉ループ内保有海水にバ
クテリオファージを間歇的に注入して、該閉ループ中に
存在する汚損性微生物を殺菌することを特徴とするバク
テリオファージ間歇注入による海洋生物汚損の防止方法 に関するものである。
That is, the present invention provides: (1) In a plant that uses seawater, a bacteriophage is intermittently injected into seawater held in a seawater passageway to sterilize fouling microorganisms present in the closed loop. A method for preventing marine biofouling by intermittent injection of phage; The present invention relates to a method for preventing fouling of marine organisms by intermittent injection of bacteriophage, which is characterized by intermittently injecting bacteriophage into seawater retained in a closed loop to sterilize fouling microorganisms present in the closed loop.

また、本発明において、バクテリオファージは、生物汚
損に関与する付着微生物のみを特異的に殺し、防汚する
ため、他の生物汚損に関与しない微生物や動植物に対し
て悪影響を与えることがない。さらに防汚処理を取水−
放流区域とは隔離した閉鎖ループで行なうため、上記の
影響の可能性をさらに低くすることができる。
Furthermore, in the present invention, the bacteriophage specifically kills only the attached microorganisms involved in biofouling and acts as an antifouling agent, so it does not have an adverse effect on other microorganisms not involved in biofouling, animals and plants. In addition, the water is treated with antifouling treatment.
Since this is done in a closed loop that is separate from the discharge area, the possibility of the above effects can be further reduced.

しかも、本発明において、バクテリオファージは極めて
少量の注入で大きな防汚効果を得ることができるため、
構造物表面を傷付けることがなく、付着微生物を十分に
除去できる。
Moreover, in the present invention, bacteriophage can achieve a large antifouling effect with an extremely small amount of injection.
Adhering microorganisms can be sufficiently removed without damaging the surface of the structure.

また、本発明では、バクテリオファージという自然界に
既に存在する天然物を用いるため、蓄積による二次公害
を起すことはない。
Furthermore, since the present invention uses bacteriophage, a natural product that already exists in nature, secondary pollution due to accumulation does not occur.

〔実施例〕〔Example〕

次に、本発明の具体的な実施態様と、その具体的な作用
につき説明する。
Next, specific embodiments of the present invention and their specific effects will be described.

実施例 第1図は本発明の一実施態様例を示すフローである。Example FIG. 1 is a flowchart showing an example of an embodiment of the present invention.

取水(海水)1.スクリーン設備2.取水ポンプ3.復
水器4.放流水5は、第3図と同じである。
Water intake (seawater) 1. Screen equipment 2. Water intake pump 3. Condenser 4. The discharged water 5 is the same as in FIG.

通常の運転時においては、取水海域より得られた取水(
海水)1は、取水遮断ゲート8、スクリーン設備2、取
水ポンプ3を経て復水器4に供給され、放流水遮断ゲー
ト9を経て放流される。その間、放流水分岐弁10およ
び循環水弁11は閉じられている。
During normal operation, water intake (
The seawater) 1 is supplied to the condenser 4 via the water intake cutoff gate 8, the screen equipment 2, and the water intake pump 3, and is discharged through the discharge water cutoff gate 9. During this time, the discharge water branch valve 10 and the circulating water valve 11 are closed.

DSSまたはWSS運用において、発電停止時には取水
遮断ゲート8および放流水遮断ゲート9は閉じられ、放
流水分岐弁10および循環水弁11は開けられ、引抜弁
13は閉じられている。
In DSS or WSS operation, when power generation is stopped, the water intake cutoff gate 8 and the discharged water cutoff gate 9 are closed, the discharged water branch valve 10 and the circulating water valve 11 are opened, and the withdrawal valve 13 is closed.

この状態で、取水ポンプ5を運転することによって、ス
クリーン設備2、取水ポンプ3、復水器4、放流水分岐
弁10および循環水弁11の閉鎖ループ内で系内に保有
された海水が循環される。
In this state, by operating the water intake pump 5, the seawater held in the system is circulated within the closed loop of the screen equipment 2, water intake pump 3, condenser 4, discharge water branch valve 10, and circulating water valve 11. be done.

ついで、あらかじめ探索しておいた該ループ内に存在す
る汚損微生物を溶菌させるバクテリオファージ(又は「
ファージ」とも言う)を種ファージ7として該ループ内
に注入する。
Next, a bacteriophage (or "
phage (also referred to as "phage") is injected into the loop as a seed phage 7.

注入するファージ量は、通常の海水のように細菌濃度が
108個/lに対しては、10!O〜106個/l、好
ましくは109〜107個/lの濃度で添加される。上
記ループ内の循環時間は、DSS’iたはWSS運用で
の停止時間中実施できるが、通常30分以上あれば十分
である。
The amount of phages to be injected is 10! for a bacteria concentration of 108 cells/l like in normal seawater. It is added at a concentration of 0 to 106 pieces/l, preferably 109 to 107 pieces/l. The circulation time in the loop can be carried out during the downtime of DSS'i or WSS operation, but normally 30 minutes or more is sufficient.

このように上記ループ内の循環によって汚損性微生物を
溶菌した後、引抜弁13を開けてループ内の保有水の一
部または全部をファージ含有液12として系外に出す。
After the fouling microorganisms are lysed by the circulation in the loop, the withdrawal valve 13 is opened and part or all of the water retained in the loop is discharged as the phage-containing liquid 12 to the outside of the system.

発電再開とともに、放流水分岐弁10および循環水弁1
1を閉じ、取水遮断ゲート8および放流水遮断ゲート9
を開け、取水(海水)1を再び通水する。
With the restart of power generation, the discharge water branch valve 10 and the circulating water valve 1
1, close the intake water cutoff gate 8 and the discharge water cutoff gate 9.
Open it and let water intake (seawater) 1 flow through it again.

第2図は本発明の他の実施態様例を示すフローシートで
ある。
FIG. 2 is a flow sheet showing another embodiment of the present invention.

取水1、スクリーン設備2、取水ポンプ3、復水器4、
放流水5は、第3図と同じである。
Water intake 1, screen equipment 2, water intake pump 3, condenser 4,
The discharged water 5 is the same as in FIG.

通常の運転時においては、取水海域よシ得られた取水(
海水)1はスクリーン設備2、取水ポンプ3、取水遮断
弁8a、8b、復水器aa、abを経て放流水遮断弁9
a、9bから放流水5として放流される。その間放流水
分岐弁10a、10bおよび循環水弁115L、1 l
bは閉じられている。
During normal operation, the intake water (
Seawater) 1 passes through the screen equipment 2, water intake pump 3, water intake cutoff valves 8a, 8b, condensers aa, ab, and then flows to the discharge water cutoff valve 9.
It is discharged as discharge water 5 from a and 9b. Meanwhile, discharge water branch valves 10a, 10b and circulating water valves 115L, 1 l
b is closed.

発電負荷の減少時には、取水遮断弁8aおよび放流水遮
断弁9aが閉じられ、復水器4aへの取水(海水)1の
通水は停止される。
When the power generation load is reduced, the water intake cutoff valve 8a and the discharge water cutoff valve 9a are closed, and the flow of intake water (seawater) 1 to the condenser 4a is stopped.

一方復水器4bへの取水の通水は続けられる。On the other hand, the intake water continues to flow into the condenser 4b.

このような状態で、放流水分岐弁10aおよび循環水弁
11aを開けて、循環ポンプ6を運転することにより、
復水器4a、放流水遮断弁10a1循環ポンプ6および
循環水弁11aの閉鎖ループ系内に保有された海水が循
環される。
In this state, by opening the discharge water branch valve 10a and the circulating water valve 11a and operating the circulation pump 6,
Seawater held within a closed loop system of the condenser 4a, the discharge water cutoff valve 10a, the circulation pump 6, and the circulation water valve 11a is circulated.

ついであらかじめ探索しておいた該ループ内に存在する
汚損性微生物を溶菌させるファージを種ファージ7とし
て該ループ内に注入する。ファージ注入量、該ループ内
の循環する時間は上記の第1図に示す実施態様の場合と
同じである。
Next, a phage that lyses the staining microorganisms present in the loop, which has been searched in advance, is injected into the loop as a seed phage 7. The amount of phage injected and the circulation time within the loop are the same as in the embodiment shown in FIG. 1 above.

このように上記ループ内の循環によって汚損性微生物を
溶菌した後、引抜弁13を開けてループ内の保有水の一
部または全部をファージ含有液12として系外に出す。
After the fouling microorganisms are lysed by the circulation in the loop, the withdrawal valve 13 is opened and part or all of the water retained in the loop is discharged as the phage-containing liquid 12 to the outside of the system.

発電負荷の上昇とともに、放流水分岐弁10aおよび循
環水11aを閉じ、取水遮断弁8a放流水遮断弁9aを
開け、取水(海水)を再び通水する。
As the power generation load increases, the discharge water branch valve 10a and the circulating water 11a are closed, the water intake cutoff valve 8a and the discharge water cutoff valve 9a are opened, and intake water (seawater) is allowed to flow again.

なお発電負荷の減少時に、復水器4bへの取水(海水)
10通水が停止される場合も、上記方法とまったく同じ
ようにして実施する。
In addition, when the power generation load decreases, water (seawater) is taken into the condenser 4b.
10 Even when the water flow is stopped, the method is exactly the same as the above method.

2 作用 (1)  海水と接した構造物表面には、既に述べたよ
うに汚損性微生物がまず付着増殖する。
2. Effects (1) As already mentioned, fouling microorganisms first adhere to and proliferate on the surface of structures that come into contact with seawater.

その種類は、取水海域や季節によって異なる。The type varies depending on the water intake area and season.

(2)  バクテリオファージ(又は単に「ファージ」
とも言う)は細菌ウィルスとも呼ばれるもので、核酸と
蛋白質のみから構成され、自己増殖能力を有しない。特
定の細菌に寄生してその細菌を溶菌させる作用を有する
(2) Bacteriophage (or simply “phage”)
Also called bacterial viruses, they are composed only of nucleic acids and proteins and do not have the ability to self-replicate. It has the effect of parasitizing certain bacteria and lysing them.

さらに詳しく言えば、ファージの増殖は、これが細菌に
付着し、細菌内にファージの核酸が注入され、細菌内で
ファージの核酸と蛋白質が合成され、次いでファージ粒
子が形成された後、細菌が溶菌され、新たに数十〜数百
個のファージを放出するという過程を経て起きる。本発
明においては、閉鎖ループの保有水中に存在する、構造
物表面の生物汚損原因となる特定の微生物に対して溶菌
作用を有するファージをあらかじめ検索して得ておき、
種ファージとしてループ内に間歇的に注入することによ
って増殖期にある該微生物を選択的に殺菌する。
More specifically, the propagation of a phage involves the attachment of a phage to a bacterium, the injection of phage nucleic acid into the bacterium, the synthesis of phage nucleic acid and protein within the bacterium, the subsequent formation of phage particles, and the subsequent lysis of the bacterium. This occurs through the process of releasing tens to hundreds of new phages. In the present invention, a phage that has a bacteriolytic effect on a specific microorganism that causes biological fouling on the surface of a structure, which is present in the closed loop water, is searched and obtained in advance.
By intermittently injecting the seed phage into the loop, the microorganisms in the growth phase are selectively sterilized.

(3)構造物に既に付着増殖している微生物は溶菌され
、末だ水中に浮遊している汚損性微生物も溶菌される。
(3) Microorganisms that have already grown attached to structures are lysed, and fouling microorganisms floating in the still water are also lysed.

(4)循環ループ内の保有水には、上記汚損性微生物の
溶菌によシ、新たにファージが放出され、当初種ファー
ジを注入したループ内のファージ濃度よシもはるかに高
濃度のファージ液が得られる。
(4) New phages are released into the retained water in the circulation loop due to the lysis of the above-mentioned fouling microorganisms, and the phage concentration in the phage solution is much higher than that in the loop where the seed phage was initially injected. is obtained.

〔発明の効果〕〔Effect of the invention〕

(1)  ファージの溶菌効果(溶菌時間、放出量)は
、その纏境条件に大きく左右される。即ち溶菌される汚
損性微生物が増殖期にあるときに最もファージの溶菌効
果が高い。DSS又はWSSで運用される発電所では、
24時時間又は−週間に1回の周期で復水器への通水開
始および停止を〈シかえず。発電負荷の減少時も、およ
そ24時間を単位として負荷調整が行なわれる。通常、
汚損性微生物はこの程度の期間に最も活発な増殖期を迎
えコロニーを形成するため、本発明においてこの期間に
ファージを注入することによって最も太きな溶菌効果が
得られる。
(1) The lytic effect (lysis time, amount released) of a phage is greatly influenced by its surrounding conditions. That is, the lytic effect of the phage is highest when the staining microorganism to be lysed is in the growth phase. At power plants operated by DSS or WSS,
Start and stop water flow to the condenser 24 hours a day or once a week. Even when the power generation load is reduced, load adjustment is performed approximately every 24 hours. usually,
Since staining microorganisms enter their most active growth phase and form colonies during this period, in the present invention, the strongest bacteriolytic effect can be obtained by injecting the phages during this period.

(2)またファージの所要溶菌時間および放出量は水温
に影響される。即ち、汚損性微生物の最適温度の場合に
所要溶菌時間が最も短く、放出量が最も多い。発電所の
場合、取水(海水)温度が季節的に変動するため、閉鎖
ループを設ける本発明において、季節毎に異なる多種多
様な汚損性微生物の溶菌のための最適な水温と循環時間
が容易に設定できる。
(2) The required lysis time and amount of phages released are also influenced by water temperature. That is, when the temperature is optimal for fouling microorganisms, the required lysis time is the shortest and the amount released is the largest. In the case of power plants, the intake water (seawater) temperature varies seasonally, so the present invention, which provides a closed loop, easily determines the optimum water temperature and circulation time for the lysis of a wide variety of fouling microorganisms that differ from season to season. Can be set.

(3)閉鎖ループを設ける本発明では、その保有水内に
高濃度のファージが得られ、次回行なう閉鎖ループへ注
入する種ファージとして再度利用することができる。
(3) In the present invention where a closed loop is provided, a high concentration of phages can be obtained in the retained water and can be used again as seed phage to be injected into the next closed loop.

(41本発明は、特定の汚損性微生物に選択的に作用す
るファージを使用するため、他の海洋生物に何ら悪影響
をおよぼさず、また本発明では閉鎖ループ内でファージ
を増殖させるため、その可能性をさらに低減することが
できる。
(41 The present invention uses phages that selectively act on specific fouling microorganisms, so it does not have any adverse effects on other marine organisms, and because the present invention proliferates phages in a closed loop, This possibility can be further reduced.

I5)本発明では、汚損生物の付着過程のうち、最も初
期段階の構造物表面への汚損性微生物付着を阻止するこ
とができるだめ、その後の大形汚損生物の付着生育を防
止することができる。
I5) In the present invention, it is possible to prevent the adhesion of fouling microorganisms to the structure surface at the earliest stage in the adhesion process of fouling organisms, and it is also possible to prevent the subsequent growth of large fouling organisms. .

(6)本発明によれば、従来の塩素注入方式にくらべて
、処理コストが115〜1/9に低減できる。
(6) According to the present invention, the processing cost can be reduced by 115 to 1/9 compared to the conventional chlorine injection method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜2図は本発明の実施例を示すフローである。第3
図は従来技術を示すフローである。 1・・・取水(海水)、2・・・スクリーン設備、3・
・・取水ポンプ、a、4a、ab・・・復水器、5・・
・放流水、6・・・循環ポンプ、7・・・種ファージ、
8,8a、8b・・・取水遮断ゲート又は弁、9.9a
、9b・・・放流水遮断ゲート又は弁、10,10a、
10b・・・放流水分岐弁、11゜11a、11b・・
・循環水弁、12・・・ファージ含有液、13・・・引
抜弁 第1図 第2図
1 and 2 are flowcharts showing an embodiment of the present invention. Third
The figure is a flow showing a conventional technique. 1...Water intake (seawater), 2...Screen equipment, 3.
...Water intake pump, a, 4a, ab...Condenser, 5...
・Effluent water, 6... Circulation pump, 7... Seed phage,
8, 8a, 8b...water intake cutoff gate or valve, 9.9a
, 9b... discharge water cutoff gate or valve, 10, 10a,
10b...Discharge water branch valve, 11゜11a, 11b...
・Circulating water valve, 12...phage-containing liquid, 13...withdrawal valve Fig. 1 Fig. 2

Claims (2)

【特許請求の範囲】[Claims] (1)海水を利用するプラントにおいて、海水通水停止
時にプラント内海水系統を該プラント海水取水域および
放流域から隔離して、プラント内海水系統の閉ループを
設け、該閉ループ内保有海水にバクテリオファージを間
歇的に注入して、該閉ループ中に存在する汚損性微生物
を殺菌することを特徴とするバクテリオファージ間歇注
入による海洋生物汚損の防止方法。
(1) In a plant that uses seawater, when seawater flow is stopped, the plant's internal seawater system is isolated from the plant's seawater intake area and discharge area, a closed loop is established for the plant's internal seawater system, and bacteriophage 1. A method for preventing fouling of marine organisms by intermittent injection of bacteriophage, comprising intermittently injecting bacteriophage to sterilize fouling microorganisms present in the closed loop.
(2)海水を利用する装置において、海水通水停止時に
該装置を該装置海水取水域および放流域から隔離して、
装置内海水の閉ループを設け、該閉ループ内保有海水に
バクテリオファージを間歇的に注入して、該閉ループ中
に存在する汚損性微生物を殺菌することを特徴とするバ
クテリオファージ間歇注入による海洋生物汚損の防止方
法。
(2) In a device that uses seawater, when seawater flow is stopped, the device is isolated from the seawater intake area and discharge area of the device,
A method for preventing marine biofouling by intermittent injection of bacteriophage, which is characterized by providing a closed loop of seawater within the device, and intermittently injecting bacteriophage into the seawater held within the closed loop to sterilize fouling microorganisms present in the closed loop. How to prevent it.
JP14319686A 1986-06-18 1986-06-18 Method for preventing spoiling of marine organisms by intermittent injection of phage Granted JPS62298497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14319686A JPS62298497A (en) 1986-06-18 1986-06-18 Method for preventing spoiling of marine organisms by intermittent injection of phage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14319686A JPS62298497A (en) 1986-06-18 1986-06-18 Method for preventing spoiling of marine organisms by intermittent injection of phage

Publications (2)

Publication Number Publication Date
JPS62298497A true JPS62298497A (en) 1987-12-25
JPH0334993B2 JPH0334993B2 (en) 1991-05-24

Family

ID=15333104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14319686A Granted JPS62298497A (en) 1986-06-18 1986-06-18 Method for preventing spoiling of marine organisms by intermittent injection of phage

Country Status (1)

Country Link
JP (1) JPS62298497A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014069097A (en) * 2012-09-27 2014-04-21 Chubu Electric Power Co Inc Method for removing marine organisms from heat exchanger
JP2020169846A (en) * 2019-04-02 2020-10-15 国立研究開発法人物質・材料研究機構 Detection method and pipe maintenance method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159596A (en) * 1984-01-30 1985-08-21 Agency Of Ind Science & Technol Prevention of stain by living organism

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159596A (en) * 1984-01-30 1985-08-21 Agency Of Ind Science & Technol Prevention of stain by living organism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014069097A (en) * 2012-09-27 2014-04-21 Chubu Electric Power Co Inc Method for removing marine organisms from heat exchanger
JP2020169846A (en) * 2019-04-02 2020-10-15 国立研究開発法人物質・材料研究機構 Detection method and pipe maintenance method

Also Published As

Publication number Publication date
JPH0334993B2 (en) 1991-05-24

Similar Documents

Publication Publication Date Title
JPH049999B2 (en)
Melo et al. Biofouling in water systems
Flemming et al. Antifouling strategies in technical systems—a short review
Oliver The viable but nonculturable state and cellular resuscitation
JPH05507441A (en) Compositions and methods for removing biofilm from or preventing biofilm deposition on surfaces in industrial water systems
KR100251649B1 (en) Sterilizing composition for manufacturing high-purity water for using semiconductor device fabrication and sterilizing method of high-purity water manufacturing apparatus by using the sterilizing composition
Bott et al. Ultrasound enhancement of biocide efficiency
JP3605128B2 (en) How to prevent marine organisms
JPS62298497A (en) Method for preventing spoiling of marine organisms by intermittent injection of phage
US6955766B2 (en) Method for reducing harmful organisms in currents of water
JPH01163108A (en) Method for preventing fouling with marine life
Bott Introduction to the problem of biofouling in industrial equipment
JPS62298498A (en) Method for preventing pollution of marine organisms by injection of deposited phage
Armstrong et al. Removing biofilm from membranes–a practical approach
Kaiga et al. Ozone treatment in cooling water systems
JPS60187383A (en) Process for preventing sticking of organism
JPH11156164A (en) Storage method for cellulose acetate film and boric acid waste liquid treating device
JPH01163599A (en) Method of preventing oceanic life from pollution
CA2389422C (en) Method for reducing harmful organisms in currents of water
Myshkevych Optimization of UV and bacteriophages as an alternative chemical-free approach for membrane cleaning
JP2007197337A (en) Pollutive organism-controlling agent
JPH0972694A (en) Method and apparatus for cleaning plate type heat exchanger
JPH10235393A (en) Removal of composite pollutant generated by microbe
JP2542512Y2 (en) Laser irradiation device in the method of preventing organisms from adhering in water pipes
JPH024704A (en) Method for preventing and eliminating damage of adhesive microorganism by lytic bacteria

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term