JPS62298498A - Method for preventing pollution of marine organisms by injection of deposited phage - Google Patents

Method for preventing pollution of marine organisms by injection of deposited phage

Info

Publication number
JPS62298498A
JPS62298498A JP14319786A JP14319786A JPS62298498A JP S62298498 A JPS62298498 A JP S62298498A JP 14319786 A JP14319786 A JP 14319786A JP 14319786 A JP14319786 A JP 14319786A JP S62298498 A JPS62298498 A JP S62298498A
Authority
JP
Japan
Prior art keywords
sponge
phage
sponge balls
ball
balls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14319786A
Other languages
Japanese (ja)
Inventor
Michiro Araki
荒木 道郎
Kazuo Kamimura
上村 一雄
Shigemi Inage
稲毛 重美
Masaki Hirano
正樹 平野
Masaaki Ikeda
正明 池田
Yushin Minamide
南出 雄伸
Itaru Kimura
格 木村
Masaaki Negoro
正明 根来
Hideki Kamiyoshi
秀起 神吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP14319786A priority Critical patent/JPS62298498A/en
Publication of JPS62298498A publication Critical patent/JPS62298498A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To efficiently prevent the pollution due to marine organisms by propagating the bacteriophage which cause bacteriolysis the pollutive microorganisms sticking to sponge balls in liquid contg. the sponge balls and supplying such sponge balls to a device utilizing the sea water. CONSTITUTION:The bacteriophage which cause bacteriolysis the pollutive microorganisms sticking to the sponge balls is propagated in the liquid contg. the sponge balls in a phage culture tank 9, in a method for cleaning the device 4 utilizing the sea water with the sponge balls. Such sponge balls or the bacteriophage liquid contg. the sponge balls is supplied to the device 4 utilizing the sea water. As a result, the pollution due to the marine organisms for the device utilizing the sea water is efficiently and economically prevented.

Description

【発明の詳細な説明】 3発明の詳細な説明 〔産業上の利用分野〕 本発明は、臨海発電所などのように冷却のために海水を
利用する装置、その他臨海プラントにおける各種装置か
らの熱回収、冷却装置、L方法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention is directed to the cooling of equipment that uses seawater for cooling, such as coastal power plants, and other equipment that uses seawater for cooling. Concerning recovery, cooling equipment, and L method.

〔従来の技術〕[Conventional technology]

従来技術について、火力発電所を例にとシ、第3図に沿
って以下説明する。
The conventional technology will be explained below with reference to FIG. 3, taking a thermal power plant as an example.

取水海域より得た取水(海洋)1はスクリーン設備2に
よって海藻、貝類などの固形物を除去した後、重水ポン
プ3によって復水器4に送られ、熱交換後、ボール捕集
器5を経て放流水6として放流海域に放流される。通常
、火力発電所では、ボイラ1缶に対し1基または数基の
復水器からなる系統が設けられている。
Intake water (ocean) 1 obtained from the intake area is filtered by screen equipment 2 to remove solid matter such as seaweed and shellfish, and then sent to a condenser 4 by a heavy water pump 3. After heat exchange, it passes through a ball collector 5. It is discharged into the discharge area as discharge water 6. Usually, in a thermal power plant, a system consisting of one or several condensers is provided for one boiler.

このような海水系統の運転において、フジッボ)カキ、
ムラサキイガイ等の貝類、フサコケムシ等の虫類の大型
生物や細菌などの微生物が取水側の水路壁、管路内壁、
熱交換器水室内に好んで繁殖する。これらの汚損性生物
の付着過程は、■構造物表面への細菌の付着、■付着細
菌の増殖による生物汚損被膜の増加と菌体外粘生物汚損
被膜の形成、および■種々のプランクトンの付着とそれ
を摂餌する上記大形貝類等の幼生の付着、成長などの経
過を経て進むものと考えられ、細菌の付着が大きな役割
をはたしている。
In the operation of such a seawater system, Fujibbo oysters,
Large organisms such as shellfish such as mussels, insects such as bulrushes, and microorganisms such as bacteria are present on the water intake side walls, pipe inner walls,
Preferably grows in the water chamber of a heat exchanger. The adhesion process of these fouling organisms is: ■ Attachment of bacteria to the surface of the structure, ■ Increase in the biofouling film due to proliferation of attached bacteria and formation of extracellular slime biofouling film, and ■ Attachment of various plankton and It is thought that the process progresses through the adhesion and growth of the larvae of the large molluscs that feed on it, with the adhesion of bacteria playing a major role.

上記汚損性生物の付着生育による現象は、海水系統の損
失水頭の増大を招くだけでなく、機器や分岐管の閉塞、
復水器や冷却器細管の閉塞、細管内保護被膜の破壊によ
る潰食の助長および局部腐食をも招く。
The phenomenon caused by the adherent growth of the above-mentioned fouling organisms not only causes an increase in head loss in the seawater system, but also causes blockage of equipment and branch pipes,
It also causes blockage of the condenser and condenser tubules, and destruction of the protective coating inside the tubules, promoting erosion and local corrosion.

このような問題を解決する手段として、従来、次のよう
なものが知られていた。
Conventionally, the following methods have been known as means for solving such problems.

(1)  塩素、オゾン、臭素、塩化臭素、過酸化水素
、過マンガン酸塩、ヒ酸塩、亜ヒ酸塩、シアン化合物、
金属塩、有機金属化合物、フェノールのような化合物を
含む防汚剤を、直接取水に混入したり、構造物表面に塗
付して付着生物を殺す方法。
(1) Chlorine, ozone, bromine, bromine chloride, hydrogen peroxide, permanganate, arsenate, arsenite, cyanide,
A method in which antifouling agents containing compounds such as metal salts, organometallic compounds, and phenols are mixed directly into the water intake or applied to the surface of structures to kill attached organisms.

法、超音波振動法、スポンジボール又はブラシによる機
械的洗浄法。
method, ultrasonic vibration method, mechanical cleaning method using a sponge ball or brush.

(3)上記(1)と(2)の併用方法。(3) A combined method of (1) and (2) above.

なお、スポンジボールにより、第3図に示す復水器4を
洗浄するには次のようにして行なわれる。通常、複数基
設けられた復水器4のうち1基について、海水を通水し
たままで実施する。
Note that cleaning the condenser 4 shown in FIG. 3 with a sponge ball is performed as follows. Usually, this is carried out with seawater flowing through one of the plurality of condensers 4.

まず、第3図に示すように、スポンジボール10をポー
ル回収器8に供給する。当初のスポンジボール10の供
給量は復水器4の1パス当りの冷却管本数の10〜20
φ程度である。その後のスポンジボール10の補結量は
当初供給量の未回収分の量だけ補充し、定期的に全量更
新する。ポール回収器8でスポンジボール10を浸漬し
てボール内に含水させた後、ポール捕集弁14およびポ
ール循環弁15を開は循環水ポンプ7を運転してスポン
ジボールを復水器4に供給する。復水器4の内部は、第
2図に示すようル循環弁15よシ投入されたスポンジボ
ール10は、先ず、冷却水室20に入る。そして、スポ
ンジボール10a、10bは、水圧と水流によって冷却
管18内壁をこすシながら水流方向へと押し流されてゆ
く。冷却管18を通過したスポンジボール10は復水器
4を出てポール捕集器5に入り放流水6と分離された後
、ポール捕集弁14および循環水ポンプ7を経てポール
回収器8へ送られる。以上の操作を所定時間続け、ボー
ルを循環する。このようKして復水器4の冷却管18内
壁に発生するスライムをスポンジボール10によって定
期的に除去する。通常、復水器4人口には鉄塩が注入さ
れ、冷却管18内壁表面に薄い保護被膜を形成して海水
による腐食の発生を防いでいるが、その保護被膜厚が大
きくならないように定期的に除去するためにも、スポン
ジボール10が用いられている。洗浄が終了すれば、ポ
ール捕集弁14、ボール循〔発明が解決しようとする問
題点〕 上記(1)の防汚剤を用いる方法は、防汚剤はコストが
高い上に、生物汚損に関与しない海洋生物に対しても毒
性があるため、環境保全の見地からもその使用が制限さ
れる。また、・一部の防汚剤は、常用するととKよって
海洋生物体内に蓄積され、二次公害を起こす可能性があ
る。
First, as shown in FIG. 3, the sponge balls 10 are supplied to the pole collector 8. The initial supply amount of sponge balls 10 is 10 to 20, which is the number of cooling pipes per pass of the condenser 4.
It is about φ. Thereafter, the amount of sponge balls 10 to be supplemented is replenished by the uncollected portion of the initial supply amount, and the total amount is updated periodically. After the sponge balls 10 are immersed in the pole collector 8 to contain water, the pole collection valve 14 and the pole circulation valve 15 are opened, and the circulating water pump 7 is operated to supply the sponge balls to the condenser 4. do. As shown in FIG. 2, the sponge balls 10 introduced into the condenser 4 through the circulation valve 15 first enter the cooling water chamber 20. Then, the sponge balls 10a and 10b are pushed away in the direction of the water flow while rubbing against the inner wall of the cooling pipe 18 by the water pressure and water flow. The sponge balls 10 that have passed through the cooling pipe 18 exit the condenser 4 and enter the pole collector 5 where they are separated from the effluent water 6, and then go through the pole collection valve 14 and the circulating water pump 7 to the pole collector 8. Sent. The above operations are continued for a predetermined period of time to circulate the balls. The slime generated on the inner wall of the cooling pipe 18 of the condenser 4 in this way is periodically removed by the sponge ball 10. Normally, iron salt is injected into the condenser 4 to form a thin protective film on the inner wall surface of the cooling pipe 18 to prevent corrosion caused by seawater. The sponge ball 10 is also used to remove the dirt. When the cleaning is completed, the pole collection valve 14, the ball circulation [Problem to be solved by the invention] In the method (1) above using an antifouling agent, the antifouling agent is expensive and does not cause biological fouling. Since it is also toxic to unrelated marine organisms, its use is restricted from the standpoint of environmental conservation. Additionally, if some antifouling agents are regularly used, K may accumulate in the bodies of marine organisms, potentially causing secondary pollution.

上記(2)の方法は、ブラシによる機械的洗浄法が取水
側の水路壁および大口径の管路内壁や熱交換器の伝熱管
内壁等の除貝に、スポンジボールによる機械的洗浄法が
熱交換器氷室、細管のスライム除去に採用されているだ
けで、その他の方法は、コストおよび防汚効果上実用性
に乏しい。また、スポンジボールによる機械洗浄法は、
洗浄回数が過度に多ければ構造物表面を傷つけかえって
腐食を生じさせるが、洗浄回数が少なければ汚損微生物
の除去が不十分となり表面に付着生育し、やがて大型汚
損生物が生育し地からも次第に使用できなくなシっつあ
る一方で、スポンジボール洗浄の回数を増すことができ
ないため、対応が難しくなってきておシ、それに代わる
防汚剤の出現が待たれていた。
In method (2) above, the mechanical cleaning method using a brush is used to remove shellfish from water intake side walls, the inner walls of large-diameter pipes, and the inner walls of heat transfer tubes in heat exchangers, while the mechanical cleaning method using sponge balls is This method is only used to remove slime from exchanger ice chambers and thin tubes; other methods are impractical in terms of cost and antifouling effect. In addition, the mechanical cleaning method using a sponge ball is
If the number of cleanings is too high, it will damage the surface of the structure and cause corrosion, but if the number of cleanings is too small, the removal of fouling microorganisms will be insufficient and they will grow on the surface, and eventually large-scale fouling organisms will grow and be used from the ground. On the other hand, it has become difficult to deal with this problem because it is not possible to increase the number of times the sponge ball is washed, and the emergence of an antifouling agent to replace it has been awaited.

〔問題点を解決するための手段〕[Means for solving problems]

スポンジボール洗浄により冷却管内から掻き取った汚損
性微生物は、ボールの細孔内に多量に残存し、該ボール
は汚損微生物の絶好の繁殖場所となる。
A large amount of the fouling microorganisms scraped from the inside of the cooling pipe by cleaning the sponge ball remains in the pores of the ball, and the ball becomes an ideal breeding ground for the fouling microorganisms.

本発明は、これを利用して、上記問題点を解決するもの
であシ、該ボールに残存付着している汚損性微生物を溶
菌させるバクテリ万ファージを増殖させるとともに、そ
れによって構造物表面に残存または新たに付着生育する
汚損性微生物に該バクテリオファージを吸着させ、溶菌
させるものである。斯る本発明は、先願に係る基本発明
(特開昭60−159596号公報参照)の実用化検討
を実施する過程で々されたも一ル洗浄する方法において
、該スポンジボールに付着した汚損性微生物を溶菌させ
るバクテリオファージを、該スポンジボールを含む液中
で増殖させた後、該スポンジボールまたは該スポンジボ
ールを含むバクテリオファージiを海水を利用する装置
に供給することを特徴とする担持ファージ注入による海
洋生物汚損の防止方法に関するものである。
The present invention utilizes this to solve the above-mentioned problems, and aims to proliferate bacterium phages that lyse the fouling microorganisms remaining on the balls, and thereby Alternatively, the bacteriophage is adsorbed to newly grown fouling microorganisms and lysed. The present invention solves the problem of cleaning the sponge balls by a method of cleaning them in the process of studying the practical application of the basic invention related to the earlier application (see Japanese Patent Application Laid-open No. 159596/1983). A supported phage characterized in that a bacteriophage that lyses sexual microorganisms is grown in a solution containing the sponge balls, and then the sponge balls or the bacteriophage i containing the sponge balls are supplied to an apparatus that uses seawater. This relates to a method for preventing marine biofouling due to injection.

〔作用〕[Effect]

本発明において、スポンジボールに担持させて注入する
バクテリオファージは、汚損性微生物を溶菌し、殺菌す
る作用を有するため、構造物表面に残存または新たに付
着する汚損性微生は、生物汚損に関与する付着微生物の
みを特異とかない。
In the present invention, the bacteriophage carried on a sponge ball and injected has the effect of lysing and sterilizing fouling microorganisms, so that the fouling microorganisms remaining or newly attached to the surface of the structure are involved in biological fouling. Only the attached microorganisms that are attached are treated as specific.

更に、本発明は、構造物表面を傷つけることがなく、付
着微生物を十分に除去できるし、しかも本発明ではバク
テリオファージという自然界に既に存在する天然物を用
いるため蓄積による二次公害を起すこともない。
Furthermore, the present invention can sufficiently remove attached microorganisms without damaging the surface of the structure, and since the present invention uses bacteriophage, a natural product that already exists in nature, it does not cause secondary pollution due to accumulation. do not have.

〔実施例〕〔Example〕

次に、本発明の具体的な実施態様と、その具体的な作用
につき説明する。
Next, specific embodiments of the present invention and their specific effects will be described.

1 実施例 第1図は本発明の一実施態様例を示すフローであり、第
1図中の復水器4は第2図と同じ構成であり、また第1
図中の取水(海水)1.スクリーン設備2.取水ポンプ
3.復水器4.ポール捕集器5.放流水6.ポール回収
器8.スポンジボール10.ボール捕集弁14.ポール
循環弁15は第3図と同じ構成である。
1 Embodiment FIG. 1 is a flowchart showing an example of an embodiment of the present invention, and the condenser 4 in FIG. 1 has the same configuration as in FIG.
Water intake (seawater) in the diagram 1. Screen equipment 2. Water intake pump 3. Condenser 4. Pole collector 5. Effluent water6. Pole collector8. Sponge ball 10. Ball collection valve 14. The pole circulation valve 15 has the same structure as that shown in FIG.

当゛初複数基設けられた復水器4のうち1基にル回収器
8に洗浄に使用したスポンジボール1゜をいったん集め
ておく。洗浄終了後ボール捕集弁14、ボール循環弁1
5は閉じて、循環ポンプ7を停止する。次に、ボール回
収弁16を開けて洗浄に使用したスポンジボール1oを
海水とともにファージ培養槽9へ送る。ファージ培養槽
9には、まず栄養源13と無菌空気12が供給される。
Initially, 1° of sponge balls used for cleaning are collected in a collection device 8 in one of the plurality of condensers 4 provided. After cleaning, ball collection valve 14, ball circulation valve 1
5 is closed to stop the circulation pump 7. Next, the ball recovery valve 16 is opened and the sponge ball 1o used for washing is sent to the phage culture tank 9 together with seawater. The phage culture tank 9 is first supplied with a nutrient source 13 and sterile air 12.

栄養源13としては、海洋性従属栄養細菌の増殖に適す
る組成であれば良く、通常は酵母エキスおよびポリペプ
トンが各々Q、001〜llL1wt%およびcLo0
5〜[lL5wt%となるように加えられる。しかし取
水(海水)1の取水区域の海水温が比較的高く、かつ有
機物等の栄養分が比較的多い場合や、スポンジボール洗
浄運転の間隔が十分であれば、かならずしも栄養源13
は添加しなくともよい。
The nutrient source 13 may have a composition suitable for the growth of marine heterotrophic bacteria, and is usually yeast extract and polypeptone with a content of Q, 001-llL1wt% and cLo0, respectively.
5 to [lL 5wt%. However, if the seawater temperature in the water intake area of water intake (seawater) 1 is relatively high and the nutrients such as organic matter are relatively high, or if the interval between sponge ball cleaning operations is sufficient, the nutrient source 13
does not need to be added.

このようにして4〜24時間、好ましくは6〜8時間経
過後、種ファージ11を添加する。
After 4-24 hours, preferably 6-8 hours, seed phage 11 is added.

種ファージ11はあらかじめ探索しておいた、取水(海
水)1に存在する汚損性微生物を溶菌させるバクテリオ
ファージを用いる。その後、無菌空気12によって、ス
ポンジボール1oを含むファージ培養槽9内の液を30
分以上攪拌するがこの操作は、次回のスポンジボール洗
浄運転の開始特進続行することもできる。
As the seed phage 11, a previously searched bacteriophage that lyses staining microorganisms present in the intake water (seawater) 1 is used. Thereafter, the liquid in the phage culture tank 9 containing the sponge balls 1o is heated to 30% by sterile air 12.
Stir for more than a minute, but this operation can also be continued at the start of the next sponge ball cleaning operation.

なお、バクテリオファージの添加量は、通常の海水のよ
うに108個/Lの細菌濃度に対しては1010〜10
6個/l、好ましくは109〜107個/lの濃度とな
るようにする。
In addition, the amount of bacteriophage added is 1010 to 10 for a bacterial concentration of 108 cells/L like normal seawater.
The concentration should be 6 pieces/l, preferably 109 to 107 pieces/l.

このようにして得られたスポンジボール10を、次回の
スポンジボール洗浄時には、ボール供給弁17を開けて
、ファージ培養槽9内の液とともに従来の洗浄方法で用
いられるスポンジボール10の代わりに供給する。スポ
ンジボール洗浄時間は従来技術と同じ程度である。洗浄
終了後は、上述した方法でスポンジボールを再度ボール
回収弁16を経て、7アージ培養槽9へ送る。
The sponge balls 10 thus obtained are supplied together with the liquid in the phage culture tank 9 in place of the sponge balls 10 used in the conventional cleaning method by opening the ball supply valve 17 during the next sponge ball cleaning. . The sponge ball cleaning time is about the same as in the prior art. After cleaning, the sponge balls are again sent to the 7-age culture tank 9 via the ball recovery valve 16 in the manner described above.

また、本発明においては、上記のようにして得られたフ
ァージ担持スポンジボール10のみを(槽9内の液と分
離して)供給することもできる。
Further, in the present invention, only the phage-carrying sponge balls 10 obtained as described above can be supplied (separated from the liquid in the tank 9).

2 作用 (1)  当初スポンジボール洗浄を行なうと、冷却管
内壁面から掻き取った汚損性微生物は、スポンジボール
10の細孔内に多量に残存する。
2. Effect (1) When the sponge ball is initially cleaned, a large amount of the fouling microorganisms scraped from the inner wall surface of the cooling tube remains in the pores of the sponge ball 10.

【2)  汚損性微生物を内含するスポンジボール10
をファージ培養槽9で海水とともに無菌空気12で攪拌
することによシ、汚損性微生物はスポンジボール10の
細孔内で増殖する。栄養源13を添加すれば、さらに増
殖量を増加させられる。
[2) Sponge ball 10 containing fouling microorganisms
By stirring the sterile air 12 together with seawater in the phage culture tank 9, the fouling microorganisms grow within the pores of the sponge ball 10. If the nutrient source 13 is added, the amount of growth can be further increased.

(3)  バクテリオファージ(又は単に「ファージ」
とも言う)は細菌ウィルスとも呼ばれるもので、核酸と
蛋白質のみから構成さ也自己増殖能力を有しない。特定
の細菌に寄生して、その細菌を溶菌させる作用を有する
。さらに詳しく言えば、ファージの増殖は、これが細菌
に付着し、細菌内にファージの核酸が注入され、細菌内
でファージの核酸と蛋白質が合成され、次いでファージ
粒子が形成された後1.細菌が溶菌され、新たに数十〜
数百個のファージを放出するという過程を経て起きる。
(3) Bacteriophage (or simply “phage”)
) are also called bacterial viruses, and are composed only of nucleic acids and proteins and do not have the ability to self-replicate. It has the effect of parasitizing certain bacteria and lysing them. More specifically, a phage propagates after it attaches to a bacterium, injects the phage nucleic acid into the bacterium, synthesizes the phage nucleic acid and protein within the bacterium, and then forms a phage particle. Bacteria are lysed and several dozen new
It occurs through a process of releasing hundreds of phages.

本発明においては、スポンジボール10細孔内の増殖期
の汚損性微生物に種ファージ11が吸着され、ついで該
汚損性微生物が溶菌することにょシファージが放出され
る。放出されたファージは残る汚損性微生物をさらに溶
菌し、かくして大部分の汚損性微生物は溶菌され、放出
されたファージはスポンジボール1゜細孔内だけでなく
、ファージ培養槽9の液中に浮遊する。
In the present invention, the seed phage 11 is adsorbed by the fouling microorganism in the growth phase within the pores of the sponge ball 10, and then the phage is released when the fouling microorganism is lysed. The released phage further lyses the remaining fouling microorganisms, and in this way, most of the fouling microorganisms are lysed, and the released phages are suspended not only in the 1° pores of the sponge ball but also in the liquid of the phage culture tank 9. do.

(4)  このようなファージ培養槽9の液に含まれる
ファージを復水器4に注入することによシ、取水(海水
)1中に含まれる汚損性微生物にファージを吸着させ、
これを溶菌させる。
(4) By injecting the phages contained in the liquid of the phage culture tank 9 into the condenser 4, the phages are adsorbed to the fouling microorganisms contained in the intake water (seawater) 1,
This is lysed.

(5)冷却管18をスポンジボール102>f通過する
際、その内壁面にスポンジボール洗浄停止期間中折たに
付着したり、前回の洗浄時に除去されなかった汚損性微
生物は、従来の方法とまったく同じようにしてスポンジ
ボール10によって掻き取られて、除去される。その際
、球状のスポンジボール1゜はスポンジボール10bの
ように偏平な形に歪み、それに伴って細孔内に存在した
ファージが、冷却管18の内壁面と当該スポンジボール
101)の間隙に浸出し、上記掻き取シによっても除去
されなかった汚損性生物に吸着し溶菌せしめる。
(5) When the sponge ball 102>f passes through the cooling pipe 18, contaminating microorganisms that adhere to the inner wall surface during the sponge ball cleaning stop period or that were not removed during the previous cleaning are removed using the conventional method. It is scraped off and removed by the sponge ball 10 in exactly the same way. At this time, the spherical sponge ball 1° is distorted into a flat shape like the sponge ball 10b, and as a result, the phages present in the pores leak into the gap between the inner wall surface of the cooling tube 18 and the sponge ball 101). However, it adsorbs and lyses staining organisms that were not removed even by the above-mentioned scraping process.

(6)洗浄終了後のスポンジボール1oの細孔内には前
回の洗浄終了後と同様に新たに除去した汚損微生物が内
含される。
(6) After cleaning, the pores of the sponge ball 1o contain newly removed contaminating microorganisms, as in the case after the previous cleaning.

〔発明の効果〕〔Effect of the invention〕

(1)スポンジボール10の細孔は冷却管18内壁面よ
シ掻き取った汚損性微生物の増殖に適し、大量の菌体が
得られ、それによって大量のファージが得られる。
(1) The pores of the sponge ball 10 are suitable for the growth of the fouling microorganisms scraped from the inner wall surface of the cooling tube 18, and a large amount of bacterial cells can be obtained, thereby obtaining a large amount of phages.

12)  ファージの溶菌効果(溶菌時間、放出量)は
、溶菌される汚損性微生物が増殖期にあるときに最も高
い。ファージ培養槽9では、スポンジボール10の細孔
にある増殖期の汚損性微生物に種ファージ11が吸着し
溶菌することにより、最も大きな溶菌効果が得られる。
12) The lytic effect of phages (lysis time, amount released) is highest when the staining microorganism to be lysed is in the growth phase. In the phage culture tank 9, the seed phage 11 adsorbs and lyses the fouling microorganisms in the growth phase in the pores of the sponge balls 10, thereby obtaining the greatest bacteriolytic effect.

それによって効率良く大量のファージが得られる。This allows a large amount of phage to be obtained efficiently.

(3)汚損性微生物にファージを吸着させる効率は、各
々の濃度の積に比例する。したがって、取水(海水)1
より供給される汚損性微生物濃度が一定であれば、ファ
ージの注入濃度をできるだけ高めることが必要である。
(3) The efficiency with which phages are adsorbed to fouling microorganisms is proportional to the product of their respective concentrations. Therefore, water intake (seawater) 1
If the concentration of fouling microorganisms supplied is constant, it is necessary to increase the injection concentration of phages as much as possible.

特に汚損性微生物は冷却管18の内壁面に付着している
から、該壁面近傍でのファージ濃度を高める必要がある
。本発明では、冷却管18内をスポンジポール10bが
通過する際に、その壁面に高濃度のファージを浸出させ
るため、スポンジポール10bによる掻き取りとあいま
って効率よく、汚損性微生物に吸着させられる。また、
いったんファージが汚損性微生物に吸着すれば、溶菌に
要する時間に差があっても、やがて溶菌して死滅する。
In particular, since fouling microorganisms adhere to the inner wall surface of the cooling tube 18, it is necessary to increase the phage concentration near the wall surface. In the present invention, when the sponge pole 10b passes through the inside of the cooling pipe 18, a high concentration of phage is leached onto the wall surface of the cooling pipe 18, so that together with the scraping by the sponge pole 10b, the phage can be efficiently adsorbed to the fouling microorganisms. Also,
Once a phage adsorbs to a fouling microorganism, it will eventually lyse and die, even if the time required for lysis varies.

(4)スポンジボール洗浄終了後、スポンジポール10
の細孔内に内含された汚損性微生物を用いて、次回の洗
浄運転に要する大量のファージが得られる。
(4) After cleaning the sponge ball, use the sponge pole 10
Using the fouling microorganisms contained within the pores of the phage, a large amount of phages required for the next cleaning operation can be obtained.

以上の効果とあいまって次の効果が生ずる。In combination with the above effects, the following effects occur.

(5)汚損性微生物の種類は季節によって変化し、それ
に伴って種ファージ11の種類も変えなければならない
が、スポンジポール10でのその増殖状況を観察するこ
とによって迅速に対応することができる。
(5) The type of staining microorganism changes depending on the season, and the type of seed phage 11 must also be changed accordingly, but this can be quickly dealt with by observing the growth status of the seed phage 11 on the sponge pole 10.

(6)汚損性微生物を十分に溶菌除去するため、過度の
スポンジボール洗浄をすることがなくなるだけでなく、
洗浄回数を減少することができる。
(6) Since staining microorganisms are sufficiently lysed and removed, not only does it eliminate excessive cleaning of the sponge ball, but also
The number of washings can be reduced.

(力 汚損性生物の付着過程のうち、最も初期段階の構
造物表面への細菌の付着を阻止することができるため、
その後の大形汚損物の付着生育を防止することができる
(Power) It is possible to prevent the adhesion of bacteria to the structure surface at the earliest stage of the adhesion process of fouling organisms.
Subsequent adhesion and growth of large contaminants can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すフロー、第2図は本発明
および従来の細管内のスポンジポールの挙動を示す図、
第3図は従来の方法を示すフローである。 1・・・取水(海水)、2・・・スクリーン設備、6・
・・取水ポンプ、4・・・復水器、5・・・ボール捕集
器、6・・・放流水、7・・・循環水ポンプ、8・・・
ボール回収器、9・・・ファージ培養槽、10,10a
、10b・・・スポンジポール、11・・・種ファージ
、12・・・無菌空気、13・・・栄養源、14・・・
ボール捕集弁、15・・・ボール循環弁、16・・・ボ
ール回収弁、17・・・ボール供給弁、18・・・冷却
管、19・・・隔壁、20・・・冷却水室、21・・・
冷却管室 第2図
Fig. 1 is a flow diagram showing an embodiment of the present invention, Fig. 2 is a diagram showing the behavior of a sponge pole in a capillary according to the present invention and a conventional method;
FIG. 3 is a flowchart showing a conventional method. 1...Water intake (seawater), 2...Screen equipment, 6.
... Water intake pump, 4 ... Condenser, 5 ... Ball collector, 6 ... Discharge water, 7 ... Circulating water pump, 8 ...
Ball collector, 9...phage culture tank, 10, 10a
, 10b... sponge pole, 11... seed phage, 12... sterile air, 13... nutrient source, 14...
Ball collection valve, 15... Ball circulation valve, 16... Ball recovery valve, 17... Ball supply valve, 18... Cooling pipe, 19... Partition wall, 20... Cooling water chamber, 21...
Cooling pipe room diagram 2

Claims (1)

【特許請求の範囲】[Claims] 海水を利用する装置をスポンジボール洗浄する方法にお
いて、該スポンジボールに付着した汚損性微生物を溶菌
させるバクテリオファージを、該スポンジボールを含む
液中で増殖させた後、該スポンジボールまたは該スポン
ジボールを含むバクテリオファージ液を海水を利用する
装置に供給することを特徴とする担持ファージ注入によ
る海洋生物汚損の防止方法。
In a method for cleaning sponge balls of equipment using seawater, bacteriophages that lyse fouling microorganisms attached to the sponge balls are grown in a solution containing the sponge balls, and then the sponge balls or the sponge balls are cleaned. A method for preventing marine biofouling by injecting supported phage, which comprises supplying a bacteriophage solution containing the phages to a device that uses seawater.
JP14319786A 1986-06-18 1986-06-18 Method for preventing pollution of marine organisms by injection of deposited phage Pending JPS62298498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14319786A JPS62298498A (en) 1986-06-18 1986-06-18 Method for preventing pollution of marine organisms by injection of deposited phage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14319786A JPS62298498A (en) 1986-06-18 1986-06-18 Method for preventing pollution of marine organisms by injection of deposited phage

Publications (1)

Publication Number Publication Date
JPS62298498A true JPS62298498A (en) 1987-12-25

Family

ID=15333129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14319786A Pending JPS62298498A (en) 1986-06-18 1986-06-18 Method for preventing pollution of marine organisms by injection of deposited phage

Country Status (1)

Country Link
JP (1) JPS62298498A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0414304A2 (en) * 1989-08-21 1991-02-27 Unilever N.V. Aqueous antibacterial compositions comprising surfactant and bacteriophage
WO2001050866A3 (en) * 2000-01-11 2002-02-07 Intralytix Inc Method and device for sanitation using bacteriophages

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159596A (en) * 1984-01-30 1985-08-21 Agency Of Ind Science & Technol Prevention of stain by living organism

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159596A (en) * 1984-01-30 1985-08-21 Agency Of Ind Science & Technol Prevention of stain by living organism

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0414304A2 (en) * 1989-08-21 1991-02-27 Unilever N.V. Aqueous antibacterial compositions comprising surfactant and bacteriophage
WO2001050866A3 (en) * 2000-01-11 2002-02-07 Intralytix Inc Method and device for sanitation using bacteriophages
US6699701B1 (en) 2000-01-11 2004-03-02 Intralytix, Inc. Method and device for sanitation using bacteriophages
EP1421855A3 (en) * 2000-01-11 2004-07-14 Intralytix Inc. Method and device for sanitation using bacteriophages

Similar Documents

Publication Publication Date Title
Melo et al. Biofouling in water systems
Poulsen Microbial biofilm in food processing
JPH049999B2 (en)
Kelstrup et al. Microbial aggregate contamination of water lines in dental equipment and its control
WO1999041354A1 (en) Protocol for simulated natural biofilm formation
Bott et al. Ultrasound enhancement of biocide efficiency
GB2464686A (en) Filtration system
CN109897804A (en) One plant has Zhuo Beier Salmonella and its application of nitrification and denitrification function simultaneously
Jain Microbial colonization of the surface of stainless steel coupons in a deionized water system
Williams et al. The association of bdellovibrios with surfaces in the aquatic environment
JPS62298498A (en) Method for preventing pollution of marine organisms by injection of deposited phage
BRPI9811492B1 (en) method to inhibit bacterial adhesion on a submersible surface and method and composition to control biological contamination in an aqueous system
JP2003267811A (en) Slime peeling agent, slime peeling agent composition and slime peeling method
Thomas et al. Laboratory observations of biocide efficiency against Legionella in model cooling tower systems
US6955766B2 (en) Method for reducing harmful organisms in currents of water
JPH01163108A (en) Method for preventing fouling with marine life
Bott Introduction to the problem of biofouling in industrial equipment
JPH0334993B2 (en)
JP4594778B2 (en) Adherent organism observation container and observation container cleaning method
CN102417881B (en) Application of waste acid in microalgae industry
George et al. Studies on enhancement of biofilm formation and adherence due to mechanical treatment of titanium surfaces in cooling-water systems
JP2009063239A (en) Method of taking countermeasure against scale in heat exchanger
EP0879295A1 (en) Method and test kit for pretreatment of object surfaces
Reinemann et al. Interaction of chemical, thermal and physical actions on the removal of bacteria from milk contact surfaces
JPH01163599A (en) Method of preventing oceanic life from pollution