JPH01163599A - Method of preventing oceanic life from pollution - Google Patents

Method of preventing oceanic life from pollution

Info

Publication number
JPH01163599A
JPH01163599A JP32203987A JP32203987A JPH01163599A JP H01163599 A JPH01163599 A JP H01163599A JP 32203987 A JP32203987 A JP 32203987A JP 32203987 A JP32203987 A JP 32203987A JP H01163599 A JPH01163599 A JP H01163599A
Authority
JP
Japan
Prior art keywords
phage
cleaning
cleaning member
supplied
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32203987A
Other languages
Japanese (ja)
Inventor
Michiro Araki
荒木 道郎
Kazuo Kamimura
上村 一雄
Tsuneyuki Kitahara
北原 經之
Masaki Hirano
正樹 平野
Masaaki Sugimoto
杉本 正昭
Yushin Minamide
南出 雄伸
Masaaki Negoro
正明 根来
Hideki Kamiyoshi
秀起 神吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP32203987A priority Critical patent/JPH01163599A/en
Publication of JPH01163599A publication Critical patent/JPH01163599A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent oceanic life from pollution by supplying a bacteriophage solution carrying bacteriophage subjecting stained microorganisms to bacteriolysis, to a device utilizing seawater. CONSTITUTION:In the case of cleaning a condenser, a cleaning member 11 is supplied to a cleaning member recovery apparatus 9 to contain water. Thereafter, the water-containing cleaning member 11 is sent into a phage culture tank 10. Suitable quantities of aseptic air 13 and a nutrition source 14 are supplied thereto and bacteriophage which subjects polluted microorganisms to bacteriolysis is supplied thereto as a seed culture phage 12 to carry out the culture of the phage and carrying of the phage on the cleaning member 11. At the time of cleaning the condenser, the phage carrying-cleaning member 11 is supplied to the cleaning pipe group of the condenser 5. When the cleaning member 11 makes contact or slide with the inner surface of a water chamber and a cooling pipe, the carried phage associates with staining adhered bacteria adhering to pipe wall surfaces and subjects the same to bacteriolysis to display cleaning effects, and the phage oozing out from the cleaning member 11 associates the staining adhered bacteria existing in seawater moving in the tube and subjects the same to bacteriolysis.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は臨海発電所をはじめ、臨海コンビナートで多く
利用されている海水利用熱交換装置、臨海立地のプラン
ト設備からの熱回収および冷却装置、船舶における海水
冷却装置、海水淡水化装置、LNG基地での気化装置な
どにおける海洋性生物汚損防止法tで関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to seawater heat exchange equipment, which is widely used in waterfront power plants and waterfront industrial complexes, heat recovery and cooling equipment from waterfront plant equipment, This law relates to the Marine Biological Fouling Prevention Law for seawater cooling systems in ships, seawater desalination systems, vaporization systems at LNG terminals, etc.

〔従来の技術] 従来技術について、臨海立地の火力発電所における復水
冷却装置を例として第1図(なお、この図は本発明の一
実施態様の説明にも使用される)により以下説明する。
[Prior Art] The conventional art will be explained below with reference to FIG. 1 (this figure will also be used to explain one embodiment of the present invention) using a condensate cooling system in a coastal thermal power plant as an example. .

取水海域から得た取水(海水)1はスクリー、いう)を
分離したのち、放流水7として放流海域に放流される。
Intake water (seawater) 1 obtained from the intake sea area is separated from the scree (referred to as scree) and then discharged to the discharge sea area as discharge water 7.

このような海水利用の系統設備の運転において、フジッ
ボ、かき、ムラサキイガイなどの貝−類やヲサコヶムン
などの虫類、その他藻類−や細菌などの微生物が撒水路
壁、管路内壁や熱交換器氷室に好んで繁殖する。
During the operation of such system equipment that utilizes seawater, shellfish such as oysters, oysters, and mussels, insects such as snails, other algae, and microorganisms such as bacteria are sprayed onto the walls of waterways, inner walls of pipes, and heat exchanger ice chambers. They like to breed.

これら汚損性付着生物の成長による被害は伝熱面全汚損
して熱伝達率の低下をもたらすだけではなく、系統の損
失水頭の増大を招くこととなシ機器や分岐管の閉塞障害
となり、更に復水器や伝熱管の閉塞のほが伝熱細管の保
護被膜の破壊による潰食の助長および局部腐食を招くこ
とになる。臨海立地の発電所においては海洋生物対策が
最も切実な問題でアシ海水冷却系統のトラブル発生と保
守管理面の費用の大半は海洋付着生物に起因するとして
も過言ではない。
The damage caused by the growth of these fouling organisms not only fouls the entire heat transfer surface and lowers the heat transfer coefficient, but also increases the water head loss of the system and causes blockage of equipment and branch pipes. If the condenser or heat transfer tube is blocked, the protective coating of the heat transfer tube is destroyed, promoting erosion and causing local corrosion. For power plants located on the coast, measures against marine life are the most pressing issue, and it is no exaggeration to say that most of the problems and maintenance costs associated with reed seawater cooling systems are caused by marine fouling organisms.

上記の問題全解決する手段として、従来は付着生物の成
Wk抑制する面と清掃除去の両面から各種の方策が講じ
られてきた。塩素注入に代表されるように除害対象生物
に対しての壽性成の影響が大きく、環境保全の見地から
もその使用は制限される。
In order to solve all of the above problems, various measures have been taken in the past from the viewpoint of both suppressing the growth of attached organisms and cleaning and removing them. As typified by chlorine injection, it has a large effect on the organisms targeted for abatement, and its use is restricted from the standpoint of environmental conservation.

また、温水処理法や浸透圧衝撃法などの物理的な処理法
およびブラン洗浄やスポンジボール洗浄などの機械的除
去法も検討されている。しかし、これらは付着生物の幼
生期に適正な対策処理を行えば、それぞれに効果を得る
ことが知られているが、発電所の冷却水のように大容計
の水(て対して、このような処理条件全例規することは
大量のエネルギーを必要とするため実用性に之しいと云
える。
In addition, physical treatment methods such as hot water treatment and osmotic shock methods, and mechanical removal methods such as bran cleaning and sponge ball cleaning are also being investigated. However, it is known that each of these can be effective if appropriate countermeasures are taken during the larval stage of the sessile organisms. It can be said that it is impractical to regulate all such processing conditions because it requires a large amount of energy.

そこで、現状では残留塩素濃度を厳密に制御した塩素注
入の池戦ヲ限定した上での利用と海水路壁の除貝にブラ
シによる機械的洗浄の適用および熱交換器のスライム除
去にスポンジボール洗浄が採用されている以外は、経済
性の面と防汚効果の確実性に欠けることから実用性に乏
しく、いずれも採用に至ってはいない。以上のことから
環境を保全して、しかも実用性があって塩素注入に代替
する防汚技術の出現が待たれこの方法は付着汚損生物の
付着生背の一過程で細菌を食するバクテリオファージ(
以下、単にファージとも云う)を介在させることにより
スライム汚損を防止し、引いては付着生物汚損を防止す
るもので、微生物によって微生物を制御するユニークな
考え方に基く方法である。
Therefore, at present, the use of chlorine injection is limited to ponds with strictly controlled residual chlorine concentration, mechanical cleaning with brushes is applied to remove shells from sea channel walls, and sponge ball cleaning is used to remove slime from heat exchangers. However, none of them have been adopted due to their lack of practicality due to their lack of economic efficiency and certainty of antifouling effects. Based on the above, we are looking forward to the emergence of an antifouling technology that is environmentally friendly, practical, and can replace chlorine injection.
This method is based on the unique concept of controlling microorganisms using microorganisms, which prevents slime staining and, in turn, prevents fouling of attached organisms by intervening microorganisms (hereinafter simply referred to as phages).

このバクテリオファージによる防汚技術の概要を述べる
と、海水接触面の生物汚損は次に示すようなメカニズム
で進行すると考えられている。
To give an overview of this antifouling technology using bacteriophage, biological fouling of surfaces that come into contact with seawater is thought to proceed through the following mechanism.

(1)海水と接する固体表面に海水中の有機物が付着す
る。
(1) Organic matter in seawater adheres to solid surfaces that come into contact with seawater.

(2)  有機物被膜に細菌が可逆的(で、さらに不可
逆的に付着する。
(2) Bacteria attach reversibly (and irreversibly) to the organic film.

(3)付着した細菌が粘着性の細胞外高分子物質を分泌
し、スライム状の微生物膜をつくる。
(3) The attached bacteria secrete sticky extracellular polymeric substances and form a slime-like microbial film.

(4)  この被膜が付着生物の幼生や胞子を誘引し、
それらが貝類や海草類のようなマクロ生物に成長する。
(4) This film attracts larvae and spores of attached organisms,
They grow into macroorganisms such as shellfish and seaweeds.

この生物汚れ発生のメカニズムを検討し、(2)の天敵
とも云えるバクテリオファージを利用するのが、この方
法の骨子である。
The essence of this method is to examine the mechanism of this biological fouling generation and utilize bacteriophages, which can be called natural enemies in (2).

バクテリオファージによシ第1図に示す復水器を洗浄す
るには次のようにして行われる。通常、複数の管群によ
って構成された復水器5のうちの1つの管群について海
水を通水したままで洗浄(−1:実施される。図の洗浄
体回収器9へ洗浄体11を供給する。回収器9で洗浄体
11を浸漬して含水させたのち、洗浄体回収弁17を開
けて海水とともにファージ培養槽10へ送る。
Cleaning of the condenser shown in FIG. 1 by bacteriophage is carried out as follows. Normally, one pipe group of the condenser 5 composed of a plurality of pipe groups is cleaned with seawater flowing through it (-1: carried out. The cleaning body 11 is transferred to the cleaning body recovery device 9 in the figure). After the washed body 11 is immersed in water in the recovery vessel 9, the washed body collection valve 17 is opened and the washed body is sent to the phage culture tank 10 together with seawater.

ファージ培養槽10には、無菌空気16と栄養源14の
適切量が供給される。ファージ培養槽10へ、あらかじ
め探索しておいた取水(海水)1に存在する汚損性微生
物全溶菌させるバクテリオファージを種ファージ12と
して添加する。
Phage culture tank 10 is supplied with sterile air 16 and appropriate amounts of nutrient source 14 . A bacteriophage which has been searched in advance and is capable of lysing all of the fouling microorganisms present in the intake water (seawater) 1 is added to the phage culture tank 10 as a seed phage 12.

洗浄体11を含んだファージ培養槽10において77−
ジの培養と洗浄体11へのファージの担持が行われる。
In the phage culture tank 10 containing the washed body 11, 77-
The phages are cultured and the phages are carried on the washed body 11.

このようにして得たファージ担持の洗浄体11を復水器
洗浄時には洗浄体供給弁18を開けて、洗浄体回収器1
6を経て復・水2器5の洗浄管群へ供給する。
When cleaning the condenser with the thus obtained phage-carrying cleaning body 11, the cleaning body supply valve 18 is opened, and the cleaning body recovery vessel 1
6 and then supplied to the cleaning pipe group of condenser/water unit 5.

””%水型5に供給されたファージ担持の洗浄体11は
水室ならびに冷却管の内面に接触または摺動する際に担
持ファージが管壁面に付着している汚損性付着細菌と会
合して溶菌し洗浄効果を発揮する。−!た、洗浄体11
から浸出したファージは管内を流動する海水中に存在す
る汚損性付着細菌とも会合して溶菌する。復水器5を洗
浄した洗浄体11は洗浄体捕集器6で放流水7と分離さ
れたのち洗浄体捕集弁15および循環水ポンプ8′f:
経て洗浄体回収器9に送られる。
When the phage-carrying cleaning body 11 supplied to the water type 5 contacts or slides on the inner surface of the water chamber and the cooling pipe, the phage-carrying phage interacts with the fouling adhering bacteria adhering to the pipe wall surface. It lyses bacteria and has a cleaning effect. -! Cleaning body 11
The phage exuded from the tube also associates with fouling adhering bacteria present in the seawater flowing through the tube and lyses them. The cleaning body 11 that has cleaned the condenser 5 is separated from the effluent water 7 in the cleaning body collector 6, and then the cleaning body collection valve 15 and the circulating water pump 8'f:
After that, it is sent to the cleaning body recovery device 9.

以上の循環操作を所定時間続けて洗浄f−1終了する。The above circulation operation is continued for a predetermined period of time to complete the cleaning f-1.

洗浄が終了すれば洗浄体捕集弁15、循環弁16を閉じ
循環水ポンプ8を停止する。この洗浄操作は伝熱管の摩
耗対策から定期的に断続運用されるのが通常である。
When the cleaning is completed, the cleaning body collection valve 15 and the circulation valve 16 are closed and the circulating water pump 8 is stopped. This cleaning operation is normally performed intermittently on a regular basis to prevent wear of the heat transfer tubes.

〔発明が解決しようとする問題点] 付着細菌を溶菌するバクテリオファージは細菌ウィルス
とも呼ばれるもので核酸と蛋白質のみから構成され自己
増殖能力全盲しない。また、自己泳動することもない非
常に微小で特殊な微生物である。このファージは宿主と
呼ばれる特、細菌(宿主)と会合して付着し、ファージ
の遺伝子が宿主菌の細胞内へ注入される。注入されたフ
ァージの遺伝子により宿主細胞内でファージ遺伝子およ
び構成蛋白質の復製が行われて新しいファージが形成さ
れ、次いでは宿主細胞が溶菌されて新しく形成した多数
のファージが細胞外に放出される。放出されたファージ
の形状や性質は元の7アージと全く同一であ乃再び他の
宿主細菌と会合して溶菌し増殖をくり返す。
[Problems to be Solved by the Invention] Bacteriophages that lyse attached bacteria are also called bacterial viruses, and are composed only of nucleic acids and proteins, and do not have the ability to self-replicate. In addition, they are extremely small and special microorganisms that do not self-migrate. This phage associates with and attaches to a particular bacterium called a host, and the phage's genes are injected into the cells of the host bacterium. The injected phage genes reproduce the phage genes and constituent proteins within the host cell to form new phages, and then the host cell is lysed and a large number of newly formed phages are released outside the cell. The shape and properties of the released phage are exactly the same as the original 7-age, and it again associates with other host bacteria, lyses, and repeats multiplication.

以上のように生物汚れを起す付着細菌の溶菌作用は宿主
となる細菌と、これに溶菌活性を有するファージとの会
合接触によって初めてなされる。このため、会合接触の
効率(は、細菌とファージの各々の濃度の、@に比例す
るので、でき得る限りファージの注入濃度を高めること
が望ましい。
As described above, the bacteriolytic action of adherent bacteria that causes biological stains is first achieved through association and contact between host bacteria and phage having bacteriolytic activity. For this reason, since the efficiency of association contact is proportional to the respective concentrations of bacteria and phages, it is desirable to increase the injection concentration of phages as much as possible.

〔発明の目的〕[Purpose of the invention]

本発明に上記要望に答え、ファージを担持する面積が広
い固定化担体を使用してファージの高濃度化ケ図り、高
度に担持されたファージを本発明は海水を利用する装置
を多孔質弾性体によち洗浄する方法において、汚損性微
生物を溶菌させるバクテリオファージを担持させたキト
サン多孔質弾性体または該弾性体を含むバクテリオファ
ージ液を海水全利用する装置に供給することを特徴とす
る海洋性生物汚損防市法である。
In response to the above-mentioned needs, the present invention aims to increase the concentration of phage by using an immobilization carrier with a wide area for carrying phage, and the present invention has developed a device that uses seawater to obtain highly loaded phages using a porous elastic material. A marine-based cleaning method characterized by supplying a chitosan porous elastic body carrying a bacteriophage that lyses staining microorganisms or a bacteriophage solution containing the elastic body to an apparatus that utilizes all seawater. This is the City Law on Prevention of Biological Fouling.

すなわち、本発明はファージを大量に担持する固定化担
体としてキトサン多孔質体を選択したものである。キト
サンはキチンを脱アセチル化処理して得られたポリグル
コサミンであり、有機酸や鉱酸などに易溶性であるため
反応性も高く種々の形態に成形することが可能である。
That is, in the present invention, a porous chitosan material is selected as an immobilization carrier that supports a large amount of phages. Chitosan is a polyglucosamine obtained by deacetylating chitin, and since it is easily soluble in organic acids and mineral acids, it has high reactivity and can be molded into various forms.

また、キトサンが分子内に反応性の高いアミン基全盲し
ているため酵素やファージを初めとする各種の蛋白質を
よく吸着担持する。そこで、機器に添加して、その洗浄
と付着生物汚損の防1、、、□、24おう、。アあ、6
゜ 孔質物質を被覆したもの及びキトサン多孔質物質そのも
のを球状に成形したものを含めた意で用いられる。
In addition, since chitosan has no highly reactive amine groups in its molecule, it adsorbs and supports various proteins, including enzymes and phages. Therefore, it is added to equipment to clean it and prevent fouling of attached organisms. Ah, 6
It is used to include those coated with a porous material and those made of porous chitosan itself molded into a spherical shape.

また本発明で使用するキトサンの脱アセチル化度及び平
均分子量は、特に限定するものではないが、脱アセチル
化度は70〜90係、平均分子量は1万〜60万程度の
比較的低分子量のものを用いるのが好ましい。なお、脱
アセチル化度を上げる程、蛋白質の固定化能力は高くな
るものである。
Furthermore, the degree of deacetylation and average molecular weight of chitosan used in the present invention are not particularly limited, but the degree of deacetylation is 70 to 90, and the average molecular weight is about 10,000 to 600,000, which is a relatively low molecular weight. It is preferable to use Note that the higher the degree of deacetylation, the higher the protein immobilization ability.

〔作用〕[Effect]

本発明においてキトサン多孔質弾性体に担持させて添加
する大量のファージは構造物の固体表面に付着している
汚損性付着細菌または同弾性体によって固体表面から掻
き取られた汚損性微生物全溶菌し、殺菌する。さらに、
新たに流入する海水中に含まれる汚損性微生物に対して
も効率的に会合接触して溶菌し、殺菌する。また、一般
(lこファージと宿主細菌との関係は「1対1.」の対
応であることが知られておシ3.生物るため、過重な洗
浄頻度によって構造物表面を損傷することもなく、しか
もバクテリオファージという自然界に存在する微生物を
用いるため生体蓄積(てよる二次公害を起すこともない
In the present invention, a large amount of phages supported and added to the chitosan porous elastic material lyses all the fouling bacteria attached to the solid surface of the structure or the fouling microorganisms scraped off the solid surface by the same elastic material. ,Sterilize. moreover,
It also efficiently contacts and lyses polluting microorganisms contained in newly inflowing seawater, thereby sterilizing them. In addition, it is known that the relationship between phage and host bacteria is generally one-to-one. Moreover, since it uses naturally occurring microorganisms called bacteriophages, it does not cause secondary pollution due to bioaccumulation.

以上の如く、キトサン多孔質弾・踵体で構成した洗浄体
に多士のファージを担持させテ海水系統機器の海水接角
虫固体表面の洗浄を行えば、効率的に汚損性微生物とフ
ァージの会g−6図ることができ、溶菌、殺菌:から生
物汚損を防止することができる。
As described above, if the cleaning body composed of chitosan porous bullets and heel bodies is loaded with a variety of phages and the solid surface of seawater contact insects in seawater system equipment is cleaned, fouling microorganisms and phages can be efficiently removed. It can prevent biological contamination from bacteriolysis and sterilization.

〔実施例〕〔Example〕

本発明の実施態様例を第1図のフローによって説明する
。通常、複数の管群によって構成された復水器5のうち
の1つの管群1tてつぃて海水全通水したままで従来と
同様の方法で洗浄が行われる。
An embodiment of the present invention will be explained with reference to the flow shown in FIG. Normally, cleaning is performed in the same manner as in the past, with seawater flowing through one tube group 1t of the condenser 5, which is composed of a plurality of tube groups.

ファージを担持させる洗浄体f−j、弾性を保持するよ
うに内部層を連続気泡の弾性体(例えば天然ゴム発泡弾
性体)で構成し、その表層を数隠以下の厚さでキトサン
多孔質体が被覆する如く71着されており、ファージ培
養槽1oで容易、ij 1 全36%酢酸溶液って溶解してキトサン酸性溶液を得、
次いで7係苛性ソーダ、60係エタノール、66係水の
組成よりなる堪基性溶液中をてノズルを介して噴霧滴下
して粒状に凝固再生する。
The cleaning body f-j that supports phages has an inner layer made of an open-celled elastic material (e.g. natural rubber foamed elastic material) to maintain elasticity, and a surface layer made of chitosan porous material with a thickness of less than a few inches. 71 was attached so as to cover the chitosan, and it was easily dissolved in a phage culture tank 1o with a total of 36% acetic acid solution to obtain an acidic chitosan solution.
Next, a resistant solution consisting of 7% caustic soda, 60% ethanol, and 66% water is sprayed dropwise through a nozzle to solidify and regenerate into granules.

その後中性となる逸水で充分洗浄して粒度が50〜10
0メツシユのキトサン多孔質粒状体が得られる。洗浄体
内層全構成する弾性体の表面に、上記キトサン粒状体金
主剤としエポキン樹脂等の接着剤金倉して表装被覆する
ことにより、キトサン多孔質体を表層に装着したキトサ
ン多孔質弾性体(洗浄体)が形成される。
After that, thoroughly wash with neutral water to reduce the particle size to 50-10.
Chitosan porous granules with 0 mesh are obtained. The chitosan porous elastic body (cleaning material) with chitosan porous material attached to the surface layer is coated on the surface of the elastic body constituting the entire inner layer of the cleaning body with the above-mentioned chitosan granules as a gold base and an adhesive such as Epoquin resin. body) is formed.

このキトサン多孔質弾性体の表層を構成するキトサン多
孔質体の0.5cm”’ji7採り、ファージ保存液1
07で水置換の後オートクンープで121℃、20分間
で滅菌し、ファージ保存液を除去した後、付着性細菌(
シュードモナス層のダラム陰性桿菌)を宿主とするバク
テリオファージを117X10I4個/−含むファージ
溶菌液にて25℃で4時間インキユベートシテバx、=
:1t、h走化されたバクテリオファージの個数はファ
ージ溶菌液(原液)と固定fヒ処理残液の波長256 
nmにおける吸光度の差から求めて3,93X1012
個/−−キトサン多孔質体を計測した。
A 0.5 cm sample of the chitosan porous material constituting the surface layer of this chitosan porous elastic material was taken, and a phage preservation solution 1 was taken.
After water replacement in 07, sterilization was performed at 121°C for 20 minutes in an autoclave, and after removing the phage storage solution, the adherent bacteria (
Incubate for 4 hours at 25°C in a phage lysate containing 4/- 117 x 10 I of bacteriophages whose hosts are Durham-negative bacilli of the Pseudomonas layer.
: 1t, h The number of chemotactic bacteriophages is the wavelength of the phage lysate (undiluted solution) and the fixed f-treated residual solution: 256
3,93X1012 determined from the difference in absorbance in nm
/- chitosan porous body was measured.

次いでペプトン05%、酵母エキス0.1%、グルコー
ス0.1係、寒天1.5係を含むpH7,8の寒天平板
培地に付着性細菌(シュードモナス属のダラム陰性細菌
)′f:増殖させ、これに上記キトサン多孔質体に固定
化されたファージを着床して、25℃、24時間静置培
養した結果、宿主である桿菌の増殖によって乳白[Q’
Th呈していた培地面において、キトサン多孔質体に固
定化のファージ担持体着床部の周辺に透明な溶菌斑が認
められた。このことからファージを固定化したキトサン
多孔質弾性体によって宿主の付着細菌は溶菌され、浄化
されたことが確認できた。
Next, adherent bacteria (Durum-negative bacteria of the genus Pseudomonas) were grown on an agar plate medium at pH 7.8 containing 05% peptone, 0.1% yeast extract, 0.1 part glucose, and 1.5 part agar. The phage immobilized on the chitosan porous material was implanted on this material, and as a result of static culture at 25°C for 24 hours, milky white [Q'
On the surface of the medium exhibiting Th, clear lytic plaques were observed around the implantation site of the phage carrier immobilized on the chitosan porous material. This confirmed that the bacteria attached to the host were lysed and purified by the chitosan porous elastic material on which the phage was immobilized.

キトサンはその物性から塩基性凝固浴中に落下させて粒
状に、ノズルから押出して繊維状に、Iろことが可能で
あるため、ゴムの球のような陣営天然ゴム発泡弾性体)
よりも比表面積(高滓製作所製、比表面積測定機によJ
BET法にて測定)が格段に大きく、60m2/グ以上
となるように調製されている。従来の洗浄体の比表面積
計測値が0.1 m2/ ?以下であることからキトサ
ン多孔質体で表面被覆の洗浄体はファージの固定化量が
従来の洗浄体に比較して著しく増大することを示してい
る。
Due to its physical properties, chitosan can be dropped into a basic coagulation bath to form granules, extruded from a nozzle to form fibers, and so on.
Specific surface area (manufactured by Takafusa Seisakusho, specific surface area measuring machine J)
(measured by the BET method) is significantly large, and is prepared so that it is 60 m2/g or more. The measured specific surface area of conventional cleaning bodies is 0.1 m2/? The following shows that the amount of immobilized phages in the cleaning body whose surface is coated with chitosan porous material is significantly increased compared to the conventional cleaning body.

また、洗浄体自体をキトサン多孔質体で構成してもよく
、比表面積も凝固再生する際の条件設定で適当値に調整
することができる。
Further, the cleaning body itself may be composed of a porous chitosan material, and the specific surface area can be adjusted to an appropriate value by setting conditions during solidification and regeneration.

このキトサン多孔質弾性体(以下キトサン洗浄体11a
という)ff:用いて復水器5を洗浄する手順を、第1
図のフローに従って説明すると、キトサン洗浄体11a
i洗浄体回収器9において浸漬含水させたのち、洗浄体
回収弁17を開きファージ培養槽10へ送る。ファージ
培養槽10には無菌空気16と栄養源14が供給される
。栄養源14としては海洋性従属栄養細菌の較的高く、
かつ有機+V!IJなど微生物の栄養分が充足される場
合や機器の洗浄運転の間隔が十分に取れる場合には必ず
しも栄養源14は添加しなくてもよい。
This chitosan porous elastic body (hereinafter referred to as chitosan cleaning body 11a)
) ff: The procedure for cleaning the condenser 5 using
To explain according to the flow shown in the figure, the chitosan cleaning body 11a
i After being soaked in water in the washed body recovery device 9, the washed body recovery valve 17 is opened and sent to the phage culture tank 10. The phage culture tank 10 is supplied with sterile air 16 and a nutrient source 14 . As a nutrient source 14, marine heterotrophic bacteria are relatively high;
And organic +V! The nutrient source 14 does not necessarily need to be added if nutrients for microorganisms such as IJ are sufficient or if there is sufficient interval between cleaning operations of the equipment.

このようにして4〜24時間、好ましクハ6〜8時間保
持して付着細菌を培養したのち種ファージ12を添加す
る。種ファージ12は予め探索しておいた取水(海水)
1に存在する汚損性微生物を溶菌させるファージを用い
る。
After culturing the adherent bacteria by holding in this manner for 4 to 24 hours, preferably 6 to 8 hours, seed phage 12 is added. Seed phage 12 is extracted from previously explored water (seawater)
A phage that lyses staining microorganisms present in 1 is used.

その後、キトサン洗浄体11 ai含む培養液を無菌空
気13を供給しながら60分以上、好ましくは2〜5時
間攪拌してキトサン洗浄体11aにファージを担持させ
る。キトサン洗浄体11aのファージを固定fヒして担
持する量はキトサンを架橋反応などの化学修飾処理の実
施と、その度合によって一様ではないが、他のフはファ
ージ溶菌液中でインキュベート後の水洗浄操作で殆んど
流出してしまいファージの固定化機能は認められなかっ
た。
Thereafter, the culture solution containing the chitosan-washed body 11a is stirred for 60 minutes or more, preferably for 2 to 5 hours, while supplying sterile air 13, to make the chitosan-washed body 11a support the phage. The amount of phage immobilized and supported on the chitosan-washed body 11a varies depending on the chemical modification treatment such as cross-linking reaction carried out on the chitosan and its degree; Most of it was washed out with water and no phage immobilization function was observed.

ファージ培養槽10において得られたキトサン洗浄体1
1 a’i復水器洗浄時には洗浄体供給弁18を開けて
洗浄体循環弁16を経て復水器5の洗浄管群へ供給する
。復水器5の洗浄操作は従来技術と同様に行われ終了す
る。
Cleaned chitosan body 1 obtained in phage culture tank 10
1 a'i When cleaning the condenser, the cleaning body supply valve 18 is opened and the cleaning body is supplied to the cleaning pipe group of the condenser 5 via the cleaning body circulation valve 16. The cleaning operation of the condenser 5 is performed and completed in the same manner as in the prior art.

また、付着性細菌と溶菌活性を有するバクテリオファー
ジとの会合接触の機会をファージ液注入法の場合と比較
してみると、ファージ液注入法では108個/lの細菌
を含む通常の海水に対して1を中に1010〜106個
好ましくは109〜107個のファージ濃度となるよう
に添加が行われる。これに対してキトサンの固定化物は
前述の通り3.93X1012個/d−キトサン多孔質
体のファージ濃度であり、ファージ液注入法の107 
倍の容積比率濃度でファージが存在するので汚損性細菌
との会合接触の機会は格段に増大する。更に、汚損生物
付着面近傍で一般に冷却管の直径は3 t 75 mm
から254咽に採られる。ここで管内流体の壁面流速が
影響する限界といわれる壁面から1mmの流体層に高濃
度のファージを存在させればよいことから、その容積比
率は通常の筒内流量の13〜17係となるので、ファー
ジの所要量を節減できる。
In addition, when comparing the chances of association and contact between adherent bacteria and bacteriophages with lytic activity with the phage liquid injection method, it was found that the phage liquid injection method was effective against normal seawater containing 108 bacteria/l. The addition is carried out so that the concentration of phages is 1010 to 106, preferably 109 to 107. In contrast, the immobilized chitosan product had a phage concentration of 3.93 x 1012 phages/d-chitosan porous material as described above, and the phage concentration was 107 using the phage liquid injection method.
Since the phages are present at twice the volume ratio concentration, the chance of association contact with fouling bacteria is greatly increased. Furthermore, the diameter of the cooling pipe near the surface where fouled organisms adhere is generally 3 mm.
It is taken from 254 pharynx. Here, it is sufficient to have a high concentration of phages in a fluid layer 1 mm from the wall surface, which is said to be the limit of the influence of the wall surface flow velocity of the fluid in the tube, so the volume ratio will be 13 to 17 times the normal flow rate in the tube. , the amount of phages required can be reduced.

この点においてもキトサン洗浄体11ai、付着細菌の
付着予測面にファージの高MU担持面が接することとな
るため効果的であることと、更に壕だ、キトサン洗浄体
11aが冷却管内を数回通過するように循環使用される
ことから本発明の意図する会合接触の機会増大に寄与す
る。
In this respect as well, the chitosan cleaning body 11ai is effective because the high MU-carrying surface of the phage comes into contact with the predicted adhesion surface of the attached bacteria. Since it is used repeatedly, it contributes to increasing the chances of meeting and contacting as intended by the present invention.

なお、ファージを担持したキトサン洗浄体11aの供給
はファージ培養槽10の培養液と共に復水器5へ注入さ
れるのでキトサン洗浄体11aが被洗浄固体表面を掻く
ように移行してのファージとが会合するので洗浄殺菌の
効果は相乗的に増加する。
The chitosan washed body 11a carrying phage is supplied to the condenser 5 together with the culture solution in the phage culture tank 10, so that the chitosan washed body 11a scratches the surface of the solid to be cleaned and the phages are transferred to the condenser 5. Because of the association, the cleaning and sterilizing effect increases synergistically.

術においては、ファージが汚損性付着細菌と会合するこ
とによって初めて成立つが、本発明に示す如く、付着性
細菌が着生している固体表面に最もファージ濃度が高く
担持されたキトサン多孔質弾性体表層が接することとな
るため、ファージと汚損性付着細菌との効率的会合を図
ることができて、ファージを活用する海洋性汚損防止技
術の開発実用化に寄与するものであり、産業上に有益で
ある。
In the technique, phages are first established when they associate with staining adherent bacteria, but as shown in the present invention, chitosan porous elastic material with the highest concentration of phage supported on the solid surface on which adherent bacteria are attached. Since the surface layer is in contact with each other, it is possible to achieve efficient association between phages and fouling-prone attached bacteria, which contributes to the development and practical application of marine fouling prevention technology that utilizes phages, which is industrially beneficial. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明及び従来技術における海洋性生物汚損防
止法の態様を説明するための説明図である。 図において、1は取水、2はスクリン設備、3は取水ポ
ンプ、4は保安フィルター、5は復水器、6は洗浄体捕
集器、7は放流水、8は循環水ポンプ、9は洗浄体回収
器、10はファージ培養槽、11id洗浄体、11 a
idキトサン洗浄体、12は種ファージ、16は無菌空
気、14は栄養源、15は洗浄体捕集弁、16は循井で
ある。
FIG. 1 is an explanatory diagram for explaining aspects of the method for preventing marine biological fouling according to the present invention and the prior art. In the figure, 1 is water intake, 2 is screen equipment, 3 is water intake pump, 4 is safety filter, 5 is condenser, 6 is cleaning body collector, 7 is discharge water, 8 is circulating water pump, 9 is cleaning Body recovery device, 10 is a phage culture tank, 11id washing body, 11a
id chitosan cleaning body, 12 is a seed phage, 16 is sterile air, 14 is a nutrient source, 15 is a cleaning body collection valve, and 16 is a circulation well.

Claims (1)

【特許請求の範囲】[Claims] 海水を利用する装置を多孔質弾性体により洗浄する方法
において、汚損性微生物を溶菌させるバクテリオファー
ジを担持させたキトサン多孔質弾性体または該弾性体を
含むバクテリオファージ液を海水を利用する装置に供給
することを特徴とする海洋性生物汚損防止法。
In a method for cleaning equipment that uses seawater with a porous elastic body, a chitosan porous elastic body carrying a bacteriophage that lyses fouling microorganisms or a bacteriophage solution containing the elastic body is supplied to the equipment that uses seawater. The Marine Biological Fouling Prevention Act is characterized by:
JP32203987A 1987-12-18 1987-12-18 Method of preventing oceanic life from pollution Pending JPH01163599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32203987A JPH01163599A (en) 1987-12-18 1987-12-18 Method of preventing oceanic life from pollution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32203987A JPH01163599A (en) 1987-12-18 1987-12-18 Method of preventing oceanic life from pollution

Publications (1)

Publication Number Publication Date
JPH01163599A true JPH01163599A (en) 1989-06-27

Family

ID=18139240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32203987A Pending JPH01163599A (en) 1987-12-18 1987-12-18 Method of preventing oceanic life from pollution

Country Status (1)

Country Link
JP (1) JPH01163599A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009076642A3 (en) * 2007-12-12 2009-09-11 The Texas A & M University System Compositions and methods for the treatment, mitigation and remediation of biocorrosion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009076642A3 (en) * 2007-12-12 2009-09-11 The Texas A & M University System Compositions and methods for the treatment, mitigation and remediation of biocorrosion

Similar Documents

Publication Publication Date Title
Melo et al. Biofouling in water systems
US4778653A (en) Method for preventing biofouling of surfaces in contact with sea water
Flemming et al. Antifouling strategies in technical systems—a short review
Bachosz et al. Enzyme-based control of membrane biofouling for water and wastewater purification: A comprehensive review
US9440871B2 (en) Treatment agent for salt-containing organic waste liquid, salt concentration-reducing agent, treatment method for salt-containing organic waste liquid, and entrapment immobilization carrier
Gizer et al. Biofouling and mitigation methods: A review
CN106754546A (en) One plant of Halomonas bacterial strain and the immobilized microbial inoculum containing it of dissolving dinoflagellate
Corre et al. Density and morphology of epiphytic bacteria on the kelp Laminaria digitata
Jain Microbial colonization of the surface of stainless steel coupons in a deionized water system
JPH01163108A (en) Method for preventing fouling with marine life
CN1273507A (en) Method and compositions for controlling biofouling using sulfamic acids
RU2272793C2 (en) Waste water treatment process, means and mixed bacterial population (options) for implementation of the process
US20110309021A1 (en) Mitigation of irrigation water using zero-valent iron treatment
JPH01163599A (en) Method of preventing oceanic life from pollution
CN114621885A (en) Bacillus subtilis for efficiently removing ammoniacal nitrogen and nitrite nitrogen and application thereof in aquaculture
Kolappan et al. Efficacy of UV treatment in the management of bacterial adhesion on hard surfaces
RU2002100258A (en) The method of water purification, bacteria for implementing the method and their application
CN115232766A (en) Halophilic microorganism sewage cleaning agent and preparation method thereof
JP2004066201A (en) Bacteria reactor and algae reactor for water treatment and water purification device using them
CN1270572A (en) Method and compositions for controlling biofouling using amino methyl phosphonic acids
JP2005224720A (en) Bacteria reactor and algae reactor for water treatment, and water purification apparatus using them
JPH024704A (en) Method for preventing and eliminating damage of adhesive microorganism by lytic bacteria
CN102264650A (en) Method for reduction of microbes on surfaces
CN109837545A (en) A kind of anti-rotten and antifouling capacity method in the ocean of NB-IOT information module encapsulation protection stainless steel substrates
US20110294159A1 (en) Biocompatible Article for the Treatment of Water and Production of Energy