JPH024704A - Method for preventing and eliminating damage of adhesive microorganism by lytic bacteria - Google Patents

Method for preventing and eliminating damage of adhesive microorganism by lytic bacteria

Info

Publication number
JPH024704A
JPH024704A JP63154959A JP15495988A JPH024704A JP H024704 A JPH024704 A JP H024704A JP 63154959 A JP63154959 A JP 63154959A JP 15495988 A JP15495988 A JP 15495988A JP H024704 A JPH024704 A JP H024704A
Authority
JP
Japan
Prior art keywords
microorganisms
fouling
seawater
lytic
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63154959A
Other languages
Japanese (ja)
Inventor
Minoru Owada
稔 大和田
Akira Kakumoto
角本 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Tokyo Kyuei Co Ltd
Original Assignee
Electric Power Development Co Ltd
Tokyo Kyuei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Tokyo Kyuei Co Ltd filed Critical Electric Power Development Co Ltd
Priority to JP63154959A priority Critical patent/JPH024704A/en
Publication of JPH024704A publication Critical patent/JPH024704A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To lyse and kill microorganisms adhering to solid surfaces in carrying out heat recovery or exchange utilizing seawater by adding an adequate amount of bacterial parasitic bacteria or administering a sponge containing the bacterial parasitic bacteria cultured and impregnated therein into intake seawater. CONSTITUTION:Fouling microorganisms adhering to solid surfaces in carrying out heat exchange, etc., utilizing seawater, such as various apparatuses in ocean thermal difference power generation systems, littoral electric power stations or combinates, and driving units in ships are prevented and eliminated. In the process, bacterial parasitic bacteria (derovibrio) are added into intake seawater and the above-mentioned microorganisms are subjected to lytic treatment. The treated seawater is subsequently brought into contact with the solid surfaces to lyse newly adhered fouling microorganisms and then partially circulated for use. Alternatively, sponge balls prepared by separately culturing and impregnating the derovibrio thereinto are administered into seawater to lyse the microorganisms. The resultant sponge balls are simultaneously brought into contact with the solid surfaces to also carry out mechanical washing. The derovibrio is readily handled due to high survival ratio and vigorous fecundity thereof.

Description

【発明の詳細な説明】 (1)発明の目的 [産業上の利用分野] 本発明は、海洋温度差発電システムや、臨海発電所やコ
ンビナートにおける各種装置、 LNG輸入基地におけ
るLNG気化装置、船舶における駆動装置等海水を利用
して熱回収や冷却の熱交換を行う海水と接触する各種の
固体表面に対する付着性微生物汚損防止および消去方法
に関する。
[Detailed Description of the Invention] (1) Purpose of the Invention [Field of Industrial Application] The present invention is applicable to ocean temperature difference power generation systems, various devices in coastal power plants and industrial complexes, LNG vaporization devices in LNG import terminals, and ships. This invention relates to a method for preventing and erasing adherent microbial contamination on various solid surfaces that come into contact with seawater, such as drive devices that utilize seawater for heat recovery and heat exchange for cooling.

[従来の技術] 汚損性微生物である付着細菌に帰因する生物汚染は、熱
交換系の効率低下を招き産業的には楊めて重要な問題で
ある。付着生物による生物汚損の防止対策は従来より科
学的方法、物理的方法、機械的方法等多種多用な対策が
実用されているが、環境問題、不十分な防除効果が報告
されているのが現状である。
[Prior Art] Biological contamination caused by adherent bacteria, which are fouling microorganisms, is an extremely important problem industrially as it causes a decrease in the efficiency of the heat exchange system. A wide variety of scientific, physical, and mechanical methods have been used to prevent biofouling caused by sessile organisms, but environmental problems and insufficient control effects have been reported. It is.

ちなみに生物汚損による熱交換器等の伝熱低下を解決す
るこの種従来の手段としては、コスト高で無害微生物や
動植物に毒性を示して環境破壊に連がる防汚剤殺菌法、
その他温水処理法、特殊塗料塗布法、浸透圧衝撃法、紫
外線照射法、超音波振動法、スポンジボール又はブラシ
を用いた機械的洗浄法等があるが、いずれも欠点を有し
種々の弊害を持たらしていた。
By the way, conventional methods of this kind to solve the problem of reduced heat transfer in heat exchangers due to biological fouling include antifouling agent sterilization methods, which are expensive and toxic to harmless microorganisms, animals and plants, and lead to environmental destruction.
Other methods include hot water treatment, special paint application, osmotic shock, ultraviolet irradiation, ultrasonic vibration, and mechanical cleaning using sponge balls or brushes, but all of them have drawbacks and cause various problems. I had to carry it.

付着細菌に着目した生物汚損に対する防止対策は実例が
なく、現在生物的方法として生物の寄生関係を利用した
方法が開発されている。
There are no actual measures to prevent biological fouling that focus on attached bacteria, and currently biological methods that utilize the parasitic relationship of living organisms are being developed.

その前提として生物汚損形成の機構は、[■海水と接触
する伝熱面に海水中の有様物が付着し、皮膜が形成され
る。■その皮膜に細菌が付着する。■付着した細菌は増
殖し、多糖類を生産・分泌し、ミクロ生物汚れが形成さ
れる。■その表面に付着細菌やその分泌物を栄養とする
別種の微生物や大型付着物の幼生などが付着し、固着増
殖することによって、マクロ生物汚れが形成される。」
とされ、前記マクロ生物汚れに至る前のミクロ生物汚れ
段階で生物的に処置をしようとするものである。
The premise is that the mechanism of biofouling formation is [■ Matter in the seawater adheres to the heat transfer surface that comes into contact with seawater, forming a film. ■Bacteria adhere to the film. ■Adhering bacteria multiply, produce and secrete polysaccharides, and form microbial stains. ■Adherent bacteria, other types of microorganisms that feed on their secretions, and larvae of large adhesion substances adhere to the surface and multiply, forming macrobiological stains. ”
The aim is to biologically treat the microbiological fouling stage before the macrobiological fouling.

即ち前記従来手段の弊害を解消するために特開昭60−
159596号に記載された生物汚損防止方法が発明さ
れた。
That is, in order to eliminate the disadvantages of the conventional means,
A biofouling prevention method described in No. 159596 was invented.

[発明が解決しようとする問題点] 当該発明においてミクロ生物汚れ防止に用いられるウィ
ルスは細菌ウィルスであり別名バクテリアオファージと
呼ばれ遺伝子である核酸と蛋白質のみからなる単純構造
にして、それ自身では増殖出来ないため、宿主と呼ばれ
る細菌を必要とするものである。
[Problems to be solved by the invention] In the invention, the virus used to prevent microorganism stains is a bacterial virus, also called a bacterium phage, which has a simple structure consisting only of nucleic acids (genes) and proteins. Since they cannot reproduce, they require a bacterial host.

しかしながら使用するバクテリアオファージは、細菌に
比し数100分の1の大きざと単純構造なるが故に生存
条件が厳しく環境に反応し易く、単離、培養、増殖が容
易でなく高度の熟練技術を要し取扱いが至難であるため
工業的規模での利用に難点があった。
However, the bacterial phages used are several hundred times smaller than bacteria and have a simple structure, so their survival conditions are harsh and they easily react to the environment.They are difficult to isolate, culture, and propagate, and require highly skilled techniques. It is difficult to use on an industrial scale because it is difficult to handle.

本発明は、高度な熟練技術を要せr*離、培養、増殖が
可能かつ取扱いが容易で工業的規模での利用が出来る細
菌寄生性細菌を用いた付着性微生物汚損防止および消去
方法を提供せんとするものである。
The present invention provides a method for preventing and eliminating adherent microbial fouling using parasitic bacteria, which requires highly skilled techniques, can be isolated, cultured, and propagated, is easy to handle, and can be used on an industrial scale. This is what I am trying to do.

(2)発明の構成 [問題点を解決するための手段] 本発明の付着性微生物汚損防止および消去方法は、固体
表面に海水を接触することにおいて、取水した海水中に
浮遊する汚損性微生物を重性に溶菌したり、前記固体表
面と接触済みの海水の一部を循環再使用したり、前記固
体表面と接触して既に付着している汚損性微生物層を事
後的に溶菌処理したりする場合に、前記取水した海水中
に細菌寄生性細菌を適量添加するが細菌寄生性細菌を培
養含浸したスポンジを投与して海水中および付着中の汚
損性微生物を溶菌し、死滅せしめてなる。
(2) Structure of the Invention [Means for Solving the Problems] The method for preventing and erasing adherent microbial fouling of the present invention eliminates fouling microorganisms floating in the taken seawater by bringing seawater into contact with a solid surface. severe bacteriolysis, recycling and reuse of a portion of the seawater that has come into contact with the solid surface, and subsequent lysis treatment of the fouling microbial layer that has already adhered to the solid surface after contacting it. In this case, an appropriate amount of parasitic bacteria is added to the taken seawater, and a sponge cultured and impregnated with parasitic bacteria is administered to lyse and kill the fouling microorganisms in the seawater and on the attached seawater.

[作   用] 本発明法に使用する細菌寄生性細菌(以下ゾロビブリオ
)は、バクテリアオファージに比し何百倍もの大きさの
高等微生物であり生存率が高く堅固であるため熟練技術
を要せずして簡単かつ容易に単離、培養、増殖を行なえ
工業的量産が可能である。
[Effect] The bacterial parasitic bacteria (hereinafter referred to as Zorovibrio) used in the method of the present invention are higher microorganisms that are hundreds of times larger than bacterial phages and have a high survival rate and are robust, so they do not require skilled techniques. It can be isolated, cultured, and propagated simply and easily, and industrial mass production is possible.

ここでゾロビブリオとバクテリアオファージ(以下)7
−ジ)の海水懸濁に対する生存耐性試験につき説明する
Here Zorobibrio and Bacteria Phage (below) 7
- I will explain the survival resistance test against suspension in seawater.

この生物手法のうちで、ゾロビブリオを用いた方法(本
発明法)とファージを用いる方法(従来法)を比較する
ために、取水系海水に添加後の生存耐性を比較した。
Among these biological methods, in order to compare the method using Zorovibrio (method of the present invention) and the method using phage (conventional method), the survival resistance after addition to intake seawater was compared.

目的:ゾロビブリオと77−ジの海水懸濁時の生存時間
を比較する。
Purpose: To compare the survival times of Zorovibrio and 77-di when suspended in seawater.

1ノ法:デロビブリオ、ファージ、付着細菌は、東京溝
沿岸海水から溶菌性微生物の一般的な培養法(以下重層
寒天培養法)によって分離し、滅菌海水中にゾロビブリ
オ。
Method 1: Delovibrio, phages, and adherent bacteria are isolated from the Tokyo trench seawater by a general culture method for lytic microorganisms (hereinafter referred to as the multilayer agar culture method), and Zorovibrio is placed in sterilized seawater.

ファージを各々0,0.5.1,2,4,8.12.1
6分間懸濁後、重層寒天培養法によりその生存を確めた
。試験は同様の方法で3回行った。
Phage 0, 0.5.1, 2, 4, 8.12.1 respectively
After suspending for 6 minutes, its survival was confirmed by multilayer agar culture. The test was conducted three times in the same manner.

ここで重層寒天培養法の各段階毎のプロセスについて第
1図(a)〜(d)を参照して説明する。
Here, the processes at each stage of the multilayer agar culture method will be explained with reference to FIGS. 1(a) to (d).

■容器(1)内に栄養物添加海水寒天下層培地(2)の
作成プロセスく第1図(a)参照〉■付着汚損微生物(
宿主)(3)の添加プロセスく第1図(b)参照〉 ■ファージおよびゾロビブリオ(4)の添加プロセス〈
第1図(C)参照〉 ■海水軟寒天上層培地(5)の添加プロセス〈第1図(
d)参照〉 ■20°± 1℃の温度条件下において、24時間(フ
ァージ)、48時間(ゾロビブリオ)の培養プロセス ■培養後、溶菌斑を数え、試料1−当りのp、fU、(
溶菌理数)を旧教するプロセス 以上の■〜■プロセス段階を経て行われた。
■The process of creating the nutrient-added seawater agar sublayer medium (2) in the container (1).
Host) (3) addition process (see Figure 1 (b))> ■ Addition process of phages and Zorovibrio (4) <
See Figure 1 (C)> ■ Addition process of seawater soft agar upper layer medium (5) <Figure 1 (
See d) ■Cultivation process for 24 hours (phage) and 48 hours (Zorovibrio) under a temperature condition of 20° ± 1°C ■After culturing, count the lytic plaques, and calculate p, fU, (
It was carried out through ■~■ process steps that were more than the old school process of lytic science and mathematics.

結果:下表に示す通りの結果を得た。但し、表中の数値
はp、f、u / Im、表示である。
Results: The results shown in the table below were obtained. However, the numerical values in the table are expressed as p, f, u/Im.

以上のように、ゾロビブリオは、滅菌海水中に2分間(
最大12分間)懸濁しても生存する結果が得られ、取水
系に添加時にも取水系滞流時間(5〜7分間)内では生
存することが推察された。
As mentioned above, Zorovibrio can be submerged in sterile seawater for 2 minutes (
The results showed that it survived even when suspended (up to 12 minutes), and it was presumed that it survived within the residence time of the water intake system (5 to 7 minutes) even when added to the water intake system.

一方フ7−ジは、今回の試験では培養出来なかった。分
離−培養方法は、溶菌性微生物を扱う一般的な方法を行
ったがファージの分離−維持培養はゾロビブリオと比較
するとより難しく、改良の余地があることが推察された
On the other hand, Fuji 7-ji could not be cultured in this test. The isolation and culture method used was a general method for handling lytic microorganisms, but the isolation and maintenance culture of phages was more difficult than that of Zorovibrio, and it was surmised that there was room for improvement.

このように今回の試験結果からは、ゾロビブリオがファ
ージよりも培養が簡単であり、ゾロビブリオを付着細菌
の防除薬剤として利用する場合に必要な長期、大量培養
についてはメンテナンス等の管理がファージと比べ簡単
であると考えられる。
In this way, the test results show that Zorovibrio is easier to culture than phages, and maintenance and other management are easier than phages for the long-term, large-scale cultivation required when Zorovibrio is used as a control agent for attached bacteria. It is thought that.

次いでゾロビブリオの付着性汚損細菌に対する溶菌プロ
セスを説明する。
Next, the lysis process for Zorovibrio adherent fouling bacteria will be explained.

■まずゾロビブリオの細菌への付着プロセス■宿主ta
rra内への侵入プロセス ■宿主細胞内における原形質利用プロセス■ゾロビブリ
オの宿主5rra内分裂増殖ブOセス■宿主細胞の膨服
破裂によるゾロビブリオの放出プロセス 以上のプロセスからなる生活環を段階的に経て付着性汚
損細菌を殺菌処理する。
■ First, the attachment process of Zorovibrio to bacteria ■ Host ta
Invasion process into the rra ■Protoplasm utilization process within the host cell ■Division and multiplication process of Zorovibrio within the host cell ■Release process of Zorovibrio by swelling and rupture of the host cell Step by step through a life cycle consisting of the above processes Sterilizes adherent fouling bacteria.

このように本発明法によればファージの細菌効能と同等
の薬効を発揮する。
As described above, according to the method of the present invention, a medicinal efficacy equivalent to that of a phage is exhibited.

[実 施 例1] 本発明法の第一実施例は、取水した海水中に、予め例え
ばファージと同様な公知の培養増殖法で別途培養増殖し
て貯蔵したタンクからゾロビブリオを前記海水の供給流
速を見計らって適量添加し、海水中に浮遊する汚損性細
菌を溶菌処理(細菌寄生性細菌を宿主である付着汚損微
生物に感染させる処理)するとともに当該処理した海水
を引続き固体表面である熱交換器表面と接触させて新規
付着汚損微生物を溶菌してなる。
[Example 1] In the first example of the method of the present invention, Zorovibrio is cultured and stored in a tank that has been separately cultured and stored using a known culture and propagation method similar to, for example, phages, into taken seawater by adjusting the supply flow rate of the seawater. It is added in an appropriate amount to treat the fouling bacteria floating in the seawater (a process in which the parasitic bacteria infect the host attached fouling microorganisms), and the treated seawater is then transferred to a heat exchanger with a solid surface. It comes into contact with the surface and lyses newly attached fouling microorganisms.

[実 施 例2] 本発明法の第二実施例は、取水した海水中に、予め第一
実施例と同様別途培養増殖して貯蔵したタンクからゾロ
ビブリオを眞記海水の供給流速を党則らって適量添加し
、海水中に浮遊する汚損性細菌に溶菌性細菌を接触させ
溶菌処理後、当該処理済みの海水を分流し、その一部を
循環させ新たに取水した海水中に混合し循環使用してな
る。
[Example 2] In the second example of the method of the present invention, Zorovibrio was added to the seawater taken from a tank that had been separately cultured and stored in the same way as in the first example. After adding an appropriate amount of lytic bacteria to the fouling bacteria floating in the seawater and performing bacteriolytic treatment, the treated seawater is diverted and a part of it is circulated and mixed with newly taken seawater for circulation. Use it.

[実 施 例3] 本発明法の第三実施例は、取水した海水中に、予め別途
培養増殖して貯蔵したタンクからゾロビブリオを前記海
水の供給流速を見計らって適m添加し、海水中に浮遊す
る汚損性細菌を溶菌処理後、当該処理した海水を引続ぎ
固体表面である熱交換器表面と接触して既に付着してい
る汚損竹細菌層を事後的に溶菌処理して当該汚損性細菌
層を溶菌消去してなる。
[Example 3] In the third example of the method of the present invention, Zorovibrio is added to the seawater taken in an appropriate amount from a tank in which it has been separately cultured and stored in advance, taking into consideration the supply flow rate of the seawater. After the floating fouling bacteria are lysed, the treated seawater is subsequently brought into contact with the solid surface of the heat exchanger, and the already attached layer of fouling bamboo bacteria is subsequently lysed to eliminate the fouling bacteria. The layer is lysed and removed.

[実 施 例4] 本発明法の第四実施例は、ゾロビブリオを別途培養含液
したスポンジボールを海水中に供給流速に見合った個数
を投与してその滞流途上で浮遊する汚損性細菌を溶菌処
理後、前記スポンジボールを引続き固体表面である熱交
換器表面と接触させ既に汚損性細菌膜が付着している場
合には当該汚損性細菌膜をスポンジボールで接触削り取
る機械的洗浄と同時に前記スポンジボールから放出され
るゾロビブリオにより溶菌消去処理し、当該使用済みの
スポンジボールを回収再使用してなる。
[Example 4] In the fourth example of the method of the present invention, sponge balls containing a separate culture of Zorovibrio are administered into seawater in a number commensurate with the supply flow rate, and floating fouling bacteria are removed during the flow. After the bacteriolytic treatment, the sponge balls are brought into contact with the heat exchanger surface, which is a solid surface, and if a fouling bacterial film has already adhered to it, the said fouling bacterial film is scraped off with the sponge ball at the same time as the mechanical cleaning. The sponge ball is lysed and eliminated by Zorovibrio released from the sponge ball, and the used sponge ball is collected and reused.

なおスポンジは実施例のようなボール形に限定されない
。また固体表面も実施例に示す熱交換器表面に限定され
ない。
Note that the sponge is not limited to the ball shape as in the embodiment. Further, the solid surface is not limited to the heat exchanger surface shown in the examples.

(3)発明の効果 かくして本発明法は、バクテリオファージを抽出使用し
た従来法に比し、生存率が高く、堅固で繁殖力の旺盛な
ゾロビブリオを抽出使用したので高度な熟練性を用せず
して分離、培養、増殖の作業コントロール操作が単純容
易となり取扱い性を飛躍的に向上し工業的規模の倒産使
用を可能とする等優れた効果を奏する。
(3) Effects of the invention Thus, compared to the conventional method using bacteriophages, the method of the present invention extracts and uses Zorobibrio, which has a high survival rate, is robust, and has high reproductive ability, so it does not require a high level of skill. As a result, control operations for separation, cultivation, and proliferation become simple and easy, dramatically improving ease of handling, and providing excellent effects such as making it possible to use the product on an industrial scale.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(b)は重層寒天培養法の段階的プロセ
ス説明図である。 第1図(α) 第1図(b) 第1図(C) 1・・・容器 2・・・栄養物添加海水寒天下層培地 3・・・付着汚損微生物 4・・・ファージおよびゾロビブリオ 5・・・海水軟寒天上層培地 第1図(d) 手続補正書(方式) 昭和63年 9月30日 特許庁長官 古 1)文 毅 殿 1、事件の表示 昭和63年特許願第154959号 2、発明の名称 溶菌性細菌による付着性微生物汚損防
止および消去方法 3、訂正をする者 事件との関係 特許出願人 所 東京都中央区銀座6丁目15番1号称 電源開発株
式会社 所 東京都中央区日本橋3丁目 1番15号称 株式会
社 東京久栄 理  人  〒 105 所 東京都港区西llTl 1丁目20番11号4、 代 住 \ 7、補正の内容 (1)明細書第13頁第12行 「第1図(a)〜(b)は・・・」とあるのを[第1図
(a)〜(d)は・・・」と訂正する。 発送臼 昭和63年 9月27日)
FIGS. 1(a) and 1(b) are step-by-step process illustrations of the multilayer agar culture method. Figure 1 (α) Figure 1 (b) Figure 1 (C) 1... Container 2... Nutrient-added seawater agar sublayer medium 3... Adhesive fouling microorganisms 4... Phages and Zorovibrio 5. ...Seawater soft agar upper layer Figure 1 (d) Procedural amendment (method) September 30, 1985 Commissioner of the Patent Office Ko 1) Moon Takeshi 1, Indication of case Patent Application No. 154959 of 1988 2, Title of the invention Method for preventing and erasing adherent microbial contamination caused by lytic bacteria 3, Relationship with the case of the person making the correction Patent applicant: 6-15-1 Ginza, Chuo-ku, Tokyo Electric Power Development Co., Ltd. Nihonbashi, Chuo-ku, Tokyo 3-1-15 Tokyo Kueri Co., Ltd. Address: 105 Address 4, 1-20-11, NishillTl, Minato-ku, Tokyo 7. Contents of amendment (1) Page 13 of the specification, line 12 “No. 1 (a) to (b)...'' is corrected to [Figure 1 (a) to (d) are...''). Shipping date: September 27, 1988)

Claims (1)

【特許請求の範囲】 1、取水した海水中に浮遊する汚損性微生物を対象取水
中に微生物を添加し、その溶菌処理により微生物汚損を
防止するに当り、前記汚損性微生物の前記溶菌処理とし
て細菌寄生性細菌を添加してなる溶菌性細菌による付着
性微生物汚損防止方法 2、取水した海水中に浮遊する汚損性微生物に溶菌性微
生物を接触させ微生物汚損を防止するに当り、前記溶菌
性微生物を接触させた前記海水の使用済み海水の一部を
循環使用して前記汚損性微生物の前記溶菌性微生物とし
て細菌寄生性細菌を添加してなる溶菌性細菌による付着
性微生物汚損防止方法 3、取水した海水中の固体表面に付着する付着性汚損微
生物を対象取水中に微生物を添加し、その溶菌処理によ
り微生物汚損を防止・消去するに当り、前記汚損性微生
物の前記溶菌処理として細菌寄生性細菌を添加してなる
溶菌性細菌による付着性微生物汚損防止・消去方法 4、取水した海水中の固体表面に付着する付着性汚損微
生物に、溶菌性微生物を接触させ微生物汚損を防止・消
去するに当り、前記溶菌性微生物を接触させた前記海水
の使用済み海水の一部を循環使用するとともに前記汚損
性微生物の前記溶菌性微生物として細菌寄生性細菌を添
加してなる溶菌性細菌による付着性微生物汚損防止・消
去方法 5、溶菌性微生物を培養含浸したスポンジボールを取水
した海水中に投入して滞流途上で浮遊する汚損性微生物
を溶菌処理しかつ前記スポンジボールが接触する固体表
面に付着する前記汚損性微生物をも溶菌処理し、当該使
用済みのスポンジボールを回収してなる微生物汚損防止
・消去方法に当り、前記スポンジボールに細菌寄生性細
菌を培養含浸してなる溶菌性細菌による付着性微生物汚
損防止・消去方法
[Scope of Claims] 1. To prevent microbial fouling by adding microorganisms to the intake water and performing bacteriolytic treatment of the fouling microorganisms floating in the seawater taken in, the lytic treatment of the fouling microorganisms involves Method 2 for preventing adherent microbial fouling caused by lytic bacteria by adding parasitic bacteria. Method 3 for preventing adherent microbial fouling by lytic bacteria, which involves adding parasitic bacteria as the lytic microorganisms to the fouling microorganisms by circulating and using a portion of the used seawater that has been brought into contact with the water. Targeting adherent fouling microorganisms that adhere to solid surfaces in seawater When microorganisms are added to the intake water and the microbial fouling is prevented and eliminated through lysis treatment, parasitic bacteria are removed as the lysis treatment of the fouling microorganisms. Method 4 for preventing and eliminating adherent microbial fouling caused by lytic bacteria by adding lytic microorganisms to contacting adherent fouling microorganisms attached to solid surfaces in taken seawater, Prevention of adherent microbial fouling by lytic bacteria by recycling a part of the used seawater that has been brought into contact with the lytic microorganisms and adding parasitic bacteria as the lytic microorganisms of the fouling microorganisms.・Elimination method 5: Sponge balls cultured and impregnated with lytic microorganisms are thrown into seawater, and the fouling microorganisms floating in the water are lysed and the fouling adheres to the solid surface that the sponge balls come into contact with. In this method of preventing and erasing microbial contamination, the method involves lysing the lytic microorganisms and collecting the used sponge balls. Prevention/erasing method
JP63154959A 1988-06-24 1988-06-24 Method for preventing and eliminating damage of adhesive microorganism by lytic bacteria Pending JPH024704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63154959A JPH024704A (en) 1988-06-24 1988-06-24 Method for preventing and eliminating damage of adhesive microorganism by lytic bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63154959A JPH024704A (en) 1988-06-24 1988-06-24 Method for preventing and eliminating damage of adhesive microorganism by lytic bacteria

Publications (1)

Publication Number Publication Date
JPH024704A true JPH024704A (en) 1990-01-09

Family

ID=15595645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63154959A Pending JPH024704A (en) 1988-06-24 1988-06-24 Method for preventing and eliminating damage of adhesive microorganism by lytic bacteria

Country Status (1)

Country Link
JP (1) JPH024704A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111086U (en) * 1985-12-28 1987-07-15
JPH0526178U (en) * 1991-09-18 1993-04-06 三菱重工業株式会社 Plant water intake equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159596A (en) * 1984-01-30 1985-08-21 Agency Of Ind Science & Technol Prevention of stain by living organism

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159596A (en) * 1984-01-30 1985-08-21 Agency Of Ind Science & Technol Prevention of stain by living organism

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111086U (en) * 1985-12-28 1987-07-15
JPH0417196Y2 (en) * 1985-12-28 1992-04-16
JPH0526178U (en) * 1991-09-18 1993-04-06 三菱重工業株式会社 Plant water intake equipment

Similar Documents

Publication Publication Date Title
JPS60159596A (en) Prevention of stain by living organism
Zhao et al. Control of Listeria monocytogenes in a biofilm by competitive-exclusion microorganisms
Poulsen Microbial biofilm in food processing
Devanas et al. Survival of plasmid-containing strains of Escherichia coli in soil: effect of plasmid size and nutrients on survival of hosts and maintenance of plasmids
Miller Environmental bacteriophage-host interactions: factors contribution to natural transduction
Bachosz et al. Enzyme-based control of membrane biofouling for water and wastewater purification: A comprehensive review
Miller et al. Contribution of lysogeny, pseudolysogeny, and starvation to phage ecology
Banin et al. Effect of the environment on the bacterial bleaching of corals
Allué-Guardia et al. Persistence of infectious Shiga toxin-encoding bacteriophages after disinfection treatments
Rode et al. High stability of Stx2 phage in food and under food-processing conditions
Svendsen et al. Effect of ultrasonic cavitation on small and large organisms for water disinfection during fish transport
CN110684741B (en) Vibrio bacteriophage and application thereof
CN114686470B (en) Immobilized bacteria algae microsphere and preparation method thereof
RU2575998C1 (en) Method of biologic control of listeria
JPH024704A (en) Method for preventing and eliminating damage of adhesive microorganism by lytic bacteria
Tetz et al. Effect of nucleolytic, proteolytic, and lipolytic enzymes on transfer of antibiotic resistance genes in mixed bacterial communities
Smith Arsenic resistance in Enterobacteria: its transmission by conjugation and by phage
Kolappan et al. Efficacy of UV treatment in the management of bacterial adhesion on hard surfaces
Wooster et al. The aerobiological pathway of a fish pathogen: survival and dissemination of Aeromonas salmonicida in aerosols and its implications in fish health management
Sadoudi et al. Elimination of adhering bacteria from surfaces by pulsed laser beams
CN104222158A (en) Microflora remover
Ahiwale et al. Liquid based formulations of bacteriophages for the management of waterborne bacterial pathogens in water microcosms
JPH01163599A (en) Method of preventing oceanic life from pollution
Cooper A review of the potential for bacteriophages to effect antibiofilm activity, using selected examples
CN102264650A (en) Method for reduction of microbes on surfaces