JP2014069097A - Method for removing marine organisms from heat exchanger - Google Patents

Method for removing marine organisms from heat exchanger Download PDF

Info

Publication number
JP2014069097A
JP2014069097A JP2012214436A JP2012214436A JP2014069097A JP 2014069097 A JP2014069097 A JP 2014069097A JP 2012214436 A JP2012214436 A JP 2012214436A JP 2012214436 A JP2012214436 A JP 2012214436A JP 2014069097 A JP2014069097 A JP 2014069097A
Authority
JP
Japan
Prior art keywords
seawater
heat exchanger
carbon dioxide
heat transfer
dioxide gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012214436A
Other languages
Japanese (ja)
Other versions
JP5996351B2 (en
Inventor
Haruhisa Hayashi
晴久 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2012214436A priority Critical patent/JP5996351B2/en
Publication of JP2014069097A publication Critical patent/JP2014069097A/en
Application granted granted Critical
Publication of JP5996351B2 publication Critical patent/JP5996351B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for removing marine organisms from a heat exchanger, capable of effectively depleting marine organisms adhered to the inner plane of the heat transfer tube, while suppressing the volume of microbubbles of a carbon dioxide gas dispensed into a heat transfer tube.SOLUTION: In a case where marine organisms adhered to the inner plane of the heat transfer tube 13 of the heat exchanger 12 are depleted, a body of sea water or fresh water including microbubbles of a carbon dioxide gas is dispensed intermittently into the heat transfer tube 13. The timing of the commencement of this intermittent dispensation coincides with the achievement of a control value set in advance as a result of the proliferation of the inlet-outlet pressure difference of the heat exchanger 12. Moreover, it is desirable to confine the pH of the microbubble-containing dispensation water and the dispensation period respectively to 6.5-6.9 and 1-7 days. Moreover, it is desirable to perform an ordinary washing operation such as backwashing, fresh water substitution, etc. during the microbubble dispensation stoppage period. Moreover, it is desirable to intermittently dispense the microbubble-containing dispensation water in a state where the dispensation of sea water into the heat exchanger 12 is being halted.

Description

本発明は、例えば発電所における復水器等の海水を使用した熱交換器の伝熱管内面に付着する海生物を減少させるために、二酸化炭素ガスのマイクロバブルを用いた熱交換器における海生物の除去方法に関する。   The present invention relates to marine organisms in a heat exchanger using carbon dioxide gas microbubbles in order to reduce marine organisms adhering to the inner surface of a heat transfer tube of a heat exchanger using seawater such as a condenser in a power plant, for example. It is related with the removal method.

海水を使用した熱交換器においては、海水が伝熱管内に長時間導入されることから、伝熱管内面に微生物、珪藻、緑藻等の藻類などの海生物が付着する。このような海生物を伝熱管内面から減少させるために、海水中に二酸化炭素ガスを注入し、海水のpHを下げて海生物の付着を防止する方法が提案されている。   In heat exchangers using seawater, seawater is introduced into the heat transfer tube for a long time, so that marine organisms such as microorganisms, algae such as diatoms and green algae adhere to the inner surface of the heat transfer tube. In order to reduce such marine life from the inner surface of the heat transfer tube, a method has been proposed in which carbon dioxide gas is injected into the seawater to lower the pH of the seawater and prevent the attachment of marine life.

この種の海生物付着防止方法が特許文献1に開示されている。すなわち、当該方法は、海水中に二酸化炭素ガスを注入し、海水のpHを5〜6に低下させるものである。この方法によれば、低pH海水により、海生物の幼生がホルモン作用によって形成する殻の付着を抑制することができる。   This kind of marine organism adhesion prevention method is disclosed in Patent Document 1. That is, in this method, carbon dioxide gas is injected into seawater, and the pH of the seawater is lowered to 5-6. According to this method, the low pH seawater can suppress the adhesion of shells formed by hormonal action of larvae of marine organisms.

また、同様の海生物付着防止方法が特許文献2に開示されている。この方法は、海水に対する二酸化炭素ガスの混合比が(0.1〜4)/100となるように二酸化炭素ガスを海水に注入し、二酸化炭素ガスのマイクロバブルを発生させ、海水のpHを6.4〜8.1とするものである。この方法によれば、海水のpHを下げて海生物の付着を抑制できるとともに、二酸化炭素ガスのマイクロバブルによって伝熱管内面に付着した海生物を擦り取ることができる。   A similar marine organism adhesion prevention method is disclosed in Patent Document 2. In this method, carbon dioxide gas is injected into seawater so that the mixing ratio of carbon dioxide gas to seawater is (0.1 to 4) / 100, and microbubbles of carbon dioxide gas are generated. 4 to 8.1. According to this method, the pH of seawater can be lowered to suppress the attachment of marine organisms, and the marine organisms adhering to the inner surface of the heat transfer tube can be scraped off by the carbon dioxide gas microbubbles.

特許第3605128号公報Japanese Patent No. 3605128 特開2010−43060号公報JP 2010-43060 A

前述した特許文献1及び2で提案されている従来構成の海生物付着防止方法では、二酸化炭素ガスを海水に注入し海水のpHを低下させることによって、熱交換器の伝熱管内へ海生物が付着することを抑制することとしている。両者とも海生物の幼生が伝熱管内へ付着する段階においての付着を抑制することによって、幼生の生育による伝熱管内の汚損を防止することに着眼が置かれている。二酸化炭素ガスの注入が1時間程度の短時間でも停止してしまうと、その間にも伝熱管内に海生物の幼生が付着してしまうため、これを避けるには二酸化炭素ガスの注入は注入の空白期を避けるため連続的な注入が必須となる。このため、長期間の連続注入が要件となり、大量の二酸化炭素を要してしまうという問題があった。   In the conventional method for preventing adhesion of marine organisms proposed in Patent Documents 1 and 2 described above, marine organisms are introduced into the heat transfer tubes of the heat exchanger by injecting carbon dioxide gas into the seawater to lower the pH of the seawater. It is supposed to suppress adhesion. Both of them focus on preventing fouling in the heat transfer tube due to growth of larvae by suppressing the attachment of marine larvae to the heat transfer tube. If carbon dioxide gas injection stops even for a short time of about 1 hour, sea life larvae will adhere to the heat transfer tube during that time. Continuous injection is essential to avoid the blank period. For this reason, there has been a problem that long-term continuous injection becomes a requirement and a large amount of carbon dioxide is required.

そこで、本発明の目的とするところは、伝熱管内に注入する二酸化炭素ガスのマイクロバブルの注入量を抑制しつつ、伝熱管内面に付着する海生物を効果的に減少させることができる熱交換器における海生物の除去方法を提供することにある。   Therefore, an object of the present invention is to perform heat exchange that can effectively reduce marine organisms adhering to the inner surface of the heat transfer tube while suppressing the amount of carbon dioxide gas microbubbles injected into the heat transfer tube. It is to provide a method for removing sea life in a vessel.

上記の目的を達成するために、請求項1に記載の発明の熱交換器における海生物の除去方法は、伝熱管内に海水を注入して熱交換を行うように構成された熱交換器の前記伝熱管の内面に付着する海生物を減少させる方法であって、前記伝熱管内に二酸化炭素ガスのマイクロバブルを含む海水又は淡水を間欠的に注入することを特徴とする。   In order to achieve the above object, a method for removing marine organisms in a heat exchanger according to a first aspect of the present invention is a heat exchanger configured to inject seawater into a heat transfer tube and perform heat exchange. A method of reducing marine organisms adhering to the inner surface of the heat transfer tube, wherein seawater or fresh water containing carbon dioxide gas microbubbles is intermittently injected into the heat transfer tube.

請求項2に記載の発明の熱交換器における海生物の除去方法は、請求項1に係る発明において、前記二酸化炭素ガスのマイクロバブルを含む海水又は淡水の注入開始時期は、伝熱管内面に付着した海生物による汚損が増大して熱交換器の出入口差圧が予め定めた管理値に達したときであることを特徴とする。   According to a second aspect of the present invention, there is provided a method for removing sea life in a heat exchanger according to the first aspect, wherein the start time of injection of seawater or fresh water containing microbubbles of carbon dioxide gas is attached to the inner surface of the heat transfer tube. This is characterized in that the pollution caused by the marine life increased and the inlet / outlet differential pressure of the heat exchanger has reached a predetermined control value.

請求項3に記載の発明の熱交換器における海生物の除去方法は、請求項1又は請求項2に係る発明において、前記二酸化炭素ガスのマイクロバブルを含む海水又は淡水を注入する注入水のpHを6.5〜6.9とするとともに、注入期間を1〜7日間としたことを特徴とする。   The method for removing marine organisms in the heat exchanger of the invention according to claim 3 is the pH according to the invention according to claim 1 or claim 2, wherein the seawater or fresh water containing the microbubbles of carbon dioxide gas is injected. Is 6.5 to 6.9, and the injection period is 1 to 7 days.

請求項4に記載の発明の熱交換器における海生物の除去方法は、請求項1から請求項3のいずれか一項に係る発明において、前記二酸化炭素ガスのマイクロバブルを含む海水又は淡水の間欠注入実施後から次の間欠注入の開始までの期間中には、伝熱管内を流れる海水を逆流させる逆洗又は伝熱管内を淡水で置換する淡水置換を行うことを特徴とする。   The sea life removal method in the heat exchanger of the invention described in claim 4 is the invention according to any one of claims 1 to 3, wherein seawater or fresh water intermittently containing the microbubbles of carbon dioxide gas. During the period from the start of the injection to the start of the next intermittent injection, backwashing is performed to reversely flow seawater flowing through the heat transfer tube, or fresh water replacement is performed to replace the heat transfer tube with fresh water.

請求項5に記載の発明の熱交換器における海生物の除去方法は、請求項4に係る発明において、前記二酸化炭素ガスのマイクロバブルを含む海水又は淡水の間欠注入実施後、次の間欠注入を開始する時期は、前記逆洗又は淡水置換の実施後における熱交換器の出入口差圧を示すベース値が予め定めた一次管理値に達した後、海水を注入して熱交換器の出入口差圧が予め定めた管理値に達したときであることを特徴とする。   According to a fifth aspect of the present invention, there is provided a method for removing marine organisms in the heat exchanger according to the fourth aspect of the present invention, wherein after the intermittent injection of seawater or fresh water containing the microbubbles of carbon dioxide gas, the next intermittent injection is performed. The starting time is that after the base value indicating the inlet / outlet differential pressure of the heat exchanger after the backwashing or fresh water replacement has reached a predetermined primary control value, the seawater is injected and the inlet / outlet differential pressure of the heat exchanger is increased. Is the time when a predetermined management value is reached.

請求項6に記載の発明の熱交換器における海生物の除去方法は、請求項1から請求項5のいずれか一項に係る発明において、前記二酸化炭素ガスのマイクロバブルを含む海水又は淡水の間欠注入は、海水注入を停止して熱交換器を隔離した状態で行い、間欠注入期間中、二酸化炭素ガスのマイクロバブルを含む海水又は淡水の注入水で熱交換器内の水の置換を継続するか又は前記置換の停止後に熱交換器内を注入水で満たすことを特徴とする。   The sea life removal method in the heat exchanger of the invention described in claim 6 is the invention according to any one of claims 1 to 5, wherein seawater or fresh water intermittent containing the carbon dioxide gas microbubbles The injection is performed with the seawater injection stopped and the heat exchanger isolated, and during the intermittent injection period, the replacement of the water in the heat exchanger with seawater or fresh water injection water containing microbubbles of carbon dioxide gas is continued. Alternatively, the heat exchanger is filled with injected water after the replacement is stopped.

本発明によれば、次のような効果を発揮することができる。
本発明の熱交換器における海生物の除去方法は、伝熱管内に二酸化炭素ガスのマイクロバブルを含む海水又は淡水を間欠的に注入するものである。この構成により、伝熱管内に二酸化炭素ガスのマイクロバブルを連続的に注入する場合に比べて注入量を減少させながら、海水のpHを下げて伝熱管内に付着した海生物を有効に減少させることができる。つまり、伝熱管内面に付着する海生物、つまりその幼生のみならず、成育した海生物を、伝熱管内に間欠的に注入される二酸化炭素ガスのマイクロバブルによって除去することができる。
According to the present invention, the following effects can be exhibited.
The method for removing marine organisms in the heat exchanger of the present invention is to intermittently inject seawater or fresh water containing carbon dioxide gas microbubbles into a heat transfer tube. With this configuration, the seawater attached to the heat transfer tube is effectively reduced by lowering the pH of the seawater while reducing the injection amount compared to the case of continuously injecting the carbon dioxide gas microbubbles into the heat transfer tube. be able to. That is, not only marine organisms attached to the inner surface of the heat transfer tube, that is, the larvae, but also grown marine organisms can be removed by the carbon dioxide gas microbubbles injected intermittently into the heat transfer tube.

従って、本発明の熱交換器における海生物の除去方法によれば、伝熱管内に注入する二酸化炭素ガスのマイクロバブルの注入量を抑制しつつ、伝熱管内面に付着する海生物を効果的に減少させることができるという効果を奏する。   Therefore, according to the method for removing marine organisms in the heat exchanger of the present invention, marine organisms adhering to the inner surface of the heat transfer tube can be effectively suppressed while suppressing the amount of carbon dioxide gas microbubbles injected into the heat transfer tube. There is an effect that it can be reduced.

本発明を具体化した実施形態の熱交換器における海生物の除去装置を模式的に示す概略説明図。BRIEF DESCRIPTION OF THE DRAWINGS Schematic explanatory drawing which shows typically the removal apparatus of the sea life in the heat exchanger of embodiment which actualized this invention. (a)は、海生物の付着試験において、経過日数と海生物付着量(湿体積)との関係を示す概念的なグラフ、(b)は、海生物の除去試験において、経過日数と海生物付着量(湿体積)との関係を示す概念的なグラフ。(A) is a conceptual graph showing the relationship between the number of days elapsed and the amount of marine organism adhesion (wet volume) in the marine organism adhesion test, and (b) is the number of days elapsed and marine life in the marine organism removal test. The conceptual graph which shows the relationship with the adhesion amount (wet volume). 経過期間(週)と湿体積との関係を模式的に示すグラフ。The graph which shows typically the relationship between an elapsed period (week) and wet volume. 経過日数と熱交換器の出入口差圧との関係を示すグラフ。The graph which shows the relationship between elapsed days and the inlet / outlet differential pressure | voltage of a heat exchanger. 経過日数と湿体積との関係を示すグラフ。The graph which shows the relationship between elapsed days and wet volume. 経過日数と汚れ係数との関係を示すグラフ。The graph which shows the relationship between elapsed days and a dirt coefficient. 経過日数と分極抵抗との関係を示すグラフ。The graph which shows the relationship between elapsed days and polarization resistance. 海水の場合について、経過時間と湿体積との関係を示すグラフ。The graph which shows the relationship between elapsed time and wet volume about the case of seawater. 淡水の場合について、経過時間と湿体積との関係を示すグラフ。The graph which shows the relationship between elapsed time and wet volume about the case of fresh water. 海水の場合について、経過時間と汚れ係数との関係を示すグラフ。The graph which shows the relationship between elapsed time and a dirt coefficient about the case of seawater. 淡水の場合について、経過時間と汚れ係数との関係を示すグラフ。The graph which shows the relationship between elapsed time and a soil coefficient about the case of fresh water. 海水の場合について、経過時間と分極抵抗との関係を示すグラフ。The graph which shows the relationship between elapsed time and polarization resistance about the case of seawater. 淡水の場合について、経過時間と分極抵抗との関係を示すグラフ。The graph which shows the relationship between elapsed time and polarization resistance about the case of freshwater.

以下、本発明を具体化した実施形態に関し、図面に基づいて詳細に説明する。
図1に示すように、発電所の機器冷却水系において、熱交換媒体として海水を通水する海水ライン11には熱交換器12が接続され、当該熱交換器12内の伝熱管13に海水を通水することにより熱交換が行われるように構成されている。伝熱管13は、アルミ黄銅(アルミニウム・銅合金)で形成されている。前記海水中には、図示しない鉄イオン供給装置が接続され、海水中に鉄イオンを混入して伝熱管13内面に保護被膜として鉄被膜を形成するようになっている。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, in an equipment cooling water system of a power plant, a heat exchanger 12 is connected to a seawater line 11 that passes seawater as a heat exchange medium, and seawater is supplied to a heat transfer tube 13 in the heat exchanger 12. Heat exchange is performed by passing water. The heat transfer tube 13 is made of aluminum brass (aluminum / copper alloy). An iron ion supply device (not shown) is connected to the seawater, and iron ions are mixed into the seawater to form an iron coating as a protective coating on the inner surface of the heat transfer tube 13.

前記海水ライン11には淡水ライン14が接続され、海水に代えて淡水を熱交換器12の伝熱管13に送り、伝熱管13内を淡水置換できるようになっている。なお、前記海水ライン11及び淡水ライン14にはそれぞれバルブ15,16が設けられ、両バルブ15,16の開閉により海水と淡水との切り替えが可能になっている。また、熱交換器12の下流側には放水配管17が連結され、当該放水配管17はバルブ18を介して図示しない放水ピットに接続されている。   A fresh water line 14 is connected to the sea water line 11 so that fresh water can be sent to the heat transfer pipe 13 of the heat exchanger 12 instead of sea water, and the inside of the heat transfer pipe 13 can be replaced with fresh water. The seawater line 11 and the freshwater line 14 are provided with valves 15 and 16, respectively, and switching between seawater and freshwater is possible by opening and closing the valves 15 and 16. Further, a water discharge pipe 17 is connected to the downstream side of the heat exchanger 12, and the water discharge pipe 17 is connected to a water discharge pit (not shown) via a valve 18.

前記海水ライン11の淡水ライン14接続部位より下流側には、二酸化炭素ガスのマイクロバブル供給ライン19が逆止弁20及びバルブ21を介して接続されている。当該マイクロバブル供給ライン19には、海水又は淡水が外部から流量調整バルブ22を介して所定流量で導入されるようになっている。マイクロバブル供給ライン19には、二酸化炭素ガスのマイクロバブル発生機構23が設けられている。このマイクロバブル発生機構23にはエジェクタ型のマイクロバブル発生装置27が設置され、二酸化炭素ガスボンベ25からガス配管26を経て供給される二酸化炭素ガスを海水中又は淡水中でマイクロバブル化するようになっている。   A microbubble supply line 19 for carbon dioxide gas is connected to a downstream side of the seawater line 11 from the connection portion of the fresh water line 14 via a check valve 20 and a valve 21. Seawater or fresh water is introduced into the microbubble supply line 19 from the outside via a flow rate adjusting valve 22 at a predetermined flow rate. The microbubble supply line 19 is provided with a carbon dioxide gas microbubble generating mechanism 23. An ejector-type microbubble generator 27 is installed in the microbubble generating mechanism 23, and the carbon dioxide gas supplied from the carbon dioxide gas cylinder 25 via the gas pipe 26 is microbubbled in seawater or fresh water. ing.

前記マイクロバブル発生装置27により、マイクロバブル供給ライン19の海水中又は淡水中にマイクロバブルが混入されるようになっている。マイクロバブル供給ライン19のマイクロバブル発生装置27より下流にはpHセンサ29が接続され、二酸化炭素ガスのマイクロバブルを含む海水又は淡水のpHを検知するようになっている。そして、マイクロバブル供給ライン19のバルブ21が開放されると、二酸化炭素ガスのマイクロバブルを含む海水又は淡水がマイクロバブル供給ライン19から海水ライン11に供給され、熱交換器12の伝熱管13に送られるようになっている。   The microbubble generator 27 mixes microbubbles in the seawater or fresh water of the microbubble supply line 19. A pH sensor 29 is connected downstream of the microbubble generator 27 in the microbubble supply line 19 so as to detect the pH of seawater or fresh water containing carbon dioxide gas microbubbles. When the valve 21 of the microbubble supply line 19 is opened, seawater or fresh water containing microbubbles of carbon dioxide gas is supplied from the microbubble supply line 19 to the seawater line 11, and is supplied to the heat transfer tube 13 of the heat exchanger 12. It is supposed to be sent.

当該マイクロバブル供給ライン19から二酸化炭素ガスのマイクロバブルを含む海水又は淡水を送水する場合には、前記海水ライン11及び淡水ライン14に設けられたバルブ15,16を閉の状態とし、海水ライン11及び淡水ライン14からの通水を止める。その状態で、マイクロバブル供給ライン19から熱交換器12へ二酸化炭素ガスのマイクロバブルを含む海水又は淡水を所定のpH及び流量で送水する。   When seawater or fresh water containing microbubbles of carbon dioxide gas is sent from the microbubble supply line 19, the valves 15 and 16 provided in the seawater line 11 and the freshwater line 14 are closed, and the seawater line 11 And the water flow from the fresh water line 14 is stopped. In this state, seawater or fresh water containing microbubbles of carbon dioxide gas is sent from the microbubble supply line 19 to the heat exchanger 12 at a predetermined pH and flow rate.

なお、二酸化炭素ガスのマイクロバブルの大きさは、その直径が数μm〜数十μmであることが好ましい。マイクロバブルの大きさが過度に大きくなるとその表面積が小さくなり、マイクロバブルの機能発現が低下するとともに、バブルが浮上しやすく分散性が悪くなるため、二酸化炭素ガスが海水又は淡水へ溶解する効率が低下するので好ましくない。   In addition, it is preferable that the diameter of the microbubble of carbon dioxide gas is several micrometers-several tens of micrometers. When the size of the microbubbles is excessively large, the surface area of the microbubbles is reduced, the function expression of the microbubbles is reduced, and the bubbles are liable to float and the dispersibility is deteriorated. Since it falls, it is not preferable.

図2(a),(b)は、前記熱交換器12の伝熱管13に付着する海生物の付着量の挙動を示す概念図である。図2(a)に示すように、熱交換器12の伝熱管13に海水ライン11から海水が導入されて熱交換が行われ、その熱交換が一定条件で長時間に亘って継続されると伝熱管13内面にプランクトン、藻類等の海生物(海生生物)が付着する。その付着量が経過日数の増加に伴って上昇する。   FIGS. 2A and 2B are conceptual diagrams showing the behavior of the amount of marine organisms adhering to the heat transfer tubes 13 of the heat exchanger 12. As shown in FIG. 2A, when seawater is introduced into the heat transfer pipe 13 of the heat exchanger 12 from the seawater line 11 and heat exchange is performed, and the heat exchange is continued for a long time under a certain condition. Marine organisms (marine organisms) such as plankton and algae adhere to the inner surface of the heat transfer tube 13. The amount of adhesion increases as the number of elapsed days increases.

この図2(a)は、海生物の付着のない初期状態の伝熱管13内へ海水を注入し続けた場合の付着量を示している。1−1は通常の海水を注入した場合であり、付着量が日数の増加に伴い次第に上昇する。1−2は二酸化炭素ガスのマイクロバブルを含む海水を連続的に注入した場合であり、1−1に比べて付着量の増加は緩やかとなるが増加は止まらない。低pH海水を注入した場合でも付着量が増加するのは、伝熱管13に付着する幼生段階の海生物のうち、低pH環境に適応できる幼生が一定量存在し、それが付着し続けるとともに付着した幼生が生育したことによる。   FIG. 2 (a) shows the amount of adhesion when seawater is continuously injected into the heat transfer tube 13 in the initial state where no marine organisms adhere. 1-1 is a case where normal seawater is injected, and the amount of adhesion gradually increases as the number of days increases. 1-2 is a case of continuously injecting seawater containing carbon dioxide gas microbubbles, but the increase in the adhesion amount is moderate compared to 1-1, but the increase does not stop. Even when low pH seawater is injected, the amount of attachment increases because a certain amount of larvae that can adapt to the low pH environment exists among the larvae of the larvae that adhere to the heat transfer tube 13 and adhere to it. The larvae have grown.

一方、図2(b)に示すように、前記マイクロバブル供給ライン19のバルブ21を開放し、二酸化炭素ガスのマイクロバブルを含む海水又は淡水を伝熱管13内に導入すると、マイクロバブルの低pH作用等の作用により伝熱管13内面の海生物付着量は漸減する。   On the other hand, as shown in FIG. 2B, when the valve 21 of the microbubble supply line 19 is opened and seawater or fresh water containing microbubbles of carbon dioxide gas is introduced into the heat transfer tube 13, the low pH of the microbubbles The amount of marine organisms attached to the inner surface of the heat transfer tube 13 gradually decreases due to the action.

この図2(b)は、海生物が付着し汚損した初期状態の伝熱管13へ二酸化炭素ガスのマイクロバブルを含む海水及び淡水を注入し続けた場合の付着量を示している。2−1では、二酸化炭素ガスのマイクロバブルで除去が可能な海生物の付着量の漸減を示す。熱交換媒体が海水の場合には、2−2に示すとおり、2−1の漸減曲線の付着量に加え、注入海水中に含まれる海生物が付着しこれを加算した付着量となる。付着する海生物は1−2の海生物の付着と同程度と見込まれる。   FIG. 2B shows the amount of adhesion when seawater and fresh water containing microbubbles of carbon dioxide gas are continuously injected into the heat transfer tube 13 in an initial state where marine organisms are attached and fouled. 2-1 shows a gradual decrease in the attached amount of marine organisms that can be removed with carbon dioxide gas microbubbles. When the heat exchange medium is seawater, as shown in 2-2, in addition to the attached amount of the gradually decreasing curve of 2-1, marine organisms contained in the injected seawater are attached and the attached amount is obtained. The attached marine life is expected to be the same as the 1-2 marine life.

二酸化炭素ガスのマイクロバブルで除去可能な海生物付着量の漸減曲線2−1が日数の経過に伴い減少幅が低下してくると、注入海水中に含まれる海生物の付着量の影響が相対的に増大し、反転時期を境にして全体として海生物付着量が漸増曲線2−2を描く。従って、二酸化炭素ガスのマイクロバブルを伝熱管13内に連続的に注入しても、反転時期以降には海生物の付着量は増大する。海生物の付着量が増大すると、熱交換器12の出入口すなわち伝熱管13の出入口における海水の圧力差(差圧)が大きくなる。このため、伝熱管13の出入口における差圧(出入口差圧)の大きさを、熱交換器12の汚損の指標とすることができる。そして、この伝熱管13の出入口差圧が大きくなったとき、伝熱管13内に海水を逆方向に流す逆洗や伝熱管13内を淡水で置換する淡水置換が行われる。   When the amount of decrease in the gradually decreasing curve 2-1 of the amount of marine organisms that can be removed with carbon dioxide gas microbubbles decreases with the passage of days, the influence of the amount of marine organisms contained in the injected seawater is relative. The amount of sea creatures as a whole draws a gradual increase curve 2-2 at the inversion time. Therefore, even if microbubbles of carbon dioxide gas are continuously injected into the heat transfer tube 13, the attached amount of marine organisms increases after the inversion time. When the amount of attached marine organisms increases, the pressure difference (differential pressure) of seawater at the entrance / exit of the heat exchanger 12, that is, the entrance / exit of the heat transfer tube 13, increases. For this reason, the magnitude of the differential pressure at the inlet / outlet of the heat transfer tube 13 (inlet / outlet differential pressure) can be used as an index of the fouling of the heat exchanger 12. When the inlet / outlet differential pressure of the heat transfer tube 13 increases, backwashing in which seawater flows in the reverse direction in the heat transfer tube 13 or fresh water replacement for replacing the heat transfer tube 13 with fresh water is performed.

一方、注入水が淡水の場合には、注入水中に海生物が含まれていないため、海生物の付着量は2−1の漸減曲線で示すことができる。2−1に示される低pH海水注入時の漸減は以下の理由による。除去対象は生育した海生物であり、一般的には幼生段階の海生物に比べて環境変化への耐性は高まるが、生育期間中に低pH環境下での経験をさせていなかったため、生育した海生物であっても低pH環境に対する耐性が比較的低い海生物が存在していたこと及び海生物が大量に蓄積された状態で海生物の個体数が非常に多かった。このため、除去可能な一定量の海生物が存在し、これらを重点的に除去することで漸減状態となったものである。   On the other hand, when the injected water is fresh water, since the seawater is not contained in the injected water, the attached amount of the sea life can be shown by a gradually decreasing curve of 2-1. The gradual decrease during low pH seawater injection shown in 2-1 is due to the following reason. The target for removal is grown sea life, and generally it is more resistant to environmental changes than sea life at the larval stage, but it has grown because it was not experienced in a low pH environment during the growth period. Even in the case of marine organisms, there were marine organisms with relatively low resistance to a low pH environment, and the number of marine organisms was very large with a large amount of marine organisms accumulated. For this reason, there are a certain amount of sea creatures that can be removed, and these are gradually reduced by removing them intensively.

次に、図3は本実施形態における二酸化炭素ガスのマイクロバブルを含む海水又は淡水を伝熱管13内に間欠的に注入する場合と、従来の連続的に注入する場合との比較を概念的に示す図である。すなわち、図3は経過期間(週)と、伝熱管13内の湿体積(cc/cm:伝熱管内面積1cmあたりに付着した湿分を含む海生物の体積)との関係を示す図であり、実線は間欠注入の場合を表し、一点鎖線は連続注入の場合を表す。ここで、湿体積は伝熱管13内の汚損を示すパラメータの一つであり、前述の海生物の付着量と同種の指標となる。 Next, FIG. 3 conceptually compares the case where seawater or fresh water containing microbubbles of carbon dioxide gas in the present embodiment is intermittently injected into the heat transfer tube 13 and the case where the conventional continuous injection is performed. FIG. That is, FIG. 3 is a diagram showing the relationship between the elapsed period (weeks) and the wet volume in the heat transfer tube 13 (cc / cm 2 : the volume of marine organisms including moisture attached per 1 cm 2 of the heat transfer tube area). The solid line represents the case of intermittent injection, and the alternate long and short dash line represents the case of continuous injection. Here, the wet volume is one of the parameters indicating the fouling in the heat transfer tube 13 and is an index of the same kind as the amount of attached marine organisms.

この図3に示すように、間欠注入の場合には、熱交換器12の出入口差圧の管理値に相当する湿体積に到る2週間経過後に二酸化炭素ガスのマイクロバブル含む海水又は淡水を伝熱管内に1週間注入し、それを12週間繰返す。このため、マイクロバブルの注入は12週間の間に4回、すなわち4週間で済む。一方、連続注入の場合には、二酸化炭素ガスのマイクロバブルを伝熱管13内に12週間注入する。従って、海生物について同様の除去効果としたとき、二酸化炭素ガスの使用量を、間欠注入の場合には連続注入の場合に比べて1/3に減少させることができる。   As shown in FIG. 3, in the case of intermittent injection, seawater or fresh water containing microbubbles of carbon dioxide gas is transmitted after the elapse of two weeks until the wet volume corresponding to the control value of the inlet / outlet differential pressure of the heat exchanger 12 is reached. Inject into heat tube for 1 week and repeat for 12 weeks. For this reason, microbubbles are injected four times in 12 weeks, that is, 4 weeks. On the other hand, in the case of continuous injection, carbon dioxide gas microbubbles are injected into the heat transfer tube 13 for 12 weeks. Therefore, when the same removal effect is obtained for marine organisms, the amount of carbon dioxide gas used can be reduced to 1/3 in the case of intermittent injection compared to the case of continuous injection.

前記マイクロバブルを含む海水又は淡水の間欠注入の注入開始時期は、伝熱管13内面に付着した海生物による汚損が増大して熱交換器12の出入口差圧が予め定めた管理値に達したときが好ましい。この場合、汚損の指標となる出入口差圧に基づいて、間欠注入の開始時期を適切に判断することができる。   The injection start time of the intermittent injection of seawater or fresh water containing the microbubbles is when the contamination by marine organisms adhering to the inner surface of the heat transfer tube 13 increases and the inlet / outlet differential pressure of the heat exchanger 12 reaches a predetermined control value. Is preferred. In this case, it is possible to appropriately determine the start timing of intermittent injection based on the inlet / outlet differential pressure that is an index of fouling.

さらに、間欠注入のみを繰り返すのではなく、間欠注入と次の間欠注入の間に通常の清掃(逆洗、淡水置換等)を組合せることにより、間欠注入間の間隔を空けることができ、さらに二酸化炭素ガスの使用量を減少させることができる。例えば、12週間のうち、間欠注入を2回行い、その間に通常の清掃を行うことにより、二酸化炭素ガスの使用量を連続注入の場合に比べて1/6にすることができる。但し、逆洗、淡水置換等の通常の清掃は、繰り返しの実施でその除去効果(清掃効果)が低下する傾向があるため、設備の運転経験を踏まえ、組合せを適切に設定しておく必要がある。   Furthermore, the interval between intermittent injections can be increased by combining normal cleaning (backwashing, fresh water replacement, etc.) between intermittent injections and subsequent intermittent injections, rather than repeating only intermittent injections. The amount of carbon dioxide gas used can be reduced. For example, by performing intermittent injection twice in 12 weeks and performing normal cleaning in the meantime, the amount of carbon dioxide gas used can be reduced to 1/6 compared to the case of continuous injection. However, normal cleaning such as backwashing and fresh water replacement tends to reduce the removal effect (cleaning effect) by repeated execution, so it is necessary to set the combination appropriately based on the experience of operating the equipment. is there.

図4に示すとおり、例えば通常の清掃(淡水置換)を行い、その効果が低下して清掃後の出入口差圧のベース値30が上昇して予め定めたベース値30の一次管理値に達した後、海水を注入して、熱交換器12の出入口差圧が予め定めた管理値(二次管理値)に達したとき、二酸化炭素ガスのマイクロバブルを伝熱管13内に注入して清掃を行い、熱交換器12の性能の回復を図ることも有効である。これにより、二酸化炭素ガスのマイクロバブルの間欠注入と通常の清掃とが協働して作用し、二酸化炭素ガスのマイクロバブル注入機会がさらに減り、二酸化炭素ガスの使用量低減に寄与することができる。   As shown in FIG. 4, for example, normal cleaning (replacement with fresh water) is performed, the effect is reduced, and the base value 30 of the inlet / outlet differential pressure after cleaning increases to reach a primary management value of a predetermined base value 30. Then, when seawater is injected and the inlet / outlet differential pressure of the heat exchanger 12 reaches a predetermined control value (secondary control value), carbon dioxide gas microbubbles are injected into the heat transfer tube 13 for cleaning. It is also effective to carry out and restore the performance of the heat exchanger 12. As a result, intermittent injection of carbon dioxide gas microbubbles and normal cleaning work together, and the opportunity for carbon dioxide gas microbubble injection can be further reduced, contributing to a reduction in the amount of carbon dioxide gas used. .

なお、前記図3の概念図における期間の設定条件等は以下のとおりである。
1)間欠注入の期間:1週間(約170時間)
2)次の間欠注入までの清掃間隔:2週間
低pH海水での間欠注入の間隔は、淡水を用いた通常の清掃(淡水置換)の初期の清掃間隔(約2週間)と同等とした後述する表1の低pH海水と表2の淡水との間に湿体積の減少割合に大きな相違はない。
The period setting conditions in the conceptual diagram of FIG. 3 are as follows.
1) Period of intermittent injection: 1 week (about 170 hours)
2) Cleaning interval until the next intermittent injection: 2 weeks The interval of intermittent injection in low pH seawater is equivalent to the initial cleaning interval (about 2 weeks) of normal cleaning using fresh water (fresh water replacement). There is no significant difference in the reduction rate of the wet volume between the low pH seawater of Table 1 and the fresh water of Table 2.

3)連続注入の期間:4週間
図5に示すように、湿体積の上昇速度が、低pH海水では通常の海水の約1/2のため、期間としては通常海水での清掃間隔である上記2)の2倍となる4週間に設定した。また、その後は逆洗等の清掃により清掃後相当の湿体積まで低下したものと設定した。
3) Period of continuous injection: 4 weeks As shown in FIG. 5, the rate of increase in wet volume is about half that of normal seawater in low pH seawater, so the period is the cleaning interval in normal seawater. It was set to 4 weeks, which is twice that of 2). Moreover, after that, it was set as what fell to the wet volume equivalent after cleaning by cleaning, such as backwashing.

ここで、伝熱管13の新管を用い、海水へ二酸化炭素ガスのマイクロバブル注入を行い、pH6.9とした低pH海水と通常の海水(約pH8)を長期間通水した場合の海生物の付着挙動を示す。伝熱管13の汚損を示す指標としては、湿体積及び汚れ係数があり、これらを測定した結果をそれぞれ図5及び図6に示す。   Here, marine organisms when carbon dioxide gas microbubbles are injected into seawater using a new pipe of heat transfer tube 13 and low pH seawater adjusted to pH 6.9 and normal seawater (about pH 8) are passed for a long time. The adhesion behavior of is shown. The index indicating the fouling of the heat transfer tube 13 includes a wet volume and a fouling coefficient, and the results of measuring these are shown in FIGS. 5 and 6, respectively.

図5に示すように、伝熱管13の新管を用い、海水へ二酸化炭素ガスのマイクロバブル注入を行い、pH6.9とした低pH海水と通常海水(約pH8)を長期間通水した場合の伝熱管13内面に付着する海生物の湿体積(cc/cm)を測定した。この図5において、◇は通常海水の場合を示し、□は低pH海水の場合を示す。その結果、約20日間通水した後の湿体積について、通常海水の場合に比べ、低pH海水の場合には湿体積の増加速度が1/2程度となった。このため、低pH海水は海生物の付着を緩和する効果があることが分る。但し、海生物の付着を止めるまでには到らず、湿体積は徐々に上昇し続けている。この状態が持続した場合には、いずれ熱交換器12の出入口差圧が管理値まで上昇するが、その際には逆洗など別の措置で出入口差圧を低下させる必要がある。 As shown in FIG. 5, when a new pipe of the heat transfer pipe 13 is used, microbubble injection of carbon dioxide gas into seawater, and low pH seawater adjusted to pH 6.9 and normal seawater (about pH 8) are passed for a long time. The wet volume (cc / cm 2 ) of marine organisms adhering to the inner surface of the heat transfer tube 13 was measured. In FIG. 5, ◇ indicates the case of normal seawater, and □ indicates the case of low pH seawater. As a result, with respect to the wet volume after passing water for about 20 days, the increase rate of the wet volume was about ½ in the case of low pH seawater compared to the case of normal seawater. For this reason, it turns out that low pH seawater has the effect of relieving adhesion of marine organisms. However, the wet volume has continued to rise gradually without stopping the attachment of marine life. If this state persists, the inlet / outlet differential pressure of the heat exchanger 12 will eventually rise to the control value, but in that case, it is necessary to lower the inlet / outlet differential pressure by another measure such as backwashing.

熱交換器12の出入口差圧は、伝熱管13内に付着する海生物の湿体積が少ないうちは通水の抵抗としてあまり影響がなく出入口差圧としての発現はないが、湿体積が一定量まで増えてくると抵抗が増え出入口差圧として発現してくる。実運用においては、運転中に監視が可能な熱交換器12の出入口差圧で汚損の状態を判断しており、予め定めた出入口差圧の管理値に達した時に熱交換器12の清掃を行う。   The inlet / outlet differential pressure of the heat exchanger 12 does not have much influence as resistance to water flow and there is no expression as the inlet / outlet differential pressure when the wet volume of marine organisms adhering in the heat transfer tube 13 is small. As the pressure increases, the resistance increases and appears as an inlet / outlet differential pressure. In actual operation, the state of fouling is determined based on the inlet / outlet differential pressure of the heat exchanger 12 that can be monitored during operation, and the heat exchanger 12 is cleaned when a predetermined control value of the inlet / outlet differential pressure is reached. Do.

また、図6に示すように、pH6.9とした低pH海水と通常の海水(約pH8)について、汚れ係数(mK/W)を常法に従って測定した。汚れ係数は熱伝達率(W/mK)の逆数であり、その数値が大きいほど汚れが大きいと判断できる。この図6において、◇は通常海水の場合を示し、□は低pH海水の場合を示す。汚れ係数の場合も湿体積と同様、通常の海水の場合に比べ、低pH海水の方が汚れ係数の増加速度は1/2程度と緩やかとなったが増加自体は止まっていない。 In addition, as shown in FIG. 6, the soil coefficient (m 2 K / W) was measured according to a conventional method for low pH seawater having a pH of 6.9 and normal seawater (about pH 8). The contamination coefficient is the reciprocal of the heat transfer coefficient (W / m 2 K). In FIG. 6, ◇ indicates the case of normal seawater, and □ indicates the case of low pH seawater. In the case of the fouling coefficient, as with the wet volume, the increase rate of the fouling coefficient was moderate at about 1/2 in the low pH seawater, but the increase itself has not stopped.

前記伝熱管13の材料としては、近年では耐食性を有するチタンの採用が増えつつあるが、現在でもアルミ黄銅が多く採用されている。アルミ黄銅管を用いた熱交換器12では、海水が通水する伝熱管13内面の腐食及び減肉を防ぐため、通水する海水中に鉄イオンを注入して伝熱管13内に鉄の保護被膜を形成させ、海水が伝熱管13内面に直接接触することを防ぐ措置をとる場合が多い。低pH環境においては、伝熱管13内のこの保護被膜の溶解を促進する方向に作用するため、二酸化炭素ガスの注入が長期化する場合には、保護被膜の形成が不十分となることが考えられ、伝熱管13の健全性へ支障を及ぼすことが懸念される。   In recent years, the use of titanium having corrosion resistance is increasing as the material of the heat transfer tube 13, but aluminum brass is often used even today. In the heat exchanger 12 using an aluminum brass tube, in order to prevent corrosion and thinning of the inner surface of the heat transfer tube 13 through which the seawater flows, iron ions are injected into the flowing water to protect the iron in the heat transfer tube 13. In many cases, a coating is formed to prevent seawater from directly contacting the inner surface of the heat transfer tube 13. In a low pH environment, it acts in the direction of promoting the dissolution of the protective film in the heat transfer tube 13, and therefore, when carbon dioxide gas injection is prolonged, the formation of the protective film may be insufficient. There is a concern that the soundness of the heat transfer tube 13 may be hindered.

伝熱管13内の保護被膜の状況を判断する方法としては、分極抵抗(伝熱管13内面と外面との間の電気抵抗)の測定がある。分極抵抗の測定値が20000Ω・cm以上であれば、保護被膜の形成は良好でその後の長期の運転が可能と判断される。但し、この測定は伝熱管13を抜管する必要があり、実機で使用中の伝熱管13の測定はできない。このため、実運用では、熱交換器12の海水通水を開始した時点から所定の濃度の鉄イオンを一定期間注入し続けることで伝熱管13内の保護被膜形成上の管理を行っている。 As a method for determining the state of the protective coating in the heat transfer tube 13, there is a measurement of polarization resistance (electric resistance between the inner surface and the outer surface of the heat transfer tube 13). If the measured value of the polarization resistance is 20000 Ω · cm 2 or more, it is judged that the formation of the protective film is good and the long-term operation thereafter is possible. However, this measurement requires the heat transfer tube 13 to be extracted, and the heat transfer tube 13 being used in an actual machine cannot be measured. For this reason, in actual operation, management of the formation of the protective coating in the heat transfer tube 13 is performed by continuously injecting iron ions of a predetermined concentration for a certain period from the time when the sea water flow of the heat exchanger 12 is started.

伝熱管13としてフェロコ管(保護被膜を予め付与したアルミ黄銅管)を用い、海水へ二酸化炭素ガスのマイクロバブル注入を行ってpH6.9とした低pH海水と通常海水(約pH8)を長期間通水した場合において、それぞれ鉄イオンを注入し、伝熱管13への鉄イオンの付着状況を確認した。鉄イオンが伝熱管13内に付着すると伝熱管13内面と外面との間の電気抵抗(分極抵抗)が上昇する。   Using a ferroco pipe (aluminum brass pipe pre-applied with a protective coating) as the heat transfer pipe 13, low pH seawater and normal seawater (about pH 8) adjusted to pH 6.9 by injecting microbubbles of carbon dioxide gas into seawater for a long time In the case of passing water, iron ions were respectively injected, and the state of adhesion of iron ions to the heat transfer tube 13 was confirmed. When iron ions adhere to the inside of the heat transfer tube 13, the electrical resistance (polarization resistance) between the inner surface and the outer surface of the heat transfer tube 13 increases.

そこで、図7に示すように、通常海水と低pH海水とについて、常法に従って分極抵抗(Ω・cm)を測定した。この図7において、◇は通常海水の場合を示し、□は低pH海水の場合を示す。その結果、通常海水の場合には、分極抵抗値の上昇が確認され、鉄の保護被膜が徐々に形成されていることが確認できたが、低pH海水の場合には、分極抵抗値の上昇がほとんどみられず、保護被膜の形成が十分でないと判断された。このため、長期間の低pH環境では、当初は分極抵抗値が20000Ω・cmを満足していたとしても、保護被膜の溶解が進み、被膜形成の不良を起こして伝熱管13の健全性に支障をきたすことが考えられる。 Therefore, as shown in FIG. 7, the polarization resistance (Ω · cm 2 ) was measured for normal seawater and low pH seawater according to a conventional method. In FIG. 7, ◇ indicates the case of normal seawater, and □ indicates the case of low pH seawater. As a result, in the case of normal seawater, an increase in the polarization resistance value was confirmed, and it was confirmed that an iron protective film was gradually formed. However, in the case of low pH seawater, an increase in the polarization resistance value was confirmed. It was judged that the protective film was not sufficiently formed. For this reason, in a long-term low pH environment, even if the polarization resistance value initially satisfies 20000 Ω · cm 2 , the dissolution of the protective coating proceeds, resulting in poor film formation and the soundness of the heat transfer tube 13. It may be a hindrance.

図5及び図6では前述のとおり、伝熱管13の新管を用いて、二酸化炭素ガスのマイクロバブル注入を長期間連続的に実施した結果である。海生物の幼生が伝熱管13内面へ付着する段階でその付着を抑制することに着眼されたものであるが、この結果からは、湿体積、汚れ係数とも値の上昇を止められてはいない。これは、二酸化炭素ガスのマイクロバブル注入により低pH化した場合でも、幼生の付着を完全に防止できているわけではなく、低pH環境でも適応できる幼生が一定量付着し続けていることを示している。このため、海生物の幼生の付着速度を緩和する効果に留まる中、二酸化炭素ガスを長期にわたって連続注入することとなるので、二酸化炭素ガスの使用上の負担が大きくなると考えられる。従って、連続的に行う注入方法を改善することで二酸化炭素ガスの使用量の合理化を図ることができる。   5 and 6, as described above, a result of continuously injecting microbubbles of carbon dioxide gas for a long period using a new pipe of the heat transfer pipe 13 is shown. The focus is on suppressing the attachment of marine life larvae to the inner surface of the heat transfer tube 13, but from this result, the increase in both the wet volume and the soil coefficient has not been stopped. This shows that even when the pH is lowered by injecting microbubbles of carbon dioxide gas, the larvae are not completely prevented from attaching, and a certain amount of larvae that can adapt even in a low pH environment continues to adhere. ing. For this reason, since the carbon dioxide gas is continuously injected over a long period of time while the effect of mitigating the attachment speed of larvae of marine organisms, it is considered that the burden on the use of carbon dioxide gas increases. Therefore, it is possible to rationalize the amount of carbon dioxide gas used by improving the continuous injection method.

以上を踏まえ、本実施形態では、マイクロバブルの注入方法は連続注入ではなく、間欠注入を採用した。前述のとおり、海生物の幼生であっても二酸化炭素ガスのマイクロバブルの連続注入で完全に付着を抑制できているわけではない。そのような中、間欠注入では、注入を停止している期間に海生物が生育していると考えられることから、幼生の状態よりも環境変化への適応力が強くなっているものと予想される。これを含め間欠注入の効果を確認するための試験を行った。   Based on the above, in this embodiment, the microbubble injection method is not continuous injection but intermittent injection. As described above, even the larvae of marine organisms cannot completely suppress adhesion by continuous injection of carbon dioxide gas microbubbles. Under such circumstances, intermittent infusion is expected to be more adaptable to environmental changes than larvae because sea life is considered to be growing during the period when injection is stopped. The Including this, a test was conducted to confirm the effect of intermittent injection.

図8及び図10に示すように、この試験では約2ヶ月間の海水通水を続けて海生物を育成し、その状態から二酸化炭素ガスのマイクロバブルを7日間(約170時間)注入し、湿体積及び汚れ係数を測定した。これらの図に示すように、湿体積及び汚れ係数について、二酸化炭素ガスのマイクロバブル注入による海生物の除去効果を確認することができた。具体的には湿体積では、下記の表1に示すよう低pH海水環境下において初期値から約20%程度低下することを確認した。表1では、通常海水のpH8.0及び低pH(pH6.9、6.7及び6.5)で、湿体積の初期値と7日後の値及びそれらの差(Δ)を示すとともに、初期値に対する差の百分率(%)を示した。   As shown in FIG. 8 and FIG. 10, in this test, sea water was continued for about two months to cultivate sea life, and from that state, carbon dioxide gas microbubbles were injected for 7 days (about 170 hours), Wet volume and soil coefficient were measured. As shown in these figures, it was possible to confirm the removal effect of sea life by microbubble injection of carbon dioxide gas with respect to the wet volume and the soil coefficient. Specifically, it was confirmed that the wet volume decreased by about 20% from the initial value in a low pH seawater environment as shown in Table 1 below. Table 1 shows the initial value of wet volume, the value after 7 days, and the difference (Δ) between normal pH and low pH (pH 6.9, 6.7 and 6.5) of normal seawater. The percentage (%) of the difference to the value is shown.

図9及び図11に示すように、上記と同様の試験を淡水環境下においても実施した。その結果、湿体積及び汚れ係数とも、二酸化炭素ガスのマイクロバブル注入により減少の傾向を示し、海生物の除去効果を確認した。湿体積では、下記の表2に示すように、pH6.5の一部の湿体積データに計測誤差が見られたものの、総じて初期値から約20%程度低下することを確認した。 As shown in FIGS. 9 and 11, the same test as described above was also performed in a fresh water environment. As a result, both the wet volume and the soil coefficient showed a tendency to decrease by injecting microbubbles of carbon dioxide gas, and the removal effect of sea life was confirmed. As shown in Table 2 below, the wet volume was confirmed to be about 20% lower than the initial value, although a measurement error was observed in some wet volume data at pH 6.5.

表2では、通常海水のpH8.0及び低pH(pH6.9、6.8、6.7、6.5及び6.3)で、湿体積の初期値と7日後の値及びそれらの差(Δ)を示すとともに、初期値に対する差の百分率(%)を示した。   In Table 2, normal seawater pH 8.0 and low pH (pH 6.9, 6.8, 6.7, 6.5 and 6.3), the initial value of wet volume, the value after 7 days, and their difference In addition to (Δ), the percentage (%) of the difference from the initial value was shown.

上記試験結果より、図3において出入口差圧の管理値に相当する湿体積と清掃後の出入口差圧に相当する湿体積の差分の割合は、出入口差圧の管理値に相当する湿体積の約20%程度と推定される。 From the above test results, the ratio of the difference between the wet volume corresponding to the management value of the inlet / outlet differential pressure and the wet volume corresponding to the inlet / outlet differential pressure after cleaning in FIG. It is estimated to be about 20%.

次に、図12及び図13に示すように、フェロコ管を用いて、海水環境下及び淡水環境下において、二酸化炭素ガスのマイクロバブル注入に伴う伝熱管13内の保護被膜への影響を確認した。海水の場合には図12及び淡水の場合には図13に示すように、注入期間を7日間(約170時間)以内に限定すればpH6.5以上で分極抵抗値を20000Ω・cm以上に維持ができ、伝熱管13の健全性を維持できることを確認した。pHの下限値の6.5は、アルミ黄銅管であっても健全性を維持できる値であり、耐食性に優れるチタン管に適用しても全く支障はない。また、アルミ黄銅管の場合には、二酸化炭素ガスのマイクロバブル注入後には分極抵抗値の余裕代が少なくなると考えられることから、操作の後は速やかに鉄イオン注入を行い、分極抵抗値の回復を図ることが望ましい。 Next, as shown in FIG.12 and FIG.13, the influence on the protective film in the heat exchanger tube 13 accompanying microbubble injection | pouring of a carbon dioxide gas was confirmed using the ferroco pipe in seawater environment and freshwater environment. . As shown in FIG. 12 in the case of seawater and in FIG. 13 in the case of fresh water, if the injection period is limited to 7 days (about 170 hours), the polarization resistance value should be 20000 Ω · cm 2 or more at pH 6.5 or more. It was confirmed that the heat transfer tube 13 can be maintained and the soundness of the heat transfer tube 13 can be maintained. The lower limit of pH 6.5 is a value that can maintain soundness even with an aluminum brass tube, and there is no problem even if it is applied to a titanium tube with excellent corrosion resistance. In the case of an aluminum brass tube, it is considered that the margin of polarization resistance value will be reduced after the microbubble injection of carbon dioxide gas. Therefore, iron ions are injected immediately after the operation to recover the polarization resistance value. It is desirable to plan.

以上の結果より、生育した海生物であっても、低pH環境を経験していない状態で、かつ伝熱管13内に大量に蓄積され母集団が多い場合には、7日以内の低pH海水の注水で、海生物を効率的に除去できることが分った。これは、図2(b)においては、前記2−2の曲線で反転時期の前に漸減し続ける時期の範囲内に該当する。   From the above results, even in the case of growing marine organisms, low pH seawater within 7 days is not experienced in a low pH environment and is accumulated in large quantities in the heat transfer tube 13 and has a large population. It was found that seawater could be removed efficiently with this water injection. In FIG. 2 (b), this corresponds to the range of the time continually decreasing before the inversion time in the curve 2-2.

マイクロバブルの間欠注入による注入期間が7日以内と比較的短い期間で有効であることから、予備の熱交換器12を保有している系統については、清掃したい熱交換器12を一旦隔離状態とし、通水を止めた上で清掃を行うという運用ができる。熱交換器12を隔離した場合には、通水時と異なり、使用する水の量を大幅に低減でき水の確保が容易になるので、海水だけでなく淡水の使用が容易となる。   Since the injection period by intermittent injection of microbubbles is effective within a relatively short period of 7 days or less, for a system having a spare heat exchanger 12, the heat exchanger 12 to be cleaned is temporarily in an isolated state. It is possible to operate after stopping water flow and cleaning. When the heat exchanger 12 is isolated, the amount of water to be used can be greatly reduced and water can be easily secured, unlike the case of passing water, so that not only seawater but also fresh water can be easily used.

ここで例として、プラントの補機冷却水系の熱交換器12(定格流量:2000m/hr)について、隔離を行った上、淡水での二酸化炭素ガスのマイクロバブル注入を行い、7日間海生物の除去を行うケースにおける二酸化炭素ガスの使用量を概算した。すなわち、熱交換器12廻りの隔離範囲(容積)を100mとする。初期のpHが7.5程度の淡水をpH6.5程度まで低下させるのに必要な二酸化炭素ガスと淡水の気液率を4%とすると隔離範囲に必要な二酸化炭素ガスは4mとなる。確実な置換を行うため、100mの何倍もの水を通水したとしても、標準サイズの二酸化炭素ボンベの容量を約15mとすると、ボンベ数本程度で済む。このため、二酸化炭素ガスを供給する装置も小規模化を図ることが可能となる。 Here, as an example, the plant auxiliary water cooling system heat exchanger 12 (rated flow rate: 2000 m 3 / hr) was isolated and then injected with microbubbles of carbon dioxide gas in fresh water for 7 days. The amount of carbon dioxide gas used in the case of removal of carbon dioxide was estimated. That is, the isolation range (volume) around the heat exchanger 12 is set to 100 m 3 . The carbon dioxide gas required for the isolation range is 4 m 3 when the gas-liquid ratio of the fresh water having an initial pH of about 7.5 to about 6.5 is reduced to 4%. In order to perform reliable replacement, no matter how many times 100 m 3 of water is passed, if the capacity of a standard size carbon dioxide cylinder is about 15 m 3 , only a few cylinders are required. For this reason, the apparatus for supplying carbon dioxide gas can be reduced in size.

ここで、二酸化炭素ガスのマイクロバブル注入を行う場合、低pH海水は海域へ放水されることとなる。海域には水質規制値(公共用水域水質環境基準)が設定されており、pH7.8以上となるよう配慮する必要がある。海水のpH値を水質規制値まで回復させる方法としては、大量の通常海水と混合して希釈回復させる方法がある。この場合、pH6.5の海水をpH7.8まで回復させるためには、通常の海水のpHを8.2とすると熱交換器12の通水量の約40倍もの海水との混合希釈が必要となる。このため、運転状態の熱交換器12においては、連続注入及び間欠注入に係わらずこの容量を満足する海水を確保することが必要である。   Here, when microbubble injection of carbon dioxide gas is performed, the low pH seawater is discharged into the sea area. Water quality regulation values (public water quality standards) are set in the sea area, and it is necessary to consider that the pH is 7.8 or higher. As a method of recovering the pH value of seawater to the water quality regulation value, there is a method of recovering dilution by mixing with a large amount of normal seawater. In this case, in order to recover the seawater at pH 6.5 to pH 7.8, when the pH of normal seawater is 8.2, it is necessary to mix and dilute with seawater about 40 times as much as the water flow rate of the heat exchanger 12. Become. For this reason, in the heat exchanger 12 in an operating state, it is necessary to secure seawater that satisfies this capacity regardless of continuous injection and intermittent injection.

一方、上記のとおり隔離を行った上での間欠注入の場合には次のとおりとなる。隔離した熱交換器12内の海水を低pH水へ置換する場合、pH6.5の低pH海水を10m/hrの速度で置換したとする。この場合には、pH8.2の海水で運用中の熱交換器12の2000m/hrの海水との混合希釈により、pHは8.11となる。海水のpHは時期により平均pHから±0.1程度の自然変動があり、海水のpH平均値を8.2とすると、自然変動の下限側はpH8.1となる。 On the other hand, in the case of intermittent injection after performing isolation as described above, the following occurs. When the seawater in the isolated heat exchanger 12 is replaced with low pH water, it is assumed that the pH 6.5 low pH seawater is replaced at a speed of 10 m 3 / hr. In this case, the pH becomes 8.11 due to the mixed dilution of the heat exchanger 12 in operation with seawater at pH 8.2 with 2000 m 3 / hr of seawater. The pH of the seawater has a natural fluctuation of about ± 0.1 from the average pH depending on the time. If the pH average value of the seawater is 8.2, the lower limit side of the natural fluctuation is pH 8.1.

上記のように、仮に二酸化炭素ガスを含む淡水の放出速度を10m/hr以下に制限することで、同じ系統内の運転機との希釈で水質規制値のみならず、自然変動のpHの範囲内に収めることも可能である。従って、希釈する海水の確保が容易になる。 As described above, by limiting the discharge rate of fresh water containing carbon dioxide gas to 10 m 3 / hr or less, not only the water quality regulation value but also the range of the pH of natural fluctuations by dilution with operating units in the same system It is also possible to fit inside. Therefore, it becomes easy to secure seawater to be diluted.

次に、熱交換器12における海生物の除去方法について作用を説明する。
さて、海水ライン11から熱交換器12の伝熱管13内に海水を導入して熱交換を継続すると、海水中に含まれる海生物が伝熱管13内面に付着する。そして、海生物付着に伴う熱交換器12の出入口差圧が予め定めた管理値に達したときバルブ15を閉じ、マイクロバブル供給ライン19のバルブ21を開いて、伝熱管13内に二酸化炭素ガスのマイクロバブルを含む海水又は淡水を注入する。その後、二酸化炭素ガスのマイクロバブルの注入と注入停止後の海水通水を繰り返し、伝熱管13内にマイクロバブルを間欠的に注入する。このとき、マイクロバブルの注入を停止して海水通水を行っている期間中に出入口差圧の上昇が生じた場合には、逆洗等の既存の清掃方法を行ってもよい。
Next, an effect | action is demonstrated about the removal method of the sea life in the heat exchanger 12. FIG.
Now, when seawater is introduce | transduced in the heat exchanger tube 13 of the heat exchanger 12 from the seawater line 11 and heat exchange is continued, the marine organisms contained in seawater will adhere to the heat exchanger tube 13 inner surface. When the inlet / outlet differential pressure of the heat exchanger 12 due to adhesion of marine organisms reaches a predetermined control value, the valve 15 is closed, the valve 21 of the microbubble supply line 19 is opened, and carbon dioxide gas is introduced into the heat transfer tube 13. Inject seawater or fresh water containing microbubbles. Thereafter, injection of carbon dioxide gas microbubbles and seawater flow after the injection stop are repeated, and microbubbles are intermittently injected into the heat transfer tube 13. At this time, when an increase in the inlet / outlet differential pressure occurs during the period in which the injection of microbubbles is stopped and seawater is running, an existing cleaning method such as backwashing may be performed.

マイクロバブルを含む海水又は淡水中では、二酸化炭素(CO)と水(HO)との反応によって水素イオン(H)が生成し、海水又は淡水のpHが低下するがpH6.5〜6.9の間になるよう二酸化炭素ガスの注入量を調整する。これにより、伝熱管13内面に形成された生物の被膜など海生物の付着による汚損物が剥されて、伝熱管13内面から除かれる。低pH水の間欠注入では、注入を停止している期間中に海生物の幼生が生育し環境変化への耐性が強くなっていると考えられるが、成育した海生物であっても伝熱管13内面から取り除くことができる。すなわち、生育過程で低pH環境を経験していない海生物の個体数がある程度増えた時点で低pH環境下に晒すことにより、一定の割合で付着量の減少が見られ伝熱管13内面から離れる。間欠注入の間隔を空けることにより、生育過程の海生物が低pH環境を経験し適応してしまうことを防止することで注入効果は向上する。 In seawater or fresh water containing microbubbles, hydrogen ions (H + ) are generated by the reaction between carbon dioxide (CO 2 ) and water (H 2 O), and the pH of seawater or fresh water decreases, but pH 6.5- The injection amount of carbon dioxide gas is adjusted to be between 6.9. As a result, contaminants due to adhesion of marine organisms such as a biological film formed on the inner surface of the heat transfer tube 13 are peeled off and removed from the inner surface of the heat transfer tube 13. In intermittent injection of low pH water, it is considered that sea life larvae grow during the period when the injection is stopped and the resistance to environmental changes is strong. Can be removed from the inner surface. That is, when the number of marine organisms who have not experienced a low pH environment during the growth process increases to some extent, exposure to the low pH environment causes a decrease in the amount of adhesion at a certain rate, and the inner surface of the heat transfer tube 13 is separated. . By providing an interval between intermittent injections, the injection effect is improved by preventing the growing sea life from experiencing and adapting to a low pH environment.

このように、熱交換器12の出入口差圧が予め定めた管理値に達したとき、二酸化炭素ガスのマイクロバブルを含む海水又は淡水を伝熱管13内に間欠的に注入することにより、伝熱管13内面に付着形成された海生物を効率的に除去することができる。   In this way, when the inlet / outlet differential pressure of the heat exchanger 12 reaches a predetermined control value, seawater or fresh water containing microbubbles of carbon dioxide gas is intermittently injected into the heat transfer tube 13, so that the heat transfer tube It is possible to efficiently remove marine organisms attached to the inner surface.

以上の実施形態により得られる効果を以下にまとめて記載する。
(1)本実施形態では、熱交換器12の伝熱管13内に二酸化炭素ガスのマイクロバブルを含む海水又は淡水を間欠的に注入するように構成した。このため、前記マイクロバブルにより、海水のpHを下げて伝熱管13内面に付着した海生物を減少させることができる。つまり、マイクロバブルの注入停止期間中に伝熱管13内面に付着、生育した海生物に対して低pHの注入水を作用させて除去することができる。
The effect obtained by the above embodiment is described collectively below.
(1) In this embodiment, seawater or fresh water containing microbubbles of carbon dioxide gas is intermittently injected into the heat transfer tube 13 of the heat exchanger 12. For this reason, by the said micro bubble, the pH of seawater can be lowered | hung and the marine organism adhering to the heat exchanger tube 13 inner surface can be decreased. That is, it is possible to remove the low-pH injection water by acting on the marine organisms that have adhered to and grown on the inner surface of the heat transfer tube 13 during the microbubble injection stop period.

従って、本実施形態によれば、伝熱管13内に注入する二酸化炭素ガスのマイクロバブルの注入量を抑制しつつ、伝熱管13内面に付着する海生物を効果的に減少させることができるという効果を奏する。
(2)前記二酸化炭素ガスのマイクロバブルの注入形態を、注入、停止を繰り返す間欠注入とし注入期間を限定したことから、アルミ黄銅で形成された伝熱管13内面の保護被膜の溶解の進展を抑え、分極抵抗値を維持することができる。
Therefore, according to this embodiment, the marine organisms adhering to the inner surface of the heat transfer tube 13 can be effectively reduced while suppressing the injection amount of the carbon dioxide gas microbubbles injected into the heat transfer tube 13. Play.
(2) Since the injection mode of the carbon dioxide gas microbubbles is intermittent injection that repeats injection and stop, and the injection period is limited, the progress of dissolution of the protective coating on the inner surface of the heat transfer tube 13 made of aluminum brass is suppressed. The polarization resistance value can be maintained.

従って、伝熱管13の保護被膜の健全性を維持しながら熱交換器12の運転を長期に亘って安定した状態で継続することができる。
(3)前記二酸化炭素ガスのマイクロバブルを含む海水又は淡水の注入開始時期は、伝熱管13内面に付着した海生物による汚損が増大して熱交換器12の出入口差圧が予め定めた管理値に達したときである。そのため、汚損の指標となる出入口差圧に基づく簡便な方法で伝熱管13内面に付着した海生物を除去することができる。
(4)前記二酸化炭素ガスのマイクロバブルを含む海水又は淡水を注入する注入水のpHを6.5〜6.9とするとともに、注入期間を1〜7日間とした。このため、低pHの注入水によって伝熱管13内面に付着した海生物を除去できるとともに、マイクロバブルの注入期間を7日以内という短期間で海生物の除去効果を有効に発揮させることができる。
(5)前記二酸化炭素ガスのマイクロバブルを含む海水又は淡水の間欠注入実施後から次の間欠注入の開始までの期間中には、逆洗又は淡水置換を行う。従って、二酸化炭素ガスのマイクロバブルの注入間隔を延長させることができ、マイクロバブルの注入量を一層減少させることができる。
(6)前記二酸化炭素ガスのマイクロバブルを含む海水又は淡水の間欠注入実施後、次の間欠注入を開始する時期は、前記逆洗又は淡水置換の実施後における熱交換器の出入口差圧を示すベース値が予め定めた一次管理値に達した後、海水を注入して熱交換器の出入口差圧が予め定めた二次管理値に達したときである。この場合、次の間欠注入を開始する時期を、熱交換器の出入口差圧に基づく一次管理値と二次管理値とにより、簡便かつ容易に判断することができるとともに、海生物の除去操作を適切かつ有効に行うことができる。
(7)前記マイクロバブルの注入水の間欠注入は、海水注入を停止して熱交換器12を隔離した状態で行い、間欠注入期間中、マイクロバブルの注入水で熱交換器12内の水の置換を継続するか又は前記置換の停止後に熱交換器12内を注入水で満たす。このように、熱交換器12を隔離して間欠注入を実施することにより、伝熱管13内を容易に低pH化して伝熱管13内面に付着する海生物を一層効果的に減少させることができるとともに、マイクロバブルの注入水を節約することができる。
Therefore, the operation of the heat exchanger 12 can be continued in a stable state for a long time while maintaining the soundness of the protective coating of the heat transfer tube 13.
(3) Seawater or fresh water containing microbubbles of carbon dioxide gas starts to be injected at a control value in which the contamination by marine organisms attached to the inner surface of the heat transfer tube 13 increases and the inlet / outlet differential pressure of the heat exchanger 12 is determined in advance. It is time to reach. Therefore, marine organisms attached to the inner surface of the heat transfer tube 13 can be removed by a simple method based on the inlet / outlet differential pressure, which is an index of fouling.
(4) The pH of injection water for injecting seawater or fresh water containing microbubbles of carbon dioxide gas was set to 6.5 to 6.9, and the injection period was set to 1 to 7 days. For this reason, while being able to remove the marine organisms adhering to the inner surface of the heat transfer tube 13 by the low pH injection water, the removal effect of the marine organisms can be effectively exhibited in a short period of 7 days or less.
(5) Back washing or fresh water replacement is performed during the period from the intermittent injection of seawater or fresh water containing microbubbles of carbon dioxide gas to the start of the next intermittent injection. Therefore, the injection interval of carbon dioxide gas microbubbles can be extended, and the injection amount of microbubbles can be further reduced.
(6) After intermittent injection of seawater or fresh water containing microbubbles of carbon dioxide gas, the timing of starting the next intermittent injection indicates the inlet / outlet differential pressure of the heat exchanger after the backwashing or freshwater replacement. When the base value reaches the predetermined primary management value, seawater is injected and the inlet / outlet differential pressure of the heat exchanger reaches the predetermined secondary management value. In this case, the timing for starting the next intermittent injection can be easily and easily determined from the primary management value and the secondary management value based on the inlet / outlet differential pressure of the heat exchanger, and the removal operation of the sea life can be performed. It can be done appropriately and effectively.
(7) The intermittent injection of the microbubble injection water is performed in a state where the seawater injection is stopped and the heat exchanger 12 is isolated, and the water in the heat exchanger 12 is injected with the microbubble injection water during the intermittent injection period. The replacement is continued or the heat exchanger 12 is filled with injected water after the replacement is stopped. Thus, by isolating the heat exchanger 12 and performing intermittent injection, it is possible to easily lower the pH of the heat transfer tube 13 and more effectively reduce marine life adhering to the inner surface of the heat transfer tube 13. At the same time, it is possible to save the water injected into the microbubbles.

なお、前記実施形態を次のように変更して具体化することも可能である。
・ 前記マイクロバブル供給ライン19を、海水ライン11を介することなく、熱交換器12に直接接続し、二酸化炭素ガスのマイクロバブルを含む海水又は淡水を伝熱管13内に直接注入するように構成してもよい。
It should be noted that the embodiment described above can be modified and embodied as follows.
The microbubble supply line 19 is directly connected to the heat exchanger 12 without going through the seawater line 11 and configured to inject seawater or fresh water containing microbubbles of carbon dioxide gas directly into the heat transfer tube 13. May be.

・ 前記伝熱管13内への二酸化炭素ガスのマイクロバブルの注入量や注入速度を、気温の上昇に伴って増大させるように構成してもよい。例えば、夏季には冬季よりも、伝熱管13内へのマイクロバブルの注入量や注入速度を増大させてもよい。   -You may comprise so that the injection amount and injection | pouring speed | velocity | rate of the microbubble of the carbon dioxide gas in the said heat exchanger tube 13 may be increased with the rise in temperature. For example, the amount of microbubbles injected into the heat transfer tube 13 and the injection speed may be increased in summer than in winter.

12…熱交換器、13…伝熱管、30…ベース値。   12 ... heat exchanger, 13 ... heat transfer tube, 30 ... base value.

Claims (6)

伝熱管内に海水を注入して熱交換を行うように構成された熱交換器の前記伝熱管の内面に付着する海生物を減少させる方法であって、
前記伝熱管内に二酸化炭素ガスのマイクロバブルを含む海水又は淡水を間欠的に注入することを特徴とする熱交換器における海生物の除去方法。
A method of reducing marine organisms adhering to the inner surface of the heat transfer tube of a heat exchanger configured to inject seawater into the heat transfer tube to perform heat exchange,
A method for removing sea life in a heat exchanger, wherein seawater or fresh water containing microbubbles of carbon dioxide gas is intermittently injected into the heat transfer tube.
前記二酸化炭素ガスのマイクロバブルを含む海水又は淡水の注入開始時期は、伝熱管内面に付着した海生物による汚損が増大して熱交換器の出入口差圧が予め定めた管理値に達したときであることを特徴とする請求項1に記載の熱交換器における海生物の除去方法。 The start time of the injection of seawater or fresh water containing the microbubbles of carbon dioxide gas is when the contamination by marine organisms adhering to the inner surface of the heat transfer tube increases and the inlet / outlet differential pressure of the heat exchanger reaches a predetermined control value. The method for removing marine organisms in the heat exchanger according to claim 1, wherein: 前記二酸化炭素ガスのマイクロバブルを含む海水又は淡水を注入する注入水のpHを6.5〜6.9とするとともに、注入期間を1〜7日間としたことを特徴とする請求項1又は請求項2に記載の熱交換器における海生物の除去方法。 The pH of injection water for injecting seawater or fresh water containing microbubbles of carbon dioxide gas is set to 6.5 to 6.9, and the injection period is set to 1 to 7 days. Item 3. A method for removing sea life in the heat exchanger according to Item 2. 前記二酸化炭素ガスのマイクロバブルを含む海水又は淡水の間欠注入実施後から次の間欠注入の開始までの期間中には、伝熱管内を流れる海水を逆流させる逆洗又は伝熱管内を淡水で置換する淡水置換を行うことを特徴とする請求項1から請求項3のいずれか一項に記載の熱交換器における海生物の除去方法。 During the period from the intermittent injection of seawater or fresh water containing the microbubbles of carbon dioxide gas to the start of the next intermittent injection, backwashing or reverse replacement of the seawater flowing through the heat transfer pipe with fresh water The method for removing marine organisms in a heat exchanger according to any one of claims 1 to 3, wherein fresh water replacement is performed. 前記二酸化炭素ガスのマイクロバブルを含む海水又は淡水の間欠注入実施後、次の間欠注入を開始する時期は、前記逆洗又は淡水置換の実施後における熱交換器の出入口差圧を示すベース値が予め定めた一次管理値に達した後、海水を注入して熱交換器の出入口差圧が予め定めた管理値に達したときであることを特徴とする請求項4に記載の熱交換器における海生物の除去方法。 After the intermittent injection of seawater or fresh water containing the microbubbles of carbon dioxide gas, the timing of starting the next intermittent injection is a base value indicating the inlet / outlet differential pressure of the heat exchanger after the backwash or the replacement of fresh water. The heat exchanger according to claim 4, wherein after reaching the predetermined primary management value, seawater is injected and the inlet / outlet differential pressure of the heat exchanger reaches a predetermined management value. Sea life removal method. 前記二酸化炭素ガスのマイクロバブルを含む海水又は淡水の間欠注入は、海水注入を停止して熱交換器を隔離した状態で行い、間欠注入期間中、二酸化炭素ガスのマイクロバブルを含む海水又は淡水の注入水で熱交換器内の水の置換を継続するか又は前記置換の停止後に熱交換器内を注入水で満たすことを特徴とする請求項1から請求項5のいずれか一項に記載の熱交換器における海生物の除去方法。 The intermittent injection of seawater or fresh water containing microbubbles of carbon dioxide gas is performed with the seawater injection stopped and the heat exchanger isolated, and during the intermittent injection period, seawater or fresh water containing microbubbles of carbon dioxide gas The replacement of water in the heat exchanger with the injected water is continued, or the heat exchanger is filled with the injected water after the replacement is stopped. A method for removing sea life in a heat exchanger.
JP2012214436A 2012-09-27 2012-09-27 Sea life removal method in heat exchanger Expired - Fee Related JP5996351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012214436A JP5996351B2 (en) 2012-09-27 2012-09-27 Sea life removal method in heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012214436A JP5996351B2 (en) 2012-09-27 2012-09-27 Sea life removal method in heat exchanger

Publications (2)

Publication Number Publication Date
JP2014069097A true JP2014069097A (en) 2014-04-21
JP5996351B2 JP5996351B2 (en) 2016-09-21

Family

ID=50744832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012214436A Expired - Fee Related JP5996351B2 (en) 2012-09-27 2012-09-27 Sea life removal method in heat exchanger

Country Status (1)

Country Link
JP (1) JP5996351B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138226A1 (en) * 2016-02-12 2017-08-17 三菱電機株式会社 Circulation piping system and system for supplying water containing carbon dioxide

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62298497A (en) * 1986-06-18 1987-12-25 Agency Of Ind Science & Technol Method for preventing spoiling of marine organisms by intermittent injection of phage
JPS6443397A (en) * 1987-08-12 1989-02-15 Hitachi Ltd Apparatus for removing iron component by superconducting magnet
JPH03143595A (en) * 1989-10-25 1991-06-19 Mitsubishi Electric Corp Device for preventing hindrance by living thing
JPH05305288A (en) * 1992-04-28 1993-11-19 Mitsubishi Electric Corp Microbe removal
JPH0775790A (en) * 1993-02-19 1995-03-20 Mitsubishi Heavy Ind Ltd Method for preventing adhesion of marine organism
JPH10281695A (en) * 1997-04-02 1998-10-23 Hisaka Works Ltd Method and apparatus for sensing cleaning time of heat exchanger
JPH11257022A (en) * 1998-03-17 1999-09-21 Toshiba Corp Sea water system of power-generation plant
JP2002022388A (en) * 2000-06-30 2002-01-23 Ebara Corp Microorganism adhesion preventing method for external water intake heat exchange device
JP2006142144A (en) * 2004-11-17 2006-06-08 Central Res Inst Of Electric Power Ind Method for preventing attached organism in house cooling water cooler in power plant
JP2008261525A (en) * 2007-04-10 2008-10-30 Chugoku Electric Power Co Inc:The Cooling system and electric power station comprising the same
JP2009112996A (en) * 2007-11-09 2009-05-28 Masanori Tashiro Method for sterilizing marine organism in water for seawater-utilizing equipment, and device therefor
JP2010043060A (en) * 2008-07-17 2010-02-25 Kansai Electric Power Co Inc:The Method for preventing adhesion of marine organism
JP2011147870A (en) * 2010-01-20 2011-08-04 Chugoku Electric Power Co Inc:The Method and system of suppressing adhesion of marine organism and method of inhibiting swimming of marine organism

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62298497A (en) * 1986-06-18 1987-12-25 Agency Of Ind Science & Technol Method for preventing spoiling of marine organisms by intermittent injection of phage
JPS6443397A (en) * 1987-08-12 1989-02-15 Hitachi Ltd Apparatus for removing iron component by superconducting magnet
JPH03143595A (en) * 1989-10-25 1991-06-19 Mitsubishi Electric Corp Device for preventing hindrance by living thing
JPH05305288A (en) * 1992-04-28 1993-11-19 Mitsubishi Electric Corp Microbe removal
JPH0775790A (en) * 1993-02-19 1995-03-20 Mitsubishi Heavy Ind Ltd Method for preventing adhesion of marine organism
JPH10281695A (en) * 1997-04-02 1998-10-23 Hisaka Works Ltd Method and apparatus for sensing cleaning time of heat exchanger
JPH11257022A (en) * 1998-03-17 1999-09-21 Toshiba Corp Sea water system of power-generation plant
JP2002022388A (en) * 2000-06-30 2002-01-23 Ebara Corp Microorganism adhesion preventing method for external water intake heat exchange device
JP2006142144A (en) * 2004-11-17 2006-06-08 Central Res Inst Of Electric Power Ind Method for preventing attached organism in house cooling water cooler in power plant
JP2008261525A (en) * 2007-04-10 2008-10-30 Chugoku Electric Power Co Inc:The Cooling system and electric power station comprising the same
JP2009112996A (en) * 2007-11-09 2009-05-28 Masanori Tashiro Method for sterilizing marine organism in water for seawater-utilizing equipment, and device therefor
JP2010043060A (en) * 2008-07-17 2010-02-25 Kansai Electric Power Co Inc:The Method for preventing adhesion of marine organism
JP2011147870A (en) * 2010-01-20 2011-08-04 Chugoku Electric Power Co Inc:The Method and system of suppressing adhesion of marine organism and method of inhibiting swimming of marine organism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138226A1 (en) * 2016-02-12 2017-08-17 三菱電機株式会社 Circulation piping system and system for supplying water containing carbon dioxide
JP6192881B1 (en) * 2016-02-12 2017-09-06 三菱電機株式会社 Circulation piping system and carbon dioxide-containing water supply system

Also Published As

Publication number Publication date
JP5996351B2 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
JP5295819B2 (en) Sea life adhesion prevention method
CN102344215B (en) Novel water treatment method for boiler feedwater
WO2012070468A1 (en) Seawater electrolysis system and seawater electrolysis method
CN105753105B (en) A kind of the reason during electric power plant circulating water blowdown Water circulation, counter-infiltration system is dirty stifled analysis determination method and its chemical cleaning method
US20130105406A1 (en) Evaporative recirculation cooling water system, method of operating an evaporative recirculation cooling water system
US20100032387A1 (en) Cleaning and sterilizing method for ultrapure water manufacturing system
BR112015032305A2 (en) METHOD OF SUPPRESSING CORROSION FROM A CORROSIBLE METALLIC SURFACE
EP2982655B1 (en) Method for removing scales in steam generation facility
JP2010201312A (en) Membrane separation method
JP4910796B2 (en) Cleaning method of ultrapure water production system
JP5471242B2 (en) Water treatment method and apparatus
JP5163760B2 (en) Reclaimed water production apparatus and method
JP5996351B2 (en) Sea life removal method in heat exchanger
JP5190674B2 (en) Operation method of boiler system
US6776172B2 (en) Method of cleaning ultrapure water supply system
JP5569217B2 (en) Oxygen treatment boiler cleaning method and apparatus
JP6114437B1 (en) Corrosive anion removing apparatus and method for regenerating anion exchange resin
KR101391022B1 (en) System for cleaning membrane unit of anaerobic digestion process
JP2008055336A (en) Operation method of permeation flux in membrane filtration device
CN103347594A (en) Method and system for scaling control in membrane system operation
JP5691134B2 (en) How to treat boilers that are not operating
US20200277208A1 (en) Systems and methods for treating water
US9682871B2 (en) Apparatus for killing and preventing growth of algae and bacteria in the piping, filtering and pumping components of watermaker systems during periods of non-use
JP2006231199A (en) Seawater-electrolyzing chlorine injection device and method
JP2008218679A (en) Cooling water supply method and apparatus for high-capacity transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160824

R150 Certificate of patent or registration of utility model

Ref document number: 5996351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees