JPS60187383A - Process for preventing sticking of organism - Google Patents

Process for preventing sticking of organism

Info

Publication number
JPS60187383A
JPS60187383A JP59040295A JP4029584A JPS60187383A JP S60187383 A JPS60187383 A JP S60187383A JP 59040295 A JP59040295 A JP 59040295A JP 4029584 A JP4029584 A JP 4029584A JP S60187383 A JPS60187383 A JP S60187383A
Authority
JP
Japan
Prior art keywords
seawater
valves
water
period
organisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59040295A
Other languages
Japanese (ja)
Other versions
JPH0371195B2 (en
Inventor
Takashi Nitta
隆司 新田
Takashi Hashiba
橋場 隆
Ryohei Ueda
良平 植田
Norio Shioji
塩地 則夫
Kiyoshi Sugata
清 菅田
Ikuji Mizuta
水田 育次
Takashi Okumura
奥村 隆志
Toshio Hirata
平田 俊雄
Kenji Hashiba
橋場 憲司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP59040295A priority Critical patent/JPS60187383A/en
Publication of JPS60187383A publication Critical patent/JPS60187383A/en
Publication of JPH0371195B2 publication Critical patent/JPH0371195B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain highly reliable effect for preventing sticking organisms by closing tightly stand-by lines, stopping flow of water completely, thus blocking the supply of food and oxygen. CONSTITUTION:For example, in a system consisting of plural lines of installation, valves 11, 12 are opened and valves 13, 14 are closed, and carbureters 5-2 is reserved as a stand-by equipment. Then, sea water is filled between the valves 13, 14. The system is allowed to stand under this condition for a specified period. Thereafter, the valves 13, 14 are opened, and the line is exchanged with another line of the system. By this method, the supply of food and oxygen are blocked and sticking of organisms is prevented.

Description

【発明の詳細な説明】 本発明は、海水を通水する管路、水路、熱交換器などの
機器への海洋生物の付着を防止する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing marine organisms from adhering to equipment such as pipes, waterways, and heat exchangers that carry seawater.

海水は、造水プラントの原料、液化ガス気化用加温水、
および各種のプラントにおける冷却水等として広く用い
られている。
Seawater is used as raw material for water production plants, heated water for vaporizing liquefied gas,
It is also widely used as cooling water in various plants.

液化ガス気化における海水ラインの例を、第1図に示す
。第1図において、海水は、スクリーン設備1によって
流入してくるゴミやクラゲなどの異物を除去される。次
に、海水はポンプ2によってくみ上げられ、ヘッダー5
によって分配され、供給管4を通じて液化ガス気化器5
に供給される。使用後の海水は、放流管6を経由して後
流側ヘッダー7でまとめられ、放流母管8で系外に放流
される。
An example of a seawater line in liquefied gas vaporization is shown in FIG. In FIG. 1, a screen facility 1 removes foreign substances such as garbage and jellyfish from the seawater. Next, the seawater is pumped up by pump 2 and header 5
distributed by the liquefied gas vaporizer 5 through the supply pipe 4
is supplied to The used seawater is collected by a downstream header 7 via a discharge pipe 6, and is discharged to the outside of the system by a discharge main pipe 8.

海水の中には、ムラサキイガイ、フジッボ、その他の付
着生物が生息しており、上記の系内で付着成長して配管
を閉そくしたり、機器の損傷や腐食と伝ったトラブルを
招くことがある。
Mussels, barnacles, and other sessile organisms live in seawater and can grow in these systems, blocking pipes and causing equipment damage and corrosion.

従来は、生物付着を防止するために、塩素を第1図のポ
ンプ2の前又は後で注入して生物の成長を阻害する方法
が広くとられているが、近年は、環境問題等の理由から
、かかる塩素の注入をやめざるを得ないことが多くなっ
ている。これに対し、供給管4において、目のこまかい
ストレーナ−を設置したり、配管や機器の表面に生物付
着防止方法を塗布するといった対策がとられている。し
かし、前者では、小さな流入異物を除去できるが、貝な
どの幼生までは除去できず、下流機器や配管への生物付
着は防げない。
Conventionally, in order to prevent biofouling, chlorine was injected before or after the pump 2 in Figure 1 to inhibit the growth of living organisms. In many cases, the injection of chlorine has to be stopped. To counter this, countermeasures have been taken, such as installing a fine-mesh strainer in the supply pipe 4 and applying a biofouling prevention method to the surfaces of the pipes and equipment. However, although the former method can remove small inflowing foreign substances, it cannot remove larvae such as shellfish, and cannot prevent organisms from adhering to downstream equipment and piping.

また、後者では、塗布面への生物付着は防止できるが、
1〜2年に1回の割合で塗りかえを要するため、比較的
小口径の配管や小形の機器には使用がむずかしい。その
他、紫外線や超音波、電撃による生物付着防止対策等が
研究されているが、コストと効果の関係から実用化に至
っていないのが現状である。
In addition, although the latter can prevent biofouling on the coated surface,
Because it requires repainting once every 1 to 2 years, it is difficult to use on relatively small-diameter piping and small equipment. In addition, measures to prevent biofouling using ultraviolet rays, ultrasonic waves, and electric shock are being studied, but they have not yet been put into practical use due to cost and effectiveness issues.

本発明者等は、上記の問題に対し、比較的単純かつ安価
で、しかも生物付着防止効果の高い方法を検討し、海水
を用いる各種のプラントにおける生物付着によるトラブ
ル防止のため、海洋生物が成長する基本条件と実際のプ
ラントの形態を調査した結果、本発明に到達した。
The present inventors have investigated a method that is relatively simple, inexpensive, and highly effective in preventing biofouling in order to prevent problems caused by biofouling in various plants that use seawater. As a result of investigating the basic conditions and the actual plant configuration, we arrived at the present invention.

すなわち、本発明は、海水を原料や熱媒体として用いる
プラントの管路、水路、機器などからなるシステムであ
って同じ機能をもつ予備を含む複数系列を有し、かつ交
互運転可能なシステムにおいて、分離できる海水停止中
の系列に、海水又は淡水を満たして一定期間保持し、該
保持期間と海水を通水する期間とを交互に設けたことを
特徴とする、生物付着防止方法に関する。
That is, the present invention is a system consisting of pipes, waterways, equipment, etc. of a plant that uses seawater as a raw material or heat medium, has multiple lines including backups with the same function, and is capable of alternate operation. The present invention relates to a method for preventing biofouling, characterized in that a separable seawater line is filled with seawater or fresh water and held for a certain period of time, and the holding period and a period in which seawater is passed are provided alternately.

海水を用いるシステムでは、多くの場合、同じ機器をも
つラインが2系列以上あシ、そのうちの1系列以上が、
予備として海水停止状態にある。本発明の特徴〜は、こ
の停止状態の系列に対して生物付着防止処理を行なうこ
とである。
In systems using seawater, there are often two or more lines with the same equipment, and one or more of them
Seawater is stopped as a backup. A feature of the present invention is that biofouling prevention treatment is performed on this stopped series.

そして、複数系列については、11次、通水→停止(処
理)→通水の交互運転をくり返す。また、前記生物付着
防止処理を、停止状態の系を密閉系にして行なうことを
特徴とする。因みに、従来方法では、塩素処理、ストレ
ーナ、防汚塗装などの処理は、いずれも通水中、開放系
で行なわれていた。
For multiple lines, the 11th cycle of water flow→stop (processing)→water flow is repeated. Further, the bioadhesion prevention treatment is performed in a closed system while the system is in a stopped state. Incidentally, in conventional methods, treatments such as chlorination, strainer treatment, and antifouling coating were all performed in an open system while water was flowing.

本発明方法は、海水を原料とする遣水プラントや、海水
を熱媒体とする液化ガス気化プラント、火力、原子力発
電プラント、船舶用機器の冷却系、その他多数に適用で
きる。
The method of the present invention can be applied to water supply plants that use seawater as a raw material, liquefied gas vaporization plants that use seawater as a heat medium, thermal power plants, nuclear power plants, cooling systems for marine equipment, and many others.

次に、本発明方法の一実施態様例を、第1図に示した液
化ガス気化の海水ラインに適用した場合を第2図で説明
する。第2図では、海水はポンプ2によりくみ上げられ
、ヘッダー6により分配され、供給管4−1を通じて気
化器5−IK通水され、放流管6−1、後流側ヘッダー
7、放流母管8を経て放流される。ここで、弁11.1
2は開となっている。弁13.14は閉で、気化器5−
2は予備としている。弁1′5〜14の間は、海水が満
たされており、この状態を所定の期間保ち、その抜弁1
3.14を開として気化器5−2に海水を流し、同時に
、弁11.12を閉として、気化器5−1を予備とする
。予備となった弁11〜12の間は、海水を満たした状
態を保ち、所定の期間の後、再度系列の切り換えを行な
う。その操作を、交互にくり返す。
Next, a case in which an embodiment of the method of the present invention is applied to the seawater line for vaporizing liquefied gas shown in FIG. 1 will be described with reference to FIG. 2. In FIG. 2, seawater is pumped up by the pump 2, distributed by the header 6, passed through the vaporizer 5-IK through the supply pipe 4-1, and then passed through the discharge pipe 6-1, the downstream header 7, and the discharge main pipe 8. It is then released into the river. Here, valve 11.1
2 is open. Valves 13, 14 are closed and the carburetor 5-
2 is reserved. The space between valves 1'5 to 14 is filled with seawater, and this state is maintained for a predetermined period of time until the valve 1' is opened.
3.14 is opened to allow seawater to flow into the vaporizer 5-2, and at the same time, the valve 11.12 is closed to make the vaporizer 5-1 a standby. The spare valves 11 and 12 are kept filled with seawater, and after a predetermined period of time, the series is switched again. Repeat this operation alternately.

なお、第2図において、4−2は供給管、6−2は放流
管をそれぞれ意味する。
In addition, in FIG. 2, 4-2 means a supply pipe, and 6-2 means a discharge pipe.

第2図に示す場合の切り換え運転のサイクル例を第3図
に示す。第3図(A)は2系列の場合(1系列を予備扱
い)、第3図(B)は5系列の場合(1系列全予備扱い
)の例を示す。第3図(A)、(B)中、実線は海水通
水期間、点線は海水保持期間を示す。
FIG. 3 shows an example of a switching operation cycle in the case shown in FIG. 2. FIG. 3(A) shows an example in the case of two streams (one stream is treated as a reserve), and FIG. 3(B) shows an example in the case of five streams (all one stream is treated as a reserve). In FIGS. 3(A) and 3(B), the solid line indicates the seawater flow period, and the dotted line indicates the seawater retention period.

付着障害を引きおこす海洋生物は、フジッボ、ムラサキ
イガイなどが主体であるが、とれらは、海水中に浮遊し
、海水とともに流れてくるプランクトン(動物性お−よ
び植物性)や、微細な他の生物の死がいや破片等の捕食
することにより生活している。従って、これらの生活の
ためには、食物や、呼吸のために必要な酸素が常時供給
されるべく適当な水流があることが必要である。本発明
では、予備系列を密閉し、水流を完全に止め、食物や酸
素の供給を断ちきることによって、系内の付着した生物
、および付着し゛ようとする浮遊状のフジッボ等の幼生
を死滅させるか、又は付着成長が困難になるまで衰弱さ
せるものである。そのために必要な水流停止期間は、生
物種にもよるが1週間〜1ケ月程度である。1方、系列
を切り換えて海水を流しはじめると、その期間が長くな
るほど生物付着の度合がすすむので、通水期間は3ケ月
以内、満水保管の期間は2週間以上で交互運転を行なう
と、信頼性の高い生物付着防止効果が得られる。なお、
第3図(A)では海水通水2ケ月、海水保持2ケ月、第
5図(B)では海水通水2ケ月、海水保持1ケ月とした
The marine organisms that cause adhesion problems are mainly Fujitbo and mussels, but they are also affected by plankton (animal and vegetable) that floats in the seawater and flows with the seawater, as well as other microscopic organisms. They live by preying on dead carcasses and debris. Therefore, for these lifestyles, it is necessary to have an adequate flow of water so that food and the oxygen necessary for breathing are constantly supplied. In the present invention, by sealing the preliminary system, completely stopping the water flow, and cutting off the supply of food and oxygen, attached organisms in the system and floating larvae such as barnacles that try to attach are killed. or weaken it to the point where attachment growth becomes difficult. The period of water flow required for this purpose is about one week to one month, depending on the species. On the other hand, when switching the series and starting to flow seawater, the longer the period of time, the more biofouling will occur, so it is recommended that the period of water flow be less than 3 months and the period of full water storage be 2 weeks or more, and alternate operation will be performed. A highly effective biofouling prevention effect can be obtained. In addition,
In Fig. 3 (A), sea water was passed for 2 months and sea water was maintained for 2 months, and in Fig. 5 (B), sea water was passed for 2 months and sea water was held for 1 month.

以上の第2図に示す場合の効果は次の通りである。The effects of the case shown in FIG. 2 above are as follows.

(11第2図の弁11へ12間と弁13〜140間の生
物付着およびそれによる障害を防止できる。
(11) Biofouling between the valves 11 and 12 and between the valves 13 to 140 in FIG. 2 and the resulting damage can be prevented.

(2)必要な装置としては、系列切り換え用弁(第2図
の11.12.15.14)があるが、これらは、本発
明の対象となるプラント等では、既設のことが多いので
、これらをそのまま利用するか、又は極力広範囲に本発
明の効果が及ぶようと9つけ場所を考慮すればよい。
(2) Necessary equipment includes series switching valves (11, 12, 15, 14 in Figure 2), but these are often already installed in the plants that are the subject of this invention. These may be used as they are, or the placement locations may be considered so that the effects of the present invention can be applied as widely as possible.

また、操作は弁の切りかえのみでよく、電動弁等として
、自動化することができ、運転はきわめて容易である。
In addition, the operation is extremely easy as the operation can be automated by simply switching the valve, and it can be automated as an electric valve or the like.

(3)薬剤を全く使用しないので、動力費も皆無といっ
てよく、運転費が安い。
(3) Since no chemicals are used, there are no power costs, and operating costs are low.

なお、第2図のスクリーン設備1、ポンプ2、ヘッダー
3.7、放流母管までは効果が及ばないが、これらは比
較的サイズが大きな配管であつfC9、外部からの保修
がしやすい場所にあるため、主として防汚塗料や清掃な
どによってかなりの生物付着防止効果があるので、本発
明とくみあわせることによシ利益は大である。
Note that the effect does not extend to the screen equipment 1, pump 2, header 3.7, and discharge main pipe shown in Figure 2, but these are relatively large pipes and fC9, so they should be located in locations where they can be easily maintained from the outside. Therefore, there is a considerable effect of preventing biofouling mainly through antifouling paints and cleaning, so there are great benefits when combined with the present invention.

次に、本発明方法の他の実施態様例を第4図に示す。こ
の例も先の第2図の例と同様第1図に示した液化ガス気
化の海水ラインに適用した例である。第4図では、海水
はポンプ2によりくみ上げられ、ヘッダー5により分配
され、供給管4−1を通じて、気化器5−1に通水され
、放流管6−1、後流側ヘッダー7、放流母管8を経て
放流される。ここで、弁16.17は開、エア抜き弁1
5、ドレン抜き弁20は閉とする。
Next, another embodiment of the method of the present invention is shown in FIG. This example is also an example applied to the seawater line for vaporizing liquefied gas shown in FIG. 1, similar to the example shown in FIG. 2 above. In FIG. 4, seawater is pumped up by a pump 2, distributed by a header 5, passed through a supply pipe 4-1 to a vaporizer 5-1, then passed through a discharge pipe 6-1, a downstream header 7, and a discharge header. It is discharged via pipe 8. Here, valves 16 and 17 are open and air bleed valve 1
5. Close the drain valve 20.

一方、他系列では、弁18.19を閉とし、気化器5−
2は予備としている。この予備の系列では、エア抜き弁
14、ドレン抜き弁21は閉で、弁18〜190間が海
水で満たされている。
On the other hand, in other series, valves 18 and 19 are closed and the carburetor 5-
2 is reserved. In this preliminary series, the air bleed valve 14 and the drain bleed valve 21 are closed, and the space between the valves 18 to 190 is filled with seawater.

ここで、弁18〜19の間の生物付着防止操作は、次の
ように行なわれる。
Here, the biofouling prevention operation between the valves 18 and 19 is performed as follows.

(11エア抜き弁14、ドレン抜き弁21を開とし、弁
18〜19間の海水のほとんどを系外に除去する。
(11 Open the air bleed valve 14 and the drain bleed valve 21 to remove most of the seawater between valves 18 and 19 from the system.

(2) ドレン抜き弁21を閉とする。(2) Close the drain valve 21.

(3)淡水供給手段15から淡水ライン11t1″経て
、弁18〜19間に淡水を供給し、はぼ満水にする。
(3) Fresh water is supplied from the fresh water supply means 15 through the fresh water line 11t1'' between the valves 18 and 19, so that the valves are almost completely filled with water.

(4) エア抜き弁14を閉とし、淡水を保持する。(4) Close the air bleed valve 14 to retain fresh water.

(5) 一定期間保持した後、気化器のきりかえを行う
。即ち、弁18.19を開とし、気化器5−2に海水供
給する。そして、淡水を系外に押し出す。また弁16.
17を閉とする。
(5) Replace the vaporizer after holding it for a certain period of time. That is, valves 18 and 19 are opened to supply seawater to the vaporizer 5-2. The fresh water is then pushed out of the system. Also valve 16.
17 is closed.

次に、予備となった弁16〜17の間について、前述の
(11〜(4)と同様の操作により、淡水を供給し、一
定期間保持させる。
Next, fresh water is supplied between the spare valves 16 and 17 by operations similar to those in (11 to (4) above) and held for a certain period of time.

このように、第4図の場合は、淡水を保持する期間と、
海水を通水する期間全交互に設けて運転を行なうもので
ある。
In this way, in the case of Figure 4, the period for retaining fresh water,
The operation is carried out by alternating the periods during which seawater is passed through.

なお、第4図において、4−2は供給管、6−2は放流
管、9、joはドレン抜きライン、12は淡水ラインを
それぞれ意味する。
In addition, in FIG. 4, 4-2 means a supply pipe, 6-2 means a discharge pipe, 9 and jo mean a drain line, and 12 means a fresh water line.

第4図の場合の切り換え運転のサイクル例を第5図に示
す。第5図(A)は2系列の場合(1系列を予備扱い)
、第5図(B)は3系列の場合(1系列を予備扱い)の
例を示す。第5図(A)、(B)中、実線は海水通水期
間、点線は淡水保持期間、・は海水抜取り点、Oは淡水
供給点を示す。
An example of the switching operation cycle in the case of FIG. 4 is shown in FIG. Figure 5 (A) shows the case of 2 series (1 series is treated as preliminary)
, FIG. 5(B) shows an example in the case of three streams (one stream is treated as a reserve). In FIGS. 5(A) and 5(B), the solid line indicates the seawater flow period, the dotted line indicates the freshwater retention period, * indicates the seawater extraction point, and O indicates the freshwater supply point.

海洋生物は、一部の例外を除き、淡水中での生存は困難
である。逆のことが、淡水生物についてもいえる。この
理由は必ずしも明確でないが、海洋生物の場合、淡水と
接する除に生物の細胞膜の内外にかかる浸透圧差により
、細胞内圧の異常層NI(淡水佑物の場合はその逆)が
生じ、成長詔書の原因となることなどが考えられる。
With some exceptions, it is difficult for marine organisms to survive in freshwater. The opposite is true for freshwater organisms. The reason for this is not necessarily clear, but in the case of marine organisms, the difference in osmotic pressure between the inside and outside of the cell membrane of organisms that are in contact with fresh water creates an abnormal layer of intracellular pressure NI (the opposite in the case of freshwater creatures). This may be the cause of.

付着障害に関係するムラサキイガイ、フジッボなどは、
淡水条件下の成長は困難であジ、淡水条件で3日以上保
持すると、付着していた生物は死滅する。
Murasaki mussels, fujibo, etc. that are associated with attachment problems are
Growth under freshwater conditions is difficult, and if kept in freshwater conditions for more than 3 days, attached organisms will die.

一方、海水を通水中の配管内への生物付着は、通水期間
が長くなるほど成長が進むので、通水と処理の切り換え
は、2週間〜2ケ月に1回の頻度とすると、信頼性の高
い生物付着防止効果が得られる。なお、第5図(A)で
は海水通水1ケ月、淡水保持1ケ月、海水抜きとり2時
間、淡水供給2時間、第5図(B)では海水通水30日
、淡水保持15日、海水抜きとり2時間、淡水供給2時
間とした。
On the other hand, the growth of biofouling inside piping while seawater is flowing increases as the water flow period increases, so switching between water flow and treatment once every 2 weeks to 2 months will improve reliability. High biofouling prevention effect can be obtained. In addition, in Fig. 5 (A), seawater flow is carried out for 1 month, fresh water is maintained for 1 month, seawater is removed for 2 hours, and fresh water is supplied for 2 hours. The water was drained for 2 hours, and fresh water was supplied for 2 hours.

以上の第4図に示す場合の効果は次の通りである。The effects of the case shown in FIG. 4 above are as follows.

(1)第4図の弁16〜17間と弁18〜19間の生物
付着およびそれによる障害を防止できる。
(1) Biofouling between the valves 16 and 17 and between the valves 18 and 19 in FIG. 4 and the resulting damage can be prevented.

(2) 必要な装置は、配管、弁、タンクなど比較的安
価なものが主体であり、特殊な装置もなく、運転が容易
である。
(2) The required equipment is mainly relatively inexpensive equipment such as piping, valves, and tanks, and there is no special equipment and operation is easy.

(3) パルプ操作手順が一定しており、電動弁を用い
て自動化することが容易である。
(3) Pulp operation procedures are constant and can be easily automated using electric valves.

(4)薬剤を用いないので、環境問題の心配がない。ま
た、淡水はミニ業用水か清浄な河川水レベルの水質でよ
いため、処理費用が安価である。特に、通水中の海水を
淡水で希釈するのではなく、密閉等の限定された容積を
置換するので淡水量は少ない。
(4) Since no chemicals are used, there is no need to worry about environmental problems. In addition, the fresh water can be used for small business purposes or at the level of clean river water, so treatment costs are low. In particular, the amount of fresh water is small because the seawater flowing through the water is not diluted with fresh water, but is replaced in a limited volume such as a sealed one.

なお、第4図のスクリーン設備1、ポンプ2、ヘッダー
3.7、放流母管8までは効果が及ばないが、これらは
比較的サイズが大きな配管であったり、外部からの保修
のしやすい場所にあるため、主として防汚塗料や清掃な
どによってかなりの生物付着防止効果があるので、本発
明とくみあわせることによる利益は大である。
Note that the effect does not extend to the screen equipment 1, pump 2, header 3.7, and discharge main pipe 8 in Figure 4, but these are relatively large pipes or are located in locations that are easy to maintain from the outside. Therefore, there is a considerable effect of preventing biofouling mainly through antifouling paints and cleaning, so the benefits of combining it with the present invention are large.

また、第4図の場合は、処理に必要とする淡水量が少な
く、供給量に余裕のあるときは、一旦海水を扱かず、淡
水で海水を押し出してもよい。(エア抜き弁の省略、操
作の単純化ができる。)また、逆に淡水供給量が不足す
るときは、系列の切9換えの際に海水で淡水を押し出さ
ず、一旦ドレン抜きにより使用ずみの淡水タンクに落し
た後、ドレン弁を閉じ、次に海水を少量づつ満たした後
、系列を切り換えれば、淡水の再使用ができる。(約半
分海水が混入しても、はぼ同様の効果が得られる。) 以下に、実施例を示す。
Moreover, in the case of FIG. 4, if the amount of fresh water required for the treatment is small and there is enough supply, seawater may be pushed out with fresh water instead of handling seawater. (The air bleed valve can be omitted and the operation can be simplified.) Conversely, when the amount of fresh water supplied is insufficient, instead of pushing out the fresh water with seawater when switching trains, drain the drain and remove the used water. After dropping it into a freshwater tank, close the drain valve, fill it with seawater little by little, and switch the series to reuse the freshwater. (Even if about half of the seawater is mixed in, the same effect as Habo can be obtained.) Examples are shown below.

実施例 太平洋沿岸の清浄海水を用い、内径50■のタールエポ
キシライニング鋼管7系列に、下記に示す各条件で海水
の通水を流速15m/8θCで行なった。
Example Using clean seawater from the Pacific coast, seawater was passed through seven series of tar-epoxy lined steel pipes each having an inner diameter of 50 mm at a flow rate of 15 m/8θC under the following conditions.

(1)連続通水 (2)通水と海水保持の1日毎のくり返しく3)同5日
毎のくり返し く4)同2週間毎のくり返し く5) 同1ケ月毎のくり返し く6)同3ケ月毎のくり返し く7) 同6ケ月毎のくり返し 上記各条件で2年間通水した後の結果を、第1表に示す
(1) Continuous water flow (2) Water flow and seawater retention repeated every day 3) Repeated every 5 days 4) Repeated every 2 weeks 5) Repeated every 1 month 6) Repeated 3 Repeatedly every 6 months (7) Repeatedly every 6 months The results after running water for 2 years under each of the above conditions are shown in Table 1.

第 1 表 蒼単位長さ当りの管内付着物量(ドライベース)につい
て、条件(1)’1i100としたときの相対値で示す
Table 1: The amount of deposits inside the pipe per unit length (dry base) is shown as a relative value when condition (1) is set to 1i100.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の液化ガス気化における海水ラインの例
を示し、第2図は、第1図の海水ラインに本発明方法の
一実施態様例を適用したフローを示す。第5図(A)、
(B)は、第2図の場合の切り換え運転サイクルの例を
示す。第4図は、第1図の海水ラインに本発明方法の他
の実施態様例を適用したフローを示す。第5図(A)、
(B)は、第4図の場合の切り換え運転サイクルの例を
示す。 復代理人 内 1) 明 復代理人 萩 原 亮 − (至)
FIG. 1 shows an example of a seawater line in conventional liquefied gas vaporization, and FIG. 2 shows a flow in which an embodiment of the method of the present invention is applied to the seawater line of FIG. 1. Figure 5 (A),
(B) shows an example of a switching operation cycle in the case of FIG. FIG. 4 shows a flow in which another embodiment of the method of the present invention is applied to the seawater line of FIG. 1. Figure 5 (A),
(B) shows an example of a switching operation cycle in the case of FIG. Sub-agent 1) Meiji agent Ryo Hagiwara - (to)

Claims (1)

【特許請求の範囲】[Claims] 海水を原料や熱媒体として用いるプラントの管路、水路
、機器などからなるシステムであって同じ機能をもつ予
備を含む複数系列を有し、かつ交互運転可能なシステム
において、交互運転によって分離できる海水停止中の系
列に、海水又は淡水を満たして一定期間保持し、該保持
期間と海水を通水する期間とを交互に設けたことを特徴
とする、生物付着防止方法。
Seawater that can be separated by alternate operation in a system consisting of pipes, waterways, equipment, etc. of a plant that uses seawater as a raw material or heat medium, has multiple lines including spares with the same function, and can be operated alternately. A method for preventing biofouling, characterized in that a stopped train is filled with seawater or fresh water and held for a certain period of time, and the holding period and a period of flowing seawater are provided alternately.
JP59040295A 1984-03-05 1984-03-05 Process for preventing sticking of organism Granted JPS60187383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59040295A JPS60187383A (en) 1984-03-05 1984-03-05 Process for preventing sticking of organism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59040295A JPS60187383A (en) 1984-03-05 1984-03-05 Process for preventing sticking of organism

Publications (2)

Publication Number Publication Date
JPS60187383A true JPS60187383A (en) 1985-09-24
JPH0371195B2 JPH0371195B2 (en) 1991-11-12

Family

ID=12576614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59040295A Granted JPS60187383A (en) 1984-03-05 1984-03-05 Process for preventing sticking of organism

Country Status (1)

Country Link
JP (1) JPS60187383A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181253A1 (en) * 2018-03-23 2019-09-26 栗田工業株式会社 Pure water producing device
WO2019181254A1 (en) * 2018-03-23 2019-09-26 栗田工業株式会社 Pure water producing device
WO2019181251A1 (en) * 2018-03-23 2019-09-26 栗田工業株式会社 Pure water producing device
WO2019181252A1 (en) * 2018-03-23 2019-09-26 栗田工業株式会社 Water treatment device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019181253A1 (en) * 2018-03-23 2019-09-26 栗田工業株式会社 Pure water producing device
WO2019181254A1 (en) * 2018-03-23 2019-09-26 栗田工業株式会社 Pure water producing device
WO2019181251A1 (en) * 2018-03-23 2019-09-26 栗田工業株式会社 Pure water producing device
WO2019181252A1 (en) * 2018-03-23 2019-09-26 栗田工業株式会社 Water treatment device
JP2019166473A (en) * 2018-03-23 2019-10-03 栗田工業株式会社 Pure water production apparatus
JP2019166470A (en) * 2018-03-23 2019-10-03 栗田工業株式会社 Pure water production apparatus
JP2019166472A (en) * 2018-03-23 2019-10-03 栗田工業株式会社 Pure water production apparatus
JP2019166471A (en) * 2018-03-23 2019-10-03 栗田工業株式会社 Water treatment apparatus

Also Published As

Publication number Publication date
JPH0371195B2 (en) 1991-11-12

Similar Documents

Publication Publication Date Title
US6183646B1 (en) Biofouling reduction
Turner et al. Chlorine and sodium pentachlorophenate as fouling preventives in sea water conduits
Bobat et al. Zebra mussel and fouling problems in the Euphrates Basin
JPS60187383A (en) Process for preventing sticking of organism
CN208717013U (en) A kind of ready-package high yield water seawater desalination system
Nair Marine biofouling and its control with particular reference to condenser-cooling circuits of power plants-an overview
CA2077292C (en) Method of and lining for water intake pipes
US5417820A (en) Method to prevent adherence of marine organisms on surfaces of submerged components
JPS60187385A (en) Process for preventing sticking of organism
JPH0359754B2 (en)
CN107399806B (en) It is a kind of to utilize strong brine, the method and system of fresh water clean and maintenance seawater water intake conduit
JP7270478B2 (en) Wastewater treatment facility and wastewater treatment method
JP4409416B2 (en) Method for controlling attached organisms in cooling water coolers in power plants
JPH0334993B2 (en)
Harrison et al. The Costly Impact of Zebra and Quagga Mussels in United States Waterways
AU738740B2 (en) Biofouling reduction
JPH06153759A (en) Elimination of organism stuck to waterline
JPS63166406A (en) Filter
YILDIZ How Zebra Mussels Threaten to Water Supply Security and Effects of Preventive Measures in Turkey.
Chambre syndicale de la recherche et de la production du pétrole et du gaz naturel. Comité des techniciens Seawater Circuits: Treatments and Materials
JPS5934279B2 (en) Method for preventing aquatic organisms from adhering to heat exchangers using cooling water
Wheaton et al. 10 Materials for Aquacultural Facilities
INGENIEURSKAMER KOELWATER IN DE INDUSTRIE
NO329277B1 (en) Process for preventing the development of biological material in a water-based heat exchanger system
Caolo et al. Design of a rapid-flow seawater supply system for the university of Connecticut's marine laboratory at Noank