JP3605128B2 - How to prevent marine organisms - Google Patents

How to prevent marine organisms Download PDF

Info

Publication number
JP3605128B2
JP3605128B2 JP31640893A JP31640893A JP3605128B2 JP 3605128 B2 JP3605128 B2 JP 3605128B2 JP 31640893 A JP31640893 A JP 31640893A JP 31640893 A JP31640893 A JP 31640893A JP 3605128 B2 JP3605128 B2 JP 3605128B2
Authority
JP
Japan
Prior art keywords
seawater
intake
marine organisms
pipe
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31640893A
Other languages
Japanese (ja)
Other versions
JPH0775790A (en
Inventor
正明 根来
宏 中村
彰弘 浜崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP31640893A priority Critical patent/JP3605128B2/en
Publication of JPH0775790A publication Critical patent/JPH0775790A/en
Application granted granted Critical
Publication of JP3605128B2 publication Critical patent/JP3605128B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、海水を取水し機器・配管類に供給する海水取水ライン等に適用される海生物付着防止方法に関する。
【0002】
【従来の技術】
従来、海水取放水施設における海生物の付着防止方法としては、塩素系の殺菌剤(塩素ガス、次亜塩素酸ソーダ等)を取水路中の海水に注入したり、有機スズ等を含有する塗料を取放水路に塗布している。
【0003】
塩素系の殺菌剤を取水路中の海水に注入する従来の技術の1例を、図6に示す。海水の取水路31に設けられた海水取水ポンプ29は、火力発電所の熱交換器等へ海水を供給するためのポンプである。この海水取水ポンプ29の回転部の冷却は、軸冷ポンプ25により取水路31から海水を分取して、海水を回転部にかけることにより行われる。この海水は軸冷海水供給管26を通されるが、この管の直径は約10cmと細く、海生物の管内付着が原因で流量の低下や閉塞による海水取水ポンプ29の焼きつきが起こるおそれがある。そこで、塩素注入管30より軸冷海水管26内の海水に塩素系の殺菌剤を注入することにより、海生物の管内付着を防止している。
【0004】
また、塩素系の殺菌剤を、発電プラントの熱交換器へ供給される海水の取水用の管路内の海水に注入する従来の技術を、図7に示す。この技術は、ボイラ50において給水を燃料の燃焼熱によって蒸発させて蒸気を発生させ、この蒸気によってタービン51を駆動した上、タービン51を出た蒸気を熱交換器52において取水用の管路53よりの取水海水と熱交換させて凝縮水とする場合に、前記管路53内の取水海水に塩素系の殺菌剤としての塩素を注入して、管路53及び熱交換器52への海生物の付着を防止するようにしている。
【0005】
熱交換器52を出た海水は、放水管54を経て放流海水として放流される。また、ボイラ50からの燃焼排ガスは、排ガス処理装置57へ導入されて含有するSOとNOが除去された上、煙道56を経て煙突55より大気中へ排出される。
【0006】
【発明が解決しようとする課題】
海水を取水するプラントにおいては、取水中の生物による機器・配管類の汚損を抑止するため、従来前記のように、取水の中に塩素などの塩素系の殺菌剤を注入したり、水路壁に有機スズ等を含有した塗料を塗布してきた。しかし、前者は発癌性物質を生成したり海生物を無差別殺傷するので生体系破壊につながり、また、塩素系の殺菌剤により管路や機器に腐食が起る可能性がある。後者は重金属が生物体内に蓄積するなど重大な生態系破壊に繋がり、使用を避けなければならない状況にいたっている。このため、現時点では環境問題を考慮すれば、有効な防止策はなく付着した海生物を定期的にブラシなどで清掃するほか方法がない。
【0007】
本発明は、環境への影響、特に生物の無差別的殺傷を避け生態系への影響を極力低減して、しかも、プラント機器に最も甚大な汚損を与える殻を有する付着海生物(フジツボや二枚貝等)が付着し、かつ、これが成長することを防止する海生物付着防止方法を提供しようとするものである。
【0008】
【課題を解決するための手段】
(1) 本発明の海生物付着防止方法は、取水された海水中に塩素系の殺菌剤を注入することなく二酸化炭素(CO)を注入し、海水のpHを5〜6に低下させることを特徴とする。
(2) また、本発明の海生物付着防止方法は、上記(1)を行なうに当たって、取水された海水中に燃焼排ガスを吹き込むことにより二酸化炭素を注入し、海水のpHを5〜6に制御することを特徴とする。
(3) また更に、本発明の海生物付着防止方法は、上記(1)または(2)において、前記pHを5〜6にされた海水の放流に当り、空気を放流海水中に吹き込み、放流海水のpHを水質規制値の範囲内に調節することを特徴とする。
【0009】
【作用】
海水中の付着生物幼生は、固着に適当な基盤に接触すると接着物質を分泌し永久固着しながらホルモン作用によって変態し、多くのものは強固な殻を作る。この際、幼生は低pH海水(pH5〜6)中では殻形成できない。この際幼生は死なず、適当な海域に至るまで付着変態を一時延期する。
【0010】
前記本発明(1)では、取水された海水中に塩素系の殺菌剤を注入することなくCOを注入することによって、COが次の化1に示される化学反応によって解離し、発生する水素イオン〔H〕によって海水中のpHを5〜6に低下させる。
【0011】
【化1】

Figure 0003605128
【0012】
海水のpHは、注入されるCO量だけでなく海水のアルカリ度や温度などに影響されるが、例えば温度25度の一般的な海水では、次の表1に示すように、50ppm のCO注入で海水のpHを6程度に下げることができる。
【0013】
【表1】
Figure 0003605128
【0014】
以上のように、本発明(1)では、取水された海水中に塩素系の殺菌剤を注入することなくCOを注入し、海水のpHを5〜6に下げることによって、配管系などで海生物が変態し殻を生成することがない。
【0015】
前記本発明(2)においては、前記本発明(1)を行なうに当たって、取水された海水中に燃焼排ガスを吹き込むことによって、燃焼排ガス中に通常8〜15%含有されるCOが前記化1に示す反応によって解離し海水中に注入され、発生する水素イオンによって海水中のpHを低下させる。しかも、本発明(2)においては、前記のように、海水のpHを海水中の付着生物の幼生が殻を形成できない5〜6に制御しているために、海水取水ライン等において海生物が変態して殻を生成することがない。
【0016】
前記本発明()では、取水された海水中に燃焼排ガスを吹き込み、海水のpHを5〜6としているために、前記本発明()におけると同様に、海水取水ライン等において海生物が変態して殻を生成することがない。
また、前記本発明(3)によれば、前記本発明(1)または(2)において、熱交換器等を通した後海水を放流するに当って、放流海水中に空気を吹き込み、海水中に溶け込んでいるCOを放流海水中から放散させて放流海水のpHを上げ、そのpH値を水質規制値(pH5.8〜8.6)の範囲内に調節して放流することができる。
【0017】
【実施例】
図1は、本発明の第1の実施例の説明図である。プランクトン幼生2を含む海水1は、矢印に示すように、取水ポンプ3によって取水管5に取水される。同取水管5の入口側においてCO注入装置4によって取水された海水中にCOが注入され、海水のpHを6以下、望ましくは5〜6にする。このようにpHが下がった海水は、取水管5を経てプラント6へ送られた上、放水管7の出口付近において脱気用ポンプ8によって空気脱気されて海水中に注入されたCOが除去されて正常海水程度のpHに戻され、矢印に示すように、海へ戻される。
【0018】
本実施例では、以上の通り、取水管5に取水された海水中にCOを注入してそのpHを6以下とすることによって、プラント6及び放水管7中にはpHの低下した海水が流れることとなり、殻をもつ付着生物等が付着し生長することを防止することができる。
【0019】
本実施例に用いられるCOの注入及び脱気システムを図2に示す。取水管5の入口側にCOを注入するCO注入装置4は、COガスを収容するCO容器4aと同容器4a内のCOガスを取水管5内の吸込みノズル4cへ供給するブロワ4bを備えており、取水管5内の流量1000t/h、pH8.0の海水に、黒塗り矢印に示すように、60kg/hの純COを注入して、海水のpHを6.0に下げるようになっている。
【0020】
6はプラントであり、図2中には冷却器が図示されている。前記のように、pHを下げた海水は、プラント6を通った上放水管7の放流口より海へ戻されるが、放水管6の出口(放流口)付近には、脱気用ポンプ8より空気が供給され、放水管7中の海水を空気脱気して海水中のCOを除去し、海へ戻される海水のpHをほぼ元の値に戻す。
【0021】
前記の脱気用ポンプ8に代えて、図2に示す放散塔11を用いることもできる。この場合には、放水管7に弁10を設け、同弁10を閉じた状態で弁10の上流側からポンプ12によって放水管7内を流れる海水を放散塔11内へ導き、海水を放散塔11内でスプレーし、放散塔11内を流れる空気流(白抜き矢印で示す)によって、黒塗り矢印に示すように、海水中のCOを除去し、海水のpHを上げる。このように、pHが上昇した海水は、弁10の下流側で放水管7へ戻される。
【0022】
前記のように、取水管5内の流量1000t/h、pH8.0の海水に60kg/hの純COを注入して海水のpHを6.0に下げる場合には、幅5m、長さ20m、高さ3mのCO放散率55%の直交流型の放散塔11が用いられる。
【0023】
以上の条件における各部分の海水の流量、pH及び全炭酸は、図2中に示されている。また、図2中13は取水管5のCO注入点より下流側に設けられたpH計、14は放散塔11の出口側に設けられたpH計である。
【0024】
次に、汚損海生物の代表であるフジツボを用いた実験例を示す。
【0025】
1.方法
1.1 材料
タテジマフジツボのキプリス幼生。
1.2 器具・条件
(1)コルターカウンター
(2)収容恒温槽温度…23℃
(3)光条件…暗黒下(コルターカウンターをアルミホイルで包む)
(4)使用海水…紫外線照射した濾過海水
(5)幼生密度…約20個体/20ミリリットル紫外線照射濾過海水/容器
1.3 手順
(1)コルターカウンターに海水を入れる
(2)二酸化炭素ガスを約5秒通気
(3)pHを計測する
(4)付着期のキプリス幼生を入れる
(5)コルターカウンターを一晩恒温器内に放置
(6)pHを計測後、付着数の計数
(7)再度二酸化炭素ガスを約5秒通気
(8)pHを計測する
(9)コルターカウンターを二晩恒温器内に放置
(10)pHを計測後、付着数の計数と幼生の観察を実体双眼顕微鏡で行なう
(11)(9)(10)を繰り返す
(12)二酸化炭素ガスを通気せず二晩恒温器内に放置
(13)pHを計測後、付着数の計数と幼生の観察を実体双眼顕微鏡で行なう
以上の条件の実験を実験区とし、同様の容器同様の手順でただし二酸化炭素ガス通気の代わりにエアー通気を行なったものを対照区とする。
【0026】
2.結果
前記実験の結果を表2に示す。この結果によれば、二酸化炭素ガス通気を行った場合には、キプリス幼生の付着が認められないことが判明した。また、本実験では二酸化炭素のバブリングによって低下させたpHは5.58→6.66又は5.35→6.31と若干上昇してしまった。しかし、どちらの状態でもキプリス幼生の付着はなく顕著な付着抑止効果が認められた。また、死亡数は、pHを低下させた実験区の方が若干多かったが、いたずらに殺傷する効果が強いというものでないことが判明した。しかも、死亡しなかった個体には付着能力は残っていることが判明した。
【0027】
以上の通り、本実施例では、COの注入により取水海水のpH値を6以下、望ましくは5〜6とすることによって、有用なプランクトン等を無差別に殺傷することなく海生物の機器、配管への付着とその成長を抑えることができる。また、取水海水中にはCOが注入されるために、塩素系の殺菌剤の注入により発生する機器、配管の腐食を防止することができる。
【0028】
【表2】
Figure 0003605128
【0029】
本発明の第2の実施例を、図3によって説明する。本実施例における海水の取水路31、海水取水ポンプ29、軸冷ポンプ25及び軸冷海水供給管26は、図6に示す従来のものとは相違がないので、その説明を省略する。
【0030】
本実施例では、軸冷ポンプ25の入口側と取水路31との間にpH調節槽21を設け、排ガス供給ポンプ22を経て供給されるボイラ排ガスを散気管27よりpH調節槽21内の海水に吹き込むことにより、pH値が5から6となった海水が、軸冷ポンプ25により軸冷海水供給管26を経て海水取水ポンプ29に供給される。
【0031】
前記のボイラ排ガスが吹き込まれた海水のpHは、pH計28により測定され、pH値を5から6の間に保つように、pH計28の信号を受ける調節器24が排ガス供給ポンプ22の上流側のボイラ排ガスラインに設けられた流量調節弁23および排ガス供給ポンプ22を制御する。
【0032】
以上の通り、本実施例では、軸冷海水供給管26と軸冷ポンプ25を流れる海水はpH5〜6に保たれているために、有用なプランクトン等を無差別に殺傷することなく殻を有する海生物が軸冷海水供給管26や軸冷ポンプ25に付着し殻を生成することを確実に防止することができる。また、取水海水中のpHを下げるために元来大気中へ放出する燃焼排ガスを用いており、コストを低減することができると共に、従来の塩素系の殺菌剤を用いた場合に発生する機器・配管の腐食を防止することができる。
【0033】
海水中に燃焼排ガスを吹き込む本発明の効果検証のため、図4に示す装置によって基礎試験を実施した。この試験では、ガラス容器40、40a(40〜50ml)内の濾過海水41中に、付着生物の代表であるタテジマフジツボのキプリス幼生を10数個入れて付着抑制試験を行った。ガラス容器40、40aは光が入らないようにアルミフォイルで包み恒温水浴槽42(温度20〜23℃)内に設置した。
【0034】
実験系は模擬排ガス(CO濃度15%とし、他のガスはSO100ppm を混合し、窒素ガスでバランスさせたもの)をポンプ43から調整弁44、流量計45を介してガラス容器40内に吹き込んだ。一方対照系は、同様にポンプ43aから調整弁44a、流量計45aを介してガラス容器40a内に空気を吹き込み、両者の差異を比較した。なお、実験系のpHを5.7に設定するように、模擬ガス流量を間欠的に調節した(通常流量は500cc/分とした)。一方、対照系のpHは8.0とした。試験結果を表3に示す。
【0035】
【表3】
Figure 0003605128
【0036】
対照系(空気吹込みpH=8.0)では、試験時間経過とともに幼生の付着個数が増え、96時間後には全数(13個体)が付着した。一方、実験系(模擬ガス吹込みpH=5.7)では、96時間経過後もすべての幼生が付着することなく、しかも死滅することなく浮遊していることが確認できた。
【0037】
本発明の第3の実施例を、図5によって説明する。本実施例におけるボイラ50、タービン51、熱交換器52、管路53、放水管54、煙突55及び煙道56及び排ガス処理装置57は、図7に示される装置と相違するところがないので、その説明を省略する。
【0038】
本実施例では、発電プラントの熱交換器52に導入される取水海水路である管路53に、ボイラ50の燃焼排ガスの煙道56から、開閉弁63を開けて抽気管61を経てブロワ65によってボイラ50の燃焼排ガスの一部を引抜く。この燃焼排ガスを流量調整弁66、流量計67を経て取水海水路である管路53の取水側の端部付近の底部に設置された散気装置68から微細気泡を形成させて海水中に吹き込む。吹き込む燃焼排ガスの量は、管路53内に設置したpH計69によりpH値を検出し、pH値が5〜6になるように調節器70から前記流量調整弁66に信号を送って流量制御する。
【0039】
一方、熱交換器52を出た海水は、放流する前に放水管54に設置されたpH計83によってpH値を検出し、海水のpHが放流規制範囲(5.8〜8.6)外にあるときは、pH計83の信号が入力される調節器84から信号を送り流量調整弁81を開けてブロワ80から放水管54内へ空気を送る。空気は、放水管54の出口側の端部付近の底部に設置された散気装置82から微細気泡を形成させて海水中に吹き込み、海水中に溶解しているCOガスを大気中に放散させて海水のpHを高め、放流される海水のpH値が放流規制値の範囲(5.8〜8.6)になるように調整する。
【0040】
なお、図5中、62は余剰の燃焼排ガスをブロワ65から煙道56へ戻すバイパスラインであり、64は同バイパスライン62に設けられた開閉弁である。
【0041】
以上の通り、本実施例では、管路53、熱交換器52及び放水管54を流れる海水はpH5〜6に保たれているために、殻を有する海生物がこれらの管や熱交換器に付着し殻を生成することを確実に防止することができると共に、有用なプランクトンなどを無差別に殺傷することがない。
【0042】
また、放流される海水は、放流前に空気を吹き込んで海水中に溶解しているCOガスを大気中に放散させてpH値を高め、放流される海水のpH値を放流規制値の範囲内になるようにフィードバック制御を行っているので、海水を適切な状態にして放流を行うことができる。
【0043】
本実施例では、また、散気装置68、82からそれぞれ微細気泡の状態で燃焼排ガスと空気が海水中に吹き込まれるために、大気中にこれらのガスが吹き抜けることがなく、COガスの海水中への溶解効率を高くし、また、海水中に溶解したCOガスの放散を確実に行うことができる。
【0044】
また更に、本実施例では、発電プラントのボイラから発生する燃焼排ガスを有効に使用することができると共に、燃焼排ガス中のCOを利用しているために、大気汚染を起すことがなく、また、塩素系の殺菌剤を用いる場合のように機器・配管の腐食を発生させることもない。
【0045】
【発明の効果】
請求項1に記載された本発明は、取水された海水中に塩素系の殺菌剤を注入することなくCOを注入し、海水のpHを5〜6に低下することによって、プラント内の機器・配管類等に付着し、汚損(材料腐食、目詰まり、破損、機器性能の劣下など)の原因となる殻を持つ海生物が付着・成長することを防止して、海生物による汚損の程度を飛躍的に改善することができる。また、COを用いているために、従来の塩素系の殺菌剤を用いた場合に発生する機器・配管等の腐食を低減することができる。
【0046】
請求項2に記載された本発明は、請求項1に記載の海生物付着防止方法において、取水された海水中に燃焼排ガスを吹き込むことによりCO を注入し、海水のpHを5〜6に制御することによって、プラント内の機器・配管類等に付着し、汚損の原因となる殻を持つ海生物が付着・成長することを防止して、海生物による汚損の程度を飛躍的に改善することができる。しかも、元来大気へ放出する燃焼排ガスを有効利用しており、原料コストを殆んど必要とせず、原料の輸送・貯蔵を必要とせず、かつ、大気汚染を起すことがない。また、燃焼排ガス中のCOを利用しているために、従来問題であった塩素系の殺菌剤を用いた場合に発生する機器・配管等の腐食問題を低減することができる。
【0047】
請求項3に記載された本発明は、前記の請求項1または請求項2に記載された本発明の効果に加えて、pHを5〜6にされた海水の放流に当り、空気を放流海水中に吹き込み、放流海水のpHを水質規制値の範囲内に維持することができ、放流海水により環境汚染が発生することを防止することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例の構成図である。
【図2】同実施例のCO注入及び脱気システムの概略図である。
【図3】本発明の第2の実施例の構成図である。
【図4】燃焼排ガスを海水中に吹き込む本発明の基礎試験装置の説明図である。
【図5】本発明の第3の実施例の構成図である。
【図6】塩素系の殺菌剤を取水路中の海水に注入する従来の技術の1例の概略図である。
【図7】塩素系の殺菌剤を発電プラントの熱交換器へ供給される海水の取水用の管路内の海水に注入する従来の技術の構成図である。
【符号の説明】
1 海水
2 プランクトン幼生
3 取水ポンプ
4 CO注入装置
5 取水管
6 プラント
7 放水管
8 脱気用ポンプ
11 放散塔
21 pH調節槽
22 排ガス供給ポンプ
23 流量調整弁
24 調節器
25 軸冷ポンプ
26 軸冷海水供給管
27 散気管
28 pH計
29 海水取水ポンプ
31 取水路
50 ボイラ
51 タービン
52 熱交換器
53 管路
54 放水管
55 煙突
56 煙道
57 排ガス処理装置
61 抽気管
62 バイパスライン
63、64 開閉弁
65 ブロワ
66 流量調整弁
67 流量計
68 散気装置
69 pH計
70 調節器
80 ブロワ
81 流量調整弁
82 散気装置
83 pH計
84 調節器[0001]
[Industrial applications]
The present invention relates to a method for preventing marine organisms from adhering to a seawater intake line or the like that takes in seawater and supplies it to equipment and piping.
[0002]
[Prior art]
Conventionally, as a method for preventing marine organisms from adhering to a seawater intake and discharge facility, a chlorine-based disinfectant (chlorine gas, sodium hypochlorite, etc.) is injected into seawater in a waterway, or a paint containing organotin or the like is used. Is applied to the discharge channel.
[0003]
FIG. 6 shows an example of a conventional technique for injecting a chlorine-based disinfectant into seawater in a water channel. The seawater intake pump 29 provided in the seawater intake channel 31 is a pump for supplying seawater to a heat exchanger or the like of a thermal power plant. The cooling of the rotating part of the seawater intake pump 29 is performed by separating the seawater from the intake passage 31 by the shaft cooling pump 25 and applying the seawater to the rotating part. This seawater is passed through the axially cooled seawater supply pipe 26. The diameter of this pipe is as thin as about 10 cm, and there is a possibility that the seawater intake pump 29 may burn due to a decrease in flow rate or blockage due to adhesion of marine organisms in the pipe. is there. Therefore, by injecting a chlorine-based disinfectant into the seawater in the shaft cold seawater pipe 26 from the chlorine injection pipe 30, adhesion of marine organisms to the pipe is prevented.
[0004]
FIG. 7 shows a conventional technique for injecting a chlorine-based disinfectant into seawater in a seawater intake pipe supplied to a heat exchanger of a power plant. According to this technique, steam is generated by evaporating feed water in a boiler 50 by the heat of combustion of fuel, and the steam is used to drive a turbine 51. When condensed water is formed by exchanging heat with the intake seawater, chlorine as a chlorine-based disinfectant is injected into the intake seawater in the pipe 53, and marine organisms are introduced into the pipe 53 and the heat exchanger 52. To prevent adhesion.
[0005]
The seawater that has exited the heat exchanger 52 is discharged as discharged seawater through a water discharge pipe 54. The combustion exhaust gas from the boiler 50 is on SO x and NO x containing introduced into the exhaust gas treatment apparatus 57 has been removed, is discharged through the flue 56 into the atmosphere from the chimney 55.
[0006]
[Problems to be solved by the invention]
In plants that take in seawater, in order to prevent contamination of equipment and pipes by living organisms during intake, conventionally, as described above, chlorine-based germicides such as chlorine are injected into intake water, Paints containing organotin and the like have been applied. However, the former produces carcinogens and indiscriminately kills marine organisms, leading to the destruction of living systems, and chlorine-based germicides can cause corrosion in pipelines and equipment. The latter leads to serious destruction of ecosystems, such as the accumulation of heavy metals in living organisms, and the situation has to be avoided. For this reason, at present, there is no effective precautionary measure considering environmental issues, and there is no other method than cleaning the attached marine organisms regularly with a brush or the like.
[0007]
The present invention is intended to minimize the impact on the environment, in particular on the ecosystem by avoiding indiscriminate killing of living organisms, and on the other hand, to adherent marine organisms (barnacles and bivalves) having shells that cause the most severe pollution to plant equipment. Etc.) and to prevent them from growing.
[0008]
[Means for Solving the Problems]
(1) The method for preventing sea organisms from adhering according to the present invention comprises injecting carbon dioxide (CO 2 ) without injecting a chlorine-based disinfectant into drawn seawater to lower the pH of the seawater to 5 to 6. It is characterized by.
(2) In addition, sea anti-biofouling process of the present invention, when performing the above (1), carbon dioxide was injected by write Mukoto blowing flue gas into intake seawater, 5-6 the pH of seawater Is controlled.
(3) Furthermore, marine organisms adhere preventing method of the present invention, in the above-mentioned (1) or (2), per the discharge of seawater is pre SL pH 5-6, blowing air into the discharge seawater And adjusting the pH of the discharged seawater within the range of the water quality regulation value.
[0009]
[Action]
The periphyton larvae in seawater secrete an adhesive substance when they come into contact with a substrate suitable for fixation, and are transformed by hormonal action while permanently fixing, and many make a strong shell. At this time, the larva cannot form a shell in low pH seawater (pH 5 to 6). At this time, the larva does not die and temporarily suspends the attachment metamorphosis until reaching the appropriate sea area.
[0010]
In the present invention (1), by injecting CO 2 without injecting a chlorine-based disinfectant into the seawater withdrawn, CO 2 is dissociated and generated by a chemical reaction shown in the following chemical formula 1. The pH in seawater is reduced to 5 to 6 by hydrogen ions [H + ].
[0011]
Embedded image
Figure 0003605128
[0012]
The pH of seawater is affected not only by the amount of CO 2 injected but also by the alkalinity and temperature of seawater. For example, in general seawater at a temperature of 25 ° C., as shown in Table 1 below, 50 ppm of CO With two injections, the pH of seawater can be lowered to about 6.
[0013]
[Table 1]
Figure 0003605128
[0014]
As described above, in the present invention (1), CO 2 is injected into the drawn seawater without injecting a chlorine-based disinfectant, and the pH of the seawater is reduced to 5 to 6 to thereby improve the piping system. Sea life does not transform and form shells.
[0015]
In the present invention (2), in carrying out the present invention (1), the combustion exhaust gas is blown into the seawater withdrawn, so that CO 2 usually contained in the combustion exhaust gas in an amount of 8 to 15% is converted into the above chemical compound. Are dissociated by the reaction shown in (1) and injected into seawater, and the pH of the seawater is lowered by the generated hydrogen ions. Moreover, in the present invention (2), since the pH of seawater is controlled to 5 to 6 where larvae of attached organisms in the seawater cannot form shells as described above, marine organisms are not allowed in the seawater intake line or the like. Does not metamorphose to form a shell.
[0016]
In the present invention ( 2 ), since the combustion exhaust gas is blown into the seawater that has been withdrawn to adjust the pH of the seawater to 5 to 6, sea organisms can be produced in the seawater intake line and the like as in the present invention ( 1 ). Does not metamorphose to form a shell.
Further, according the to the present invention (3), wherein in the present invention (1) or (2), hitting to discharge seawater was passed through a heat exchanger or the like, blowing air into the discharge seawater, seawater the CO 2 that is dissolved in dissipates from within discharge seawater raise the pH of the effluent seawater, can be discharged by adjusting the pH value in the range of water quality standard value (pH5.8~8.6).
[0017]
【Example】
FIG. 1 is an explanatory diagram of a first embodiment of the present invention. Seawater 1 containing plankton larvae 2 is drawn into a water intake pipe 5 by a water intake pump 3 as shown by an arrow. CO 2 is injected into seawater, which is intake by CO 2 injection device 4 at the inlet side of the intake pipe 5, the pH of seawater to 6, preferably to 5-6. The seawater having a lowered pH is sent to the plant 6 via the water intake pipe 5 and CO 2 injected into the seawater after being degassed by the deaeration pump 8 near the outlet of the water discharge pipe 7. It is removed and returned to the pH of normal seawater, and returned to the sea as shown by the arrow.
[0018]
In the present embodiment, as described above, by injecting CO 2 into the seawater drawn into the water intake pipe 5 and setting the pH thereof to 6 or less, the seawater having a reduced pH is contained in the plant 6 and the water discharge pipe 7. As a result, it is possible to prevent attached organisms having shells from attaching and growing.
[0019]
FIG. 2 shows a CO 2 injection and deaeration system used in this embodiment. CO 2 injection device 4 for injecting the CO 2 to the inlet side of the intake pipe 5 supplies the CO 2 gas of CO 2 container 4a and the container 4a for accommodating the CO 2 gas into the suction nozzle 4c water intake pipe 5 A blower 4b is provided, and 60 kg / h of pure CO 2 is injected into seawater having a flow rate of 1000 t / h and a pH of 8.0 in the water intake pipe 5 as shown by a black arrow to adjust the pH of the seawater to 6. It is designed to be reduced to zero.
[0020]
Reference numeral 6 denotes a plant, and a cooler is illustrated in FIG. As described above, the seawater whose pH has been lowered is returned to the sea from the discharge port of the upper discharge pipe 7 that has passed through the plant 6, and near the outlet (discharge port) of the discharge pipe 6 from the deaeration pump 8. air is supplied, the seawater in the water discharge pipe 7 to remove the CO 2 of air degassed seawater, returning the pH of seawater to be returned to the sea almost its original value.
[0021]
Instead of the deaeration pump 8, a stripping tower 11 shown in FIG. 2 can be used. In this case, a valve 10 is provided in the water discharge pipe 7, and in a state where the valve 10 is closed, the seawater flowing through the water discharge pipe 7 is guided from the upstream side of the valve 10 into the diffusion tower 11 by the pump 12, and the seawater is diffused from the discharge tower 11. As shown by the black arrows, the CO 2 in the seawater is removed and the pH of the seawater is increased by spraying in the spray tower 11 and flowing in the stripping tower 11 (indicated by white arrows). Thus, the seawater whose pH has risen is returned to the water discharge pipe 7 downstream of the valve 10.
[0022]
As described above, when 60 kg / h of pure CO 2 is injected into seawater having a flow rate of 1000 t / h and a pH of 8.0 in the intake pipe 5 to lower the pH of the seawater to 6.0, the width is 5 m and the length is 5 m. 20 m, CO 2 emission of 55% of the stripping tower 11 for crossflow height 3m is used.
[0023]
The flow rate, pH and total carbonic acid of each portion of the seawater under the above conditions are shown in FIG. In FIG. 2, reference numeral 13 denotes a pH meter provided downstream of the CO 2 injection point of the water intake pipe 5, and reference numeral 14 denotes a pH meter provided on the outlet side of the stripping tower 11.
[0024]
Next, an experimental example using barnacles, which are representative of fouled marine organisms, will be described.
[0025]
1. Method 1.1 Materials: Cypris larvae of barnacles.
1.2 Equipment / Conditions (1) Coulter counter (2) Temperature of thermostatic chamber ... 23 ° C
(3) Light conditions: under darkness (wrap the coulter counter with aluminum foil)
(4) Seawater used: filtered seawater irradiated with ultraviolet rays (5) Larval density: about 20 individuals / 20 milliliters filtered seawater irradiated with ultraviolet rays / container 1.3 Procedure (1) Put seawater into a coulter counter (2) Fill carbon dioxide gas Aeration for 5 seconds (3) Measure pH (4) Put cypris larvae in attachment phase (5) Leave coulter counter in incubator overnight (6) Measure pH, count attached number (7) Dioxide again (8) The pH is measured for about 5 seconds. (8) The pH is measured. (9) The coulter counter is left in a thermostat for two nights. (10) After the pH is measured, the number of adherence and the observation of the larvae are performed with a stereoscopic microscope. 11) Repeat (9) and (10). (12) Leave in a constant temperature oven for 2 nights without passing carbon dioxide gas. (13) After measuring the pH, count the number of adherence and observe the larvae using a stereoscopic microscope. The experiment under the conditions of In a similar container, the same procedure but with air ventilation instead of carbon dioxide gas ventilation is used as a control.
[0026]
2. Results The results of the experiment are shown in Table 2. According to this result, it was found that when carbon dioxide gas was ventilated, adhesion of cypris larvae was not observed. In this experiment, the pH lowered by bubbling carbon dioxide slightly increased to 5.58 → 6.66 or 5.35 → 6.31. However, in both cases, there was no adhesion of cypris larvae, and a remarkable adhesion-suppressing effect was observed. In addition, the number of deaths was slightly higher in the experimental group in which the pH was lowered, but it was found that the effect of killing unnecessarily was not strong. In addition, it was found that individuals who did not die still have the ability to adhere.
[0027]
As described above, in the present embodiment, by injecting CO 2 , the pH value of the intake seawater is set to 6 or less, preferably 5 to 6, so that useful planktons and the like can be used without indiscriminately killing marine life equipment. Adhesion to the pipe and its growth can be suppressed. Further, since CO 2 is injected into the intake seawater, corrosion of equipment and piping caused by injection of a chlorine-based disinfectant can be prevented.
[0028]
[Table 2]
Figure 0003605128
[0029]
A second embodiment of the present invention will be described with reference to FIG. The seawater intake channel 31, the seawater intake pump 29, the shaft cooling pump 25, and the shaft cooling seawater supply pipe 26 in this embodiment are not different from the conventional one shown in FIG.
[0030]
In the present embodiment, a pH adjusting tank 21 is provided between the inlet side of the shaft cooling pump 25 and the water intake passage 31, and boiler exhaust gas supplied via an exhaust gas supply pump 22 is supplied from a diffuser 27 to seawater in the pH adjusting tank 21. The seawater having a pH value of 5 to 6 is supplied to the seawater intake pump 29 by the shaft cooling pump 25 through the shaft cooling seawater supply pipe 26.
[0031]
The pH of the seawater into which the boiler exhaust gas has been blown is measured by a pH meter 28, and a controller 24 receiving a signal from the pH meter 28 is provided upstream of the exhaust gas supply pump 22 so as to maintain the pH value between 5 and 6. The flow control valve 23 and the exhaust gas supply pump 22 provided in the boiler exhaust gas line on the side are controlled.
[0032]
As described above, in the present embodiment, since the seawater flowing through the shaft-cooled seawater supply pipe 26 and the shaft-cooled pump 25 is maintained at a pH of 5 to 6, it has a shell without indiscriminately killing useful plankton and the like. It is possible to reliably prevent marine organisms from attaching to the shaft-cooled seawater supply pipe 26 and the shaft-cooling pump 25 to form shells. In addition, the flue gas originally released into the atmosphere is used to lower the pH of the intake seawater, which can reduce costs and reduce the equipment and equipment generated when using conventional chlorine-based disinfectants. Piping corrosion can be prevented.
[0033]
In order to verify the effect of the present invention in which combustion exhaust gas is blown into seawater, a basic test was performed using the apparatus shown in FIG. In this test, ten or more cypris larvae of barnacles, which are representative of the attached organisms, were placed in the filtered seawater 41 in the glass containers 40 and 40a (40 to 50 ml), and the adhesion inhibition test was performed. The glass containers 40 and 40a were wrapped in aluminum foil so as to prevent light from entering, and placed in a constant temperature water bath 42 (temperature 20 to 23 ° C.).
[0034]
In the experimental system, a simulated exhaust gas (CO 2 concentration of 15%, other gas mixed with 100 ppm of SO 2 and balanced with nitrogen gas) was supplied from a pump 43 through a regulating valve 44 and a flow meter 45 into a glass container 40. I blew it. On the other hand, in the control system, air was similarly blown into the glass container 40a from the pump 43a via the regulating valve 44a and the flow meter 45a, and the difference between the two was compared. The simulated gas flow rate was adjusted intermittently so that the pH of the experimental system was set to 5.7 (normal flow rate was 500 cc / min). On the other hand, the pH of the control system was 8.0. Table 3 shows the test results.
[0035]
[Table 3]
Figure 0003605128
[0036]
In the control system (air blowing pH = 8.0), the number of larvae attached increased with the elapse of the test time, and all the larvae (13 individuals) attached after 96 hours. On the other hand, in the experimental system (simulated gas injection pH = 5.7), it was confirmed that all the larvae did not adhere and did not die even after 96 hours had elapsed.
[0037]
A third embodiment of the present invention will be described with reference to FIG. The boiler 50, the turbine 51, the heat exchanger 52, the pipeline 53, the water discharge pipe 54, the chimney 55 and the flue 56 and the exhaust gas treatment device 57 in this embodiment are not different from the device shown in FIG. Description is omitted.
[0038]
In the present embodiment, an on-off valve 63 is opened from a flue 56 of the combustion exhaust gas of the boiler 50 to a pipe 53 which is an intake sea water channel introduced into the heat exchanger 52 of the power plant, and the blower 65 Thus, a part of the combustion exhaust gas of the boiler 50 is extracted. This combustion exhaust gas passes through a flow control valve 66 and a flow meter 67 to form fine bubbles from an air diffuser 68 installed at the bottom near the end on the intake side of a pipe 53 which is an intake sea water channel, and is blown into seawater. . The amount of the combustion exhaust gas to be blown is detected by detecting a pH value with a pH meter 69 installed in a pipe 53, and sending a signal from the controller 70 to the flow rate control valve 66 so that the pH value becomes 5 to 6 to control the flow rate. I do.
[0039]
On the other hand, before discharging the seawater from the heat exchanger 52, the pH value is detected by a pH meter 83 installed in the water discharge pipe 54, and the pH of the seawater is out of the discharge regulation range (5.8 to 8.6). , A signal is sent from the controller 84 to which the signal of the pH meter 83 is input, and the flow control valve 81 is opened to send air from the blower 80 into the water discharge pipe 54. The air forms fine air bubbles from an air diffuser 82 installed at the bottom near the outlet end of the water discharge pipe 54 and blows into seawater, releasing CO 2 gas dissolved in seawater into the atmosphere. Then, the pH of the seawater is increased, and the pH value of the discharged seawater is adjusted so as to be within the range of the discharge regulation value (5.8 to 8.6).
[0040]
In FIG. 5, reference numeral 62 denotes a bypass line for returning excess combustion exhaust gas from the blower 65 to the flue 56, and reference numeral 64 denotes an on-off valve provided in the bypass line 62.
[0041]
As described above, in the present embodiment, since the seawater flowing through the pipeline 53, the heat exchanger 52, and the water discharge pipe 54 is maintained at pH 5 to 6, the marine creature having a shell is used for these pipes and the heat exchanger. Adhesion and formation of a shell can be reliably prevented, and useful plankton and the like are not indiscriminately killed.
[0042]
In addition, the seawater to be discharged is blown with air before being discharged to disperse the CO 2 gas dissolved in the seawater into the atmosphere to increase the pH value, and to adjust the pH value of the discharged seawater to the discharge regulation value range. Since the feedback control is performed so as to be inside, the seawater can be discharged in an appropriate state.
[0043]
In this embodiment, also, since the combustion exhaust gas and air is blown into the seawater in the form of the respective fine bubbles from the diffuser 68,82, without blows these gases into the atmosphere, CO 2 gas seawater It is possible to increase the efficiency of dissolving in CO 2 and to reliably disperse CO 2 gas dissolved in seawater.
[0044]
Furthermore, in this embodiment, the flue gas generated from the boiler of the power plant can be used effectively, and the use of CO 2 in the flue gas does not cause air pollution. Also, unlike the case of using a chlorine-based disinfectant, corrosion of equipment and piping does not occur.
[0045]
【The invention's effect】
The present invention as set forth in claim 1 is an apparatus in a plant by injecting CO 2 without injecting a chlorine-based disinfectant into drawn seawater and lowering the pH of the seawater to 5 to 6.・ Prevents marine organisms with shells that adhere to pipes and cause fouling (material corrosion, clogging, breakage, deterioration of equipment performance, etc.) from adhering and growing. The degree can be dramatically improved. In addition, since CO 2 is used, corrosion of equipment and piping generated when a conventional chlorine-based disinfectant is used can be reduced.
[0046]
The present invention described in claim 2, 5 in the sea biofouling method of claim 1, the CO 2 is injected by write Mukoto blowing flue gas into intake seawater, the pH of seawater By controlling to 6, the marine organisms with shells that adhere to the equipment and pipes in the plant and cause fouling are prevented from attaching and growing, and the degree of fouling by marine organisms is dramatically reduced. Can be improved. Moreover, since the flue gas originally discharged to the atmosphere is effectively used, the cost of raw materials is hardly required, the transportation and storage of raw materials is not required, and no air pollution occurs. In addition, since CO 2 in the combustion exhaust gas is used, it is possible to reduce the problem of corrosion of equipment and pipes which occurs when a chlorine-based disinfectant is used, which is a conventional problem.
[0047]
According to a third aspect of the present invention, in addition to the effects of the first or the second aspect of the present invention, the water discharged from seawater having a pH of 5 to 6 is discharged. It is possible to maintain the pH of the discharged seawater within the range of the water quality regulation value, thereby preventing the discharged seawater from causing environmental pollution.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a first embodiment of the present invention.
FIG. 2 is a schematic diagram of a CO 2 injection and deaeration system of the embodiment.
FIG. 3 is a configuration diagram of a second embodiment of the present invention.
FIG. 4 is an explanatory diagram of a basic test apparatus of the present invention for blowing combustion exhaust gas into seawater.
FIG. 5 is a configuration diagram of a third embodiment of the present invention.
FIG. 6 is a schematic view of an example of a conventional technique for injecting a chlorine-based disinfectant into seawater in a water channel.
FIG. 7 is a configuration diagram of a conventional technique for injecting a chlorine-based disinfectant into seawater in a seawater intake pipe supplied to a heat exchanger of a power plant.
[Explanation of symbols]
1 Seawater 2 planktonic larvae 3 intake pump 4 CO 2 injection device 5 intake pipe 6 Plant 7 drainage pipe 8 deaerating pump 11 stripper 21 pH adjusting tank 22 gas supply pump 23 flow regulating valve 24 regulator 25 Jikuhiya pump 26 axis Cold seawater supply pipe 27 Air diffuser 28 pH meter 29 Seawater intake pump 31 Intake channel 50 Boiler 51 Turbine 52 Heat exchanger 53 Pipeline 54 Outlet pipe 55 Chimney 56 Flue 57 Exhaust gas treatment device 61 Extraction pipe 62 Bypass lines 63, 64 Opening and closing Valve 65 Blower 66 Flow control valve 67 Flow meter 68 Air diffuser 69 pH meter 70 Controller 80 Blower 81 Flow control valve 82 Air diffuser 83 pH meter 84 Controller

Claims (3)

取水された海水中に塩素系の殺菌剤を注入することなく二酸化炭素を注入し、海水のpHを5〜6に低下させることを特徴とする海生物付着防止方法。A method for preventing marine organisms from adhering, comprising injecting carbon dioxide into a seawater sample without injecting a chlorine-based disinfectant to lower the pH of the seawater to 5 to 6 . 請求項1に記載の海生物付着防止方法において、取水された海水中に燃焼排ガスを吹き込むことにより二酸化炭素を注入し、海水のpHを5〜6に制御することを特徴とする海生物付着防止方法。 In marine organisms adhering preventing method according to claim 1, intake carbon dioxide was injected by blowing write Mukoto flue gas in seawater, marine organisms, characterized in that controlling the pH of seawater 5-6 Adhesion prevention method. 請求項1または請求項2に記載の海生物付着防止方法において、前記pHを5〜6にされた海水の放流に当り、空気を放流海水中に吹き込み、放流海水のpHを水質規制値の範囲内に調節することを特徴とする海生物付着防止方法。 The method according to claim 1 or 2, wherein the water is discharged into seawater at a pH of 5 to 6 , and air is blown into the discharged seawater to adjust the pH of the discharged seawater to a water quality regulation value. A method for preventing marine organisms from adhering, wherein the method is adjusted to fall within the range.
JP31640893A 1993-02-19 1993-12-16 How to prevent marine organisms Expired - Lifetime JP3605128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31640893A JP3605128B2 (en) 1993-02-19 1993-12-16 How to prevent marine organisms

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-30399 1993-02-19
JP3039993 1993-02-19
JP31640893A JP3605128B2 (en) 1993-02-19 1993-12-16 How to prevent marine organisms

Publications (2)

Publication Number Publication Date
JPH0775790A JPH0775790A (en) 1995-03-20
JP3605128B2 true JP3605128B2 (en) 2004-12-22

Family

ID=26368731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31640893A Expired - Lifetime JP3605128B2 (en) 1993-02-19 1993-12-16 How to prevent marine organisms

Country Status (1)

Country Link
JP (1) JP3605128B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027402A1 (en) 2012-08-14 2014-02-20 中国電力株式会社 Method for stopping attachment-period larvae from swimming or crawling
US11134670B2 (en) 2014-12-08 2021-10-05 The Chugoku Electric Power Co., Inc. Methods of suppressing settlement of barnacles
US11134671B2 (en) 2015-03-27 2021-10-05 The Chugoku Electric Power Co., Inc. Method for preventing settlement of sessile organisms
US11134669B2 (en) 2014-03-24 2021-10-05 The Chugoku Electric Power Co., Inc. Method for killing Pteriomorphia and barnacles using light irradiation
US11140893B2 (en) 2014-03-24 2021-10-12 The Chugoku Electric Power Co., Inc. Method for stopping swimming or crawling of adhesion-stage larvae

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5295819B2 (en) * 2008-07-17 2013-09-18 関西電力株式会社 Sea life adhesion prevention method
JP5800120B2 (en) * 2009-10-27 2015-10-28 中国電力株式会社 Method and system for suppressing adhesion of marine organisms and method for inhibiting marine life swimming
JP5881094B2 (en) * 2010-01-20 2016-03-09 中国電力株式会社 Method and system for suppressing adhesion of marine organisms and method for inhibiting marine life swimming
JP5881095B2 (en) * 2011-03-30 2016-03-09 中国電力株式会社 Method for inhibiting swimming of marine organisms, and system and method for suppressing adhesion of marine organisms
JP5783626B2 (en) * 2011-04-22 2015-09-24 中国電力株式会社 Method and system for inhibiting marine organism adhesion and biofilm formation
KR101245171B1 (en) * 2011-09-23 2013-03-21 주식회사 아앤시티 Cooling facility with intake area and discharge area
JP5996351B2 (en) * 2012-09-27 2016-09-21 中部電力株式会社 Sea life removal method in heat exchanger
JP6302191B2 (en) * 2013-09-02 2018-03-28 三菱日立パワーシステムズ株式会社 Power generation system
JP6173133B2 (en) * 2013-09-02 2017-08-02 三菱日立パワーシステムズ株式会社 Power generation system
KR101975451B1 (en) * 2016-10-07 2019-05-08 주식회사 이케이 Apparatus and method for preventing sticking of marine life on power station intake hole using carbon dioxide and chlorinated disinfectant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014027402A1 (en) 2012-08-14 2014-02-20 中国電力株式会社 Method for stopping attachment-period larvae from swimming or crawling
US11134669B2 (en) 2014-03-24 2021-10-05 The Chugoku Electric Power Co., Inc. Method for killing Pteriomorphia and barnacles using light irradiation
US11140893B2 (en) 2014-03-24 2021-10-12 The Chugoku Electric Power Co., Inc. Method for stopping swimming or crawling of adhesion-stage larvae
US11134670B2 (en) 2014-12-08 2021-10-05 The Chugoku Electric Power Co., Inc. Methods of suppressing settlement of barnacles
US11134671B2 (en) 2015-03-27 2021-10-05 The Chugoku Electric Power Co., Inc. Method for preventing settlement of sessile organisms

Also Published As

Publication number Publication date
JPH0775790A (en) 1995-03-20

Similar Documents

Publication Publication Date Title
JP3605128B2 (en) How to prevent marine organisms
KR19990029085A (en) Bioadhesion Reduction Device
CA2464416A1 (en) Apparatus and method for producing purified water having high microbiological purity
JP5295819B2 (en) Sea life adhesion prevention method
US20050247645A1 (en) Process and apparatus for the control of undesirable organisms in a water system
JPH06134467A (en) Vaporizing type heat exchanging system, method of controlling number of bacterial mass solid in recirculating water of said system, water treating method and fluid treating system and method
US6190629B1 (en) Organic acid scrubber and methods
US6955766B2 (en) Method for reducing harmful organisms in currents of water
US20180065724A1 (en) System and method of reducing corrosion in ballast tanks
KR101050396B1 (en) Device for injecting ozone into ballast water for a ship
JP2005144214A (en) Method and system for controlling adhesion and growth of marine organism
CN104640611A (en) Fluid processing device and fluid processing method
JP2005144213A (en) Method and system for controlling adhesion and growth of marine organism
JP7491158B2 (en) Marine biofouling control device
FR2533207A1 (en) PROCESS FOR THE ELIMINATION OR PREVENTION OF CLAMPS IN FUEL AERATORS IN THE TREATMENT OF WATER AND THE TREATMENT OF WASTEWATER IN OPERATING CONDITIONS
JPH0194997A (en) Method for preventing fouling by marine organisms
JP2001140234A (en) Marine living things adhesion prevention device
JPS60187383A (en) Process for preventing sticking of organism
CA2389422C (en) Method for reducing harmful organisms in currents of water
JPS62298497A (en) Method for preventing spoiling of marine organisms by intermittent injection of phage
JPH11319853A (en) Method for preventing sticking of marine living bodies and device
JP3335709B2 (en) How to control bivalves in cooling water systems
JPH04344096A (en) Device cooling system and method
JPS5934279B2 (en) Method for preventing aquatic organisms from adhering to heat exchangers using cooling water
CS216564B1 (en) Method of protection of the water cooling systems and device for executing the same method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

EXPY Cancellation because of completion of term