JP2001140234A - Marine living things adhesion prevention device - Google Patents

Marine living things adhesion prevention device

Info

Publication number
JP2001140234A
JP2001140234A JP32502899A JP32502899A JP2001140234A JP 2001140234 A JP2001140234 A JP 2001140234A JP 32502899 A JP32502899 A JP 32502899A JP 32502899 A JP32502899 A JP 32502899A JP 2001140234 A JP2001140234 A JP 2001140234A
Authority
JP
Japan
Prior art keywords
carbon monoxide
marine
seawater
injection
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32502899A
Other languages
Japanese (ja)
Inventor
Katsumasa Miyazaki
克雅 宮▲崎▼
Satoshi Aoike
聡 青池
Shinichi Hisatsune
眞一 久恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32502899A priority Critical patent/JP2001140234A/en
Publication of JP2001140234A publication Critical patent/JP2001140234A/en
Pending legal-status Critical Current

Links

Landscapes

  • Prevention Of Fouling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a marine living things adhesion prevention device capable of surely preventing the adhesion of marine living things adhered to the inside of piping conveying sea water by eliminating influences upon environment and ecosystem to the utmost and taking into consideration an operation cost. SOLUTION: For sea water intake piping laid in a facility using sea water, a high pressure carbon monoxide pouring device is placed near to an intake to pour carbon monoxide into sea water intake. A high pressure oxygen pouring device is placed near to a drain outlet to pour saturated carbon monoxide as drainage into the high pressure oxygen pouring device. This device is capable of preventing the influence on the environment, preventing the adherence of marine living things to the inside of sea water piping as well as the growth of them and preventing the inconvenience to a power plane to greatly contribute to stabilized power supply.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、海水を移送する配
管の内面に付着する海棲生物の付着防止、及び除去方法
に係り、特に発電プラントにおける冷却水水路内に付着
する海棲生物を効果的に抑制する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing and removing marine organisms adhering to the inner surface of a pipe for transporting seawater, and more particularly to a method for removing marine organisms adhering to a cooling water channel in a power plant. The method relates to a method for suppressing noise.

【0002】[0002]

【従来の技術】発電プラントの復水器等で使用される熱
交換器の冷却水として海水が使用されることが多い。海
水は取水口から取得されるが海から熱交換器までの配管
では、内壁面に貝等の海棲生物が付着、その後、生育し
て配管内の流れ抵抗を増大させる原因となる。また海棲
生物が壁面で生育すると海棲生物の厚い層が形成される
が、この層が、一度に剥がれて熱交換器の伝熱管を塞
ぎ、復水器の性能を低下させたり、伝熱管から海水が漏
洩して発電プラントが停止するなどの問題が引き起こさ
れる。
2. Description of the Related Art Seawater is often used as cooling water for heat exchangers used in condensers of power plants. Seawater is obtained from the intake, but in the pipe from the sea to the heat exchanger, marine organisms such as shellfish adhere to the inner wall surface, and then grow to cause an increase in flow resistance in the pipe. In addition, when marine organisms grow on the wall, a thick layer of marine organisms is formed, but this layer is peeled off at one time, blocking the heat exchanger tubes of the heat exchanger, reducing the performance of the condenser, and Causes seawater to leak, causing the power plant to stop.

【0003】このような問題を回避するために、従来
は、取水の中に塩素などの塩素系の殺菌剤を注入した
り、水路配管内面に有機スズ等を含有した塗料が塗布さ
れてきた。
In order to avoid such a problem, conventionally, a chlorine-based germicide such as chlorine has been injected into the water intake, and a paint containing organotin or the like has been applied to the inner surface of the water pipe.

【0004】海棲生物付着の防止方法として特開平7−3
10999号の淡水膜式防汚装置が提案されている。海棲生
物は淡水域では付着しにくくなる特性を考慮して、海水
を移送する配管の壁面に孔を設けて、外部から河川水な
どの淡水を孔から流出させて配管内面に淡水膜を形成し
て、海棲生物が付着、生育するのを防止したものであ
る。
[0004] As a method for preventing the adhesion of marine organisms,
No. 10999 has proposed a freshwater membrane type antifouling device. Considering the characteristics that marine organisms are unlikely to adhere in freshwater areas, holes are provided in the wall of the pipe that transports seawater, and freshwater such as river water flows out of the hole from outside to form a freshwater film on the inner surface of the pipe. Thus, marine organisms are prevented from attaching and growing.

【0005】また、特開平11−169057号の水生生物の防
除方法及び付着状態の判定方法では、水中にて200Hz以
下の断続音を発生さえて、海棲生物の成長を阻害させる
手法が提案されている。
Further, in the method for controlling aquatic organisms and the method for judging the state of attachment described in Japanese Patent Application Laid-Open No. H11-169057, a method has been proposed in which an intermittent sound of 200 Hz or less is generated in water to inhibit the growth of marine organisms. ing.

【0006】さらに、特開平7−265867号の海水中の二
酸化塩素濃度の測定及び制御のための方法並びに装置で
は、水中に二酸化塩素を注入して取水のpH値を制御する
ことにより、海棲生物の付着防止する手法が提案されて
いる。
Further, in the method and apparatus for measuring and controlling the concentration of chlorine dioxide in seawater disclosed in Japanese Patent Application Laid-Open No. Hei 7-265867, the pH value of intake water is controlled by injecting chlorine dioxide into water to control the marine life. Techniques for preventing the attachment of organisms have been proposed.

【0007】[0007]

【発明が解決しようとする課題】上記従来の技術で挙げ
た取水の中に塩素などの塩素系殺菌剤を注入する手法で
は、注入剤が塩素系殺菌剤の場合、発癌性物質を生成し
たり海洋に放出される排水により、多量の海棲生物を殺
傷して生態系破壊を破壊するなどの問題がある。また、
水路壁に有機スズ等を含有した塗料を塗布する手法も重
金属が海棲生物体内に蓄積するなど生態系破壊につなが
り、生態系への影響を考慮した場合、本手法の使用は避
けなければならない。
According to the above-mentioned technique of injecting a chlorine-based disinfectant such as chlorine into the water intake described in the prior art, when the injecting agent is a chlorine-based disinfectant, a carcinogenic substance may be generated. There is a problem that wastewater discharged into the ocean kills a large amount of marine organisms and destroys ecosystem destruction. Also,
The method of applying paint containing organotin etc. to waterway walls also leads to ecosystem destruction such as accumulation of heavy metals in marine organisms, and the use of this method must be avoided when considering the impact on ecosystems .

【0008】一方、特開平7−310999号の淡水膜式防汚
装置では、配管内部流体の流れが速い場合、淡水膜は安
定的に形成されず、上記効果による海棲生物の付着、生
育防止は望まれない。
On the other hand, in the freshwater film type antifouling device disclosed in Japanese Patent Application Laid-Open No. 7-310999, when the flow of the fluid inside the pipe is fast, the freshwater film is not formed stably, and the above effects prevent the adhesion and growth of marine organisms. Is not wanted.

【0009】特開平11−169057号の水生生物の防除方法
及び付着状態の判定方法では付帯設備が大きく設備コス
ト、及び運用コストが大きくなると考えられる。また、
設備コスト、及び運用コストに比して、海棲生物の付着
防止効果はそれほど望めないなどもの問題がある。
In the method for controlling aquatic organisms and the method for judging the state of adhesion described in Japanese Patent Application Laid-Open No. 11-169057, it is considered that ancillary facilities are large and equipment costs and operation costs are large. Also,
There is a problem that the effect of preventing the attachment of marine organisms is not so much expected as compared with the facility cost and the operation cost.

【0010】特開平7−265867号の海水中の二酸化塩素
濃度の測定及び制御のための方法並びに装置の場合、pH
値の制御だけでは海棲生物の付着防止は十分ではない場
合がある。
In the method and apparatus for measuring and controlling the concentration of chlorine dioxide in seawater disclosed in JP-A-7-265867,
Controlling the value alone may not be enough to prevent marine organisms from attaching.

【0011】以上より、本発明が解決しようとする課題
は、環境、生態系への影響を極力低減して、かつ、運用
コストの最小化を考慮した上で、海水を移送する配管の
内面に付着する海棲生物の付着を確実に防止することで
ある。
As described above, the problem to be solved by the present invention is to reduce the impact on the environment and ecosystem as much as possible while minimizing the operation cost, and to reduce The purpose is to surely prevent the attachment of marine organisms.

【0012】[0012]

【課題を解決するための手段】前記従来手法の課題を解
決するための海棲生物付着防止装置として、本発明で
は、次のそれぞれが挙げられる。
Means for Solving the Problems As the marine organism adhesion preventing device for solving the problems of the above-mentioned conventional methods, the present invention includes the following.

【0013】前記請求項1の課題を解決するための手段
は、海棲生物付着防止装置として、海水を使用する施設
に設置された海水を取水する配管の取水口近傍に、取海
水への高圧一酸化炭素を注入装置を配して、取海水に一
酸化炭素を注入して海棲生物を殺菌することである。ま
た、排水口近傍に設置された排水への高圧酸素注入装置
を配することにより、取海水の一酸化炭素を中和するも
のである。
Means for solving the above-mentioned problem of the present invention is to provide an apparatus for preventing marine organisms from adhering near a water intake of a seawater intake pipe installed in a facility using seawater. It is to disinfect marine life by injecting carbon monoxide into the seawater with a carbon monoxide injection device. In addition, by disposing a high-pressure oxygen injection device for drainage installed near the drain, the carbon monoxide of the seawater is neutralized.

【0014】前記請求項2の課題を解決するための手段
は、取海水内へ、確実に一酸化炭素を溶け込ませるため
に、海棲生物付着防止装置における取海水への高圧一酸
化炭素注入装置に、取水を貯えるための単数、または複
数の貯水槽を配することである。また、外界放出時への
環境への影響を考慮して、排水内へ酸素を十分溶け込ま
せるために、海棲生物付着防止装置における排水への酸
素注入装置に、排水を貯えるための単数、または複数の
貯水槽を配することである。
In order to solve the above-mentioned problem, a means for injecting high-pressure carbon monoxide into seawater in a marine organism adhesion prevention device in order to surely dissolve carbon monoxide into seawater. In addition, one or more water tanks for storing water intake are provided. In addition, in consideration of the environmental impact during the release to the outside world, in order to allow oxygen to sufficiently dissolve into the wastewater, a single unit for storing wastewater in the oxygen injection device into the wastewater in the marine organism attachment prevention device, or It is to arrange a plurality of water tanks.

【0015】前記請求項3の課題を解決するための手段
は、確実に配管内面への海棲生物の付着防止を確実にす
るために、かつ、必要コストを最小にするために、海棲
生物の死滅実験から、予め得られた海棲生物量と一酸化
炭素注入量の関係から推定される最適一酸化炭素注入量
を、海棲生物付着防止装置における一酸化炭素注入装置
から取海水に注入することである。
Means for solving the above-mentioned problem of the third aspect is to ensure the prevention of marine organisms from adhering to the inner surface of the pipe and to minimize the necessary cost. Injection of the optimal amount of carbon monoxide estimated from the relationship between the amount of marine organisms and the amount of carbon monoxide previously obtained from the killing experiment of marine organisms into the seawater from the carbon monoxide injector in the marine organism adhesion prevention device It is to be.

【0016】前記請求項4の課題を解決するための手段
は、配管内面への海棲生物の付着防止を確実にして、か
つ、必要コストを最小にするために、海棲生物の死滅実
験から、予め得られた海棲生物量と時間の関係から推定
される最適注入時間の間、海棲生物付着防止装置におけ
る一酸化炭素注入装置から一酸化炭素を取海水に注入す
ることである。
Means for solving the above-mentioned problem is to prevent marine organisms from adhering to the inner surface of the pipe and minimize the necessary cost by conducting experiments on the killing of marine organisms. Injecting carbon monoxide into seawater from a carbon monoxide injector in a marine organism attachment prevention device during an optimum injection time estimated from a relationship between a previously obtained amount of marine organisms and time.

【0017】前記請求項5の課題を解決するための手段
は、配管内面への海棲生物の付着防止を確実にして、か
つ、必要コストを最小にするために、海棲生物の死滅実
験から、予め得られた海棲生物量と時間の関係から推定
される最適注入間隔の時間間隔を経て、海棲生物付着防
止装置における一酸化炭素注入装置から一酸化炭素を取
海水に注入することである。
Means for solving the above-mentioned problem is to prevent marine organisms from adhering to the inner surface of the pipe and minimize the necessary cost by conducting experiments on killing marine organisms. By injecting carbon monoxide into seawater from the carbon monoxide injection device in the marine organism adhesion prevention device through the time interval of the optimal injection interval estimated from the relationship between the amount of marine organisms obtained in advance and time, is there.

【0018】前記請求項6の課題を解決するための手段
は、配管内面への海棲生物の付着防止を確実にして、か
つ、必要コストを最小にするために、取海水への一酸化
炭素注入装置の取海水を貯えるための貯水槽に、水中カ
メラと水中カメラにて撮影した画像を処理した後、海棲
生物の数を自動的に数えるカウント機能を有する画像処
理計算機と画像処理計算機により数えられた海棲生物数
と海棲生物しきい値を比較してバルブに接続されたアク
チュエータに開閉指示を出す計算機とアクチュエータと
バルブからなる取海水貯水槽とすることである。
Means for solving the above-mentioned problem is to prevent carbon monoxide from adhering to the inner surface of the pipe and to minimize the necessary cost, so as to minimize the cost. After processing the images taken by the underwater camera and the underwater camera in the water tank for storing the seawater of the injection device, the image processing computer and the image processing computer with the counting function to automatically count the number of marine organisms The number of marine organisms counted is compared with the threshold value of the marine organisms, and a computer for issuing an opening / closing instruction to an actuator connected to the valve, and a seawater storage tank comprising the actuator and the valve.

【0019】前記請求項7の課題を解決するための手段
は、外界に放出される飽和一酸化炭素水溶液である取海
水を排水時に中和するために、飽和一酸化炭素水溶液に
酸素を注入する実験から、予め得られた一酸化炭素量、
及びpHと酸素注入量の関係から推定される最適酸素注
入量を、海棲生物付着防止装置における酸素注入装置か
ら排水に注入することである。
In order to solve the above-mentioned problem, the present invention is characterized in that oxygen is injected into a saturated aqueous solution of carbon monoxide in order to neutralize seawater, which is an aqueous solution of saturated carbon monoxide discharged to the outside world, at the time of drainage. From the experiment, the amount of carbon monoxide obtained in advance,
And injecting the optimum oxygen injection amount estimated from the relationship between the pH and the oxygen injection amount into the wastewater from the oxygen injection device in the marine organism attachment prevention device.

【0020】[0020]

【発明の実施の形態】以下に本発明における実施の形態
例を示す。
Embodiments of the present invention will be described below.

【0021】第1の実施の形態 本発明の第1の実施の形態における海棲生物付着防止装
置1の構成図を図1に示す。本発明における海棲生物付
着防止装置1は取水口15と排水口16を結ぶ主水路1
4aから分岐して、発電プラント等の取海水を冷却水と
して使用する設備13に接続される分岐水路14bに設
置される。設備13に付設されたポンプ等により、海洋
から吸い上げられた取海水18は主水路14aを分岐し
た分岐水路14bに流入する。分岐水路14b入り口に
は、高圧一酸化炭素注入装置11が付設されている。こ
の高圧一酸化炭素注入装置11から、分岐水路14aに
流入した取海水18へ高圧一酸化炭素21が注入され
る。取海水18へ高圧一酸化炭素21を注入している様
子を図2に示す。一酸化炭素21は高圧で取海水18内
に注入される。このとき、一酸化炭素21は微細気泡と
なっており、比較的容易に取海水18内に溶け込む。一
酸化炭素21がある一定量溶け込んで飽和状態となった
取海水18においては、海棲生物は窒息状態となり生存
することはできない。すなわち、一酸化炭素が注入され
た以降の分岐水路配管系14bにおいては、幼貝等の海
棲生物が配管内壁面に付着するようなことはない。な
お、一酸化炭素注入時は、図2に示したように、その下
流で一酸化炭素濃度を測定しておくことが望ましい。一
酸化炭素を注入された取海水18は設備13内に移送さ
れ、設備13内の熱交換器等の海水を冷却水として使用
する機器に流入する。その後、この取海水は排水19と
して海洋17に放出されるが、一酸化炭素が注入された
ままの取海水18を排水19として放出した場合、通常
海水よりも一酸化炭素濃度が高いために、排水口16近
辺の海洋17に生息する海棲生物を死滅させるおそれが
ある。そこで、本発明における海棲生物付着防止装置1
では冷却水として活用された取海水18が設備から排出
された位置に高圧酸素注入装置11を配置する。図2に
示した一酸化炭素の注入方法と同様に、酸素も高圧で排
水19内に注入される。このとき酸素は微細気泡となっ
ており、比較的容易に一酸化炭素濃度が高い排水19内
に酸素が溶け込む。このとき、一酸化炭素濃度が高い排
水19は酸素により中和されて、海洋17に放出された
場合でも海棲生物に影響を及ぼすことはない。すなわ
ち、このとき注入する酸素量は、一酸化炭素濃度が高い
排水19の酸素量、及びpH等が海洋17の酸素量、及び
pH等と同等になるレベルまで注入する必要がある。
First Embodiment FIG. 1 shows the configuration of a marine organism adhesion preventing apparatus 1 according to a first embodiment of the present invention. The marine organism attachment prevention device 1 according to the present invention is a main waterway 1 connecting an intake 15 and a drain 16.
Branching from 4a, it is installed in a branch waterway 14b connected to equipment 13 such as a power plant that uses intake seawater as cooling water. The intake water 18 drawn from the ocean by a pump or the like attached to the facility 13 flows into a branch waterway 14b that branches off the main waterway 14a. A high-pressure carbon monoxide injector 11 is additionally provided at the entrance of the branch waterway 14b. The high-pressure carbon monoxide 21 is injected from the high-pressure carbon monoxide injector 11 into the seawater 18 that has flowed into the branch waterway 14a. FIG. 2 shows a state in which high-pressure carbon monoxide 21 is injected into seawater 18. The carbon monoxide 21 is injected into the seawater 18 at high pressure. At this time, the carbon monoxide 21 is in the form of fine bubbles and relatively easily dissolves in the seawater 18. In the intake seawater 18 in which the carbon monoxide 21 is dissolved in a certain amount and becomes saturated, the marine creatures become choked and cannot survive. That is, in the branch waterway piping system 14b after the carbon monoxide is injected, marine organisms such as young shellfish do not adhere to the inner wall surface of the piping. When carbon monoxide is injected, as shown in FIG. 2, it is desirable to measure the concentration of carbon monoxide downstream. The seawater 18 into which carbon monoxide has been injected is transferred into the facility 13 and flows into equipment that uses seawater as cooling water, such as a heat exchanger in the facility 13. After that, this seawater is discharged as effluent 19 to the ocean 17, but if the seawater 18 with carbon monoxide injected is discharged as the effluent 19, the concentration of carbon monoxide is higher than that of normal seawater. There is a possibility that marine organisms living in the ocean 17 near the drain 16 may be killed. Therefore, the marine organism adhesion prevention device 1 of the present invention
Then, the high-pressure oxygen injection device 11 is disposed at a position where the seawater 18 used as the cooling water is discharged from the facility. As in the method for injecting carbon monoxide shown in FIG. At this time, oxygen is in the form of fine bubbles, and oxygen is relatively easily dissolved into the wastewater 19 having a high carbon monoxide concentration. At this time, the wastewater 19 having a high carbon monoxide concentration is neutralized by oxygen, and does not affect marine organisms even when discharged into the ocean 17. That is, the amount of oxygen to be injected at this time is such that the amount of oxygen in the wastewater 19 having a high concentration of carbon monoxide, the amount of oxygen in the
It is necessary to inject to a level equivalent to pH etc.

【0022】なお、前述した一酸化炭素注入時における
一酸化炭素の量は、予め実施した海棲生物の死滅試験よ
り得られた海棲生物の残存率と一酸化炭素注入量の関係
31から最適な注入量とする。海棲生物の死滅試験から
得られた海棲生物残存率と最適一酸化炭素濃度の関係3
1を図3に示す。海棲生物残存率と最適一酸化炭素濃度
の関係31を得るための海棲生物死滅試験は以下の要領
にて実施する。取海水と同一水溶液を満たした水槽に、
例えばムラサキガイなどの対象となる海棲生物を水槽壁
面に繁殖させた後、その水槽に所定の一酸化炭素を注入
する。試験開始前の水槽壁面に付着している海棲生物の
個体数、または質量を測定した後、所定量の一酸化炭素
を注入する。注入後、予め設定しておいた経過時間後の
水槽壁面に付着している海棲生物の個体数、または質量
を測定して海棲生物残存率を算出する。なお、海棲生物
残存率は次式により決定される。
The amount of carbon monoxide at the time of carbon monoxide injection described above is optimally determined from the relationship 31 between the residual rate of marine organisms and the carbon monoxide injection amount obtained from a marine life killing test conducted in advance. Injection amount. Relationship between survival rate of marine organisms obtained from marine life killing tests and optimal carbon monoxide concentration 3
1 is shown in FIG. The marine life killing test for obtaining the relationship 31 between the marine life remaining rate and the optimum carbon monoxide concentration is performed in the following manner. In a tank filled with the same aqueous solution as the seawater,
For example, after a target marine creature such as a mussel is bred on the wall surface of a water tank, predetermined carbon monoxide is injected into the water tank. After measuring the number or mass of marine organisms attached to the aquarium wall before the start of the test, a predetermined amount of carbon monoxide is injected. After the injection, the number or mass of marine organisms adhering to the wall surface of the aquarium after a predetermined elapsed time is measured to calculate the marine organism survival rate. The marine organism survival rate is determined by the following equation.

【0023】海棲生物残存率=(一酸化炭素注入一定経
過時間後の海棲生物の個体数、または質量)/(試験前
の海棲生物の個体数、または質量) 一酸化炭素注入量を数ケース変化させた海棲生物死滅試
験から得られた海棲生物残存率と一酸化炭素注入量の関
係31と予め設定しておいた海棲生物残存率のしきい値
を比較して、図3に示したように最適一酸化炭素注入量
を決定する。このようにして決定した最適一酸化炭素注
入量を海棲生物付着防止装置1における一酸化炭素注入
量とする。
Marine organism survival rate = (number or mass of marine organisms after a certain period of carbon monoxide injection) / (number or mass of marine organisms before test) Compare the relationship 31 between the marine life survival rate and the carbon monoxide injection amount obtained from the marine life killing test changed in several cases and the preset threshold value of the marine life survival rate. As shown in FIG. 3, the optimum carbon monoxide injection amount is determined. The optimum injection amount of carbon monoxide determined in this manner is defined as the injection amount of carbon monoxide in the marine organism adhesion preventing device 1.

【0024】さらに、海棲生物付着防止装置1における
一酸化炭素の注入時間と注入間隔の設定方法を以下に示
す。前述した海棲生物死滅試験から得られる海棲生物残
存率と時間の関係32を図4に示す。図4に示すような
海棲生物残存率と時間の関係32を得るための海棲生物
死滅試験は次のようにして実施する。前述した海棲生物
残存率と最適一酸化炭素濃度の関係31を得るための海
棲生物死滅試験と同様に、取海水18と同一水溶液を満
たした水槽の試験開始前の水槽壁面に付着している海棲
生物の個体数、または質量を測定した後、先に決定した
最適一酸化炭素注入量の一酸化炭素注入量を水槽内に注
入する。注入後、定期的に水槽壁面に付着している海棲
生物の個体数、または質量を測定して海棲生物残存率を
算出する。
Further, a method for setting the injection time and the injection interval of carbon monoxide in the marine organism adhesion preventing apparatus 1 will be described below. FIG. 4 shows the relationship 32 between the marine organism survival rate and the time obtained from the marine organism killing test described above. The marine life killing test for obtaining the relationship 32 between the marine life remaining rate and time as shown in FIG. 4 is performed as follows. Similar to the marine life killing test for obtaining the relationship 31 between the residual ratio of marine life and the optimum carbon monoxide concentration, the water adhering to the water tank wall of the water tank filled with the same aqueous solution as the intake seawater 18 before the test was started. After measuring the number or mass of the marine organisms, the optimum injection amount of carbon monoxide determined above is injected into the water tank. After injection, the number or mass of marine organisms adhering to the tank wall is periodically measured to calculate the marine organism survival rate.

【0025】一酸化炭素濃度は徐々に低くなり、時間の
経過とともに海棲生物残存率は高くなる(図4中A
点)。ここで、海棲生物残存率があるしきい値を越えた
時点で再び最適一酸化炭素注入量を試験水槽に注入す
る。一酸化炭素注入時も断続的に海棲生物残存率を測定
しておき、海棲生物残存率が十分小さくなった時点で一
酸化炭素の注入を停止する。この一酸化炭素の注入、停
止を繰返すことにより、図4に示した海棲生物残存率と
時間の関係32を得ることができる。本来、海棲生物付
着防止の観点に立てば、海棲生物付着防止装置1におけ
る一酸化炭素の注入は連続的である方が望ましいが、そ
の場合、取海水18に注入する一酸化炭素の量は莫大と
なり経済性が損なわれてしまう。そこで、上記のような
手法により決定した一酸化炭素の注入時間、及び注入間
隔を海棲生物付着防止装置1における一酸化炭素注入時
間、及び注入間隔とすることにより、海棲生物付着防止
という当初の目的だけでなく、経済的にも、一酸化炭素
のコストを抑えることが可能な海棲生物付着防止装置1
とすることが可能である。
The concentration of carbon monoxide gradually decreases, and the survival rate of marine organisms increases with time (A in FIG. 4).
point). Here, when the marine organism survival rate exceeds a certain threshold value, the optimum injection amount of carbon monoxide is injected again into the test tank. Even when carbon monoxide is injected, the residual rate of marine organisms is measured intermittently, and the injection of carbon monoxide is stopped when the residual rate of marine organisms becomes sufficiently small. By repeatedly injecting and stopping the injection of carbon monoxide, the relationship 32 between the survival rate of marine organisms and time shown in FIG. 4 can be obtained. Originally, from the viewpoint of prevention of marine organism adhesion, it is desirable that the injection of carbon monoxide in the marine organism adhesion prevention device 1 be continuous, but in this case, the amount of carbon monoxide to be injected into the intake seawater 18. Is enormous and economics are impaired. Therefore, by setting the carbon monoxide injection time and the injection interval determined by the above-described method to the carbon monoxide injection time and the injection interval in the marine organism adhesion prevention device 1, the marine organism adhesion prevention at the beginning is prevented. Marine organism adhesion prevention device 1 that can reduce the cost of carbon monoxide not only for the purpose of
It is possible.

【0026】一方、排水19への酸素量も、予め実施し
た飽和一酸化炭素水溶液に酸素を注入する酸素注入試験
により得られる一酸化炭素量、及びpHと酸素注入量の関
係33から推定される最適酸素注入量とする。一酸化炭
素量、及びpHと酸素注入量の関係を図5に示す。設備1
3から排出される排水19と一酸化炭素濃度が同レベル
の飽和水溶液に予め設定しておいた酸素量を注入する。
このときの一酸化炭素量、及びpHなどを測定した後、注
入する酸素量を変化させて、再度、一酸化炭素量、及び
pHなどを測定する。このように飽和一酸化炭素水溶液へ
の酸素注入量を変化させることにより図5に示した一酸
化炭素量、及びpHと酸素注入量の関係33から推定され
る最適酸素注入量を得ることができる。一酸化炭素量、
及びpHが海水レベルになる時点の酸素注入量を最適酸素
注入量として排水への酸素注入量とする。
On the other hand, the amount of oxygen to the drainage water 19 is also estimated from the amount of carbon monoxide obtained by an oxygen injection test for injecting oxygen into a saturated aqueous solution of carbon monoxide, and the relationship 33 between pH and the amount of oxygen injected. The optimum oxygen injection amount is used. FIG. 5 shows the relationship between the amount of carbon monoxide and the pH and the amount of injected oxygen. Equipment 1
A predetermined amount of oxygen is injected into a saturated aqueous solution having the same level of carbon monoxide as the waste water 19 discharged from 3.
At this time, after measuring the amount of carbon monoxide, and pH, changing the amount of oxygen to be injected, the amount of carbon monoxide again, and
Measure pH, etc. By changing the amount of oxygen injected into the saturated aqueous solution of carbon monoxide in this manner, the amount of carbon monoxide and the optimum amount of oxygen injected estimated from the relationship 33 between the pH and the amount of oxygen injected shown in FIG. 5 can be obtained. . Carbon monoxide content,
The oxygen injection amount at the time when the pH reaches the seawater level is determined as the optimum oxygen injection amount, which is the oxygen injection amount into the wastewater.

【0027】第2の実施の形態 本発明の第2の実施の形態における海棲生物付着防止装
置2の構成図を図6に示す。図6に示した第2の実施の
形態の場合、高圧一酸化炭素注入装置41、及び高圧酸
素注入装置42が図1に示した第1の実施の形態と異な
ることが特徴として挙げられる。第1の実施の形態の場
合、高圧一酸化炭素注入装置11により注入される一酸
化炭素は主水路14aから分岐した分岐水路14bに直
接注入された。高圧にした状態で一酸化炭素21を注入
することから取海水18中への一酸化炭素の溶け込みが
期待されるが、取海水18はある流体速度をもって移動
しているため、取海水18への一酸化炭素の溶け込みが
十分でない可能性も示唆される。第2の実施の形態にお
いては、分岐水路14bと高圧一酸化炭素注入装置41
を接続する貯水槽43が設けられている。分岐水路14
bからの取海水18が、この貯水槽43に流入するため
に、貯水槽43は取海水18で満たされている。また、
貯水槽43内では流れがほとんどないことから、貯水槽
43に高圧一酸化炭素21を注入すれば、十分、取海水
18内に一酸化炭素が溶け込み、取海水18は飽和状態
の一酸化炭素水になる。貯水槽43の大きさは、分岐水
路14bの管直径、及び取海水18の流量等を考慮し
て、貯水槽43内での取海水18の速度が十分遅くなる
程度まで大きくしなければならない。
Second Embodiment FIG. 6 shows a configuration diagram of a marine organism adhesion preventing device 2 according to a second embodiment of the present invention. The feature of the second embodiment shown in FIG. 6 is that the high-pressure carbon monoxide injector 41 and the high-pressure oxygen injector 42 are different from those of the first embodiment shown in FIG. In the case of the first embodiment, the carbon monoxide injected by the high-pressure carbon monoxide injector 11 was directly injected into the branch water channel 14b branched from the main water channel 14a. Since carbon monoxide 21 is injected at a high pressure, dissolution of carbon monoxide into the intake seawater 18 is expected. However, since the intake seawater 18 moves at a certain fluid velocity, the intake seawater 18 It is also suggested that the penetration of carbon monoxide may not be sufficient. In the second embodiment, the branch water channel 14b and the high-pressure carbon monoxide injection device 41
Are connected to each other. Branch waterway 14
The water storage tank 43 is filled with the seawater 18 because the seawater 18 from b flows into the water storage tank 43. Also,
Since there is almost no flow in the water storage tank 43, if the high-pressure carbon monoxide 21 is injected into the water storage tank 43, the carbon monoxide sufficiently dissolves in the seawater 18 and the seawater 18 is saturated with the carbon monoxide water. become. The size of the water storage tank 43 must be increased to such an extent that the speed of the intake water 18 in the water storage tank 43 becomes sufficiently slow in consideration of the pipe diameter of the branch channel 14b, the flow rate of the intake water 18, and the like.

【0028】さらに、取海水18を設備13内の熱交換
器等の機器の冷却水として使用した後の排水として海洋
17に放出する前の高圧酸素注入装置42においても同
様な手法をとることが望ましい。前述した手法により一
酸化炭素を注入された取海水18は飽和状態の一酸化炭
素水であることから、排水19として海洋17に放出す
る際には、酸素を注入することにより、排水18を十分
中和して放出する必要がある。そこで、第2の実施形態
における海棲生物付着防止装置2では、設備13から移
送される取海水分岐水路14bと高圧酸素注入装置42
を接続する貯水槽44が設けられている。高圧一酸化炭
素注入装置41に接続された貯水槽43と同様に、高圧
酸素注入装置42に接続された貯水槽44も同様に、そ
の大きさは、分岐水路14bの管直径、及び取海水18
の流量等を考慮して、貯水槽内での排水19の速度が十
分遅くなる程度まで大きくしなければならない。貯水槽
44内では、排水19の流体速度がほとんどないため
に、貯水槽44に高圧酸素を注入すれば、十分、取海水
内に酸素が溶け込み、容易に一酸化酸素濃度が高い排水
19が海洋18における酸素量、pH等と同等になるレベ
ルになると考えられる。
Further, a similar technique may be adopted in the high-pressure oxygen injection device 42 before using the intake seawater 18 as cooling water for equipment such as a heat exchanger in the facility 13 and discharging it to the ocean 17 as wastewater. desirable. Since the intake seawater 18 into which carbon monoxide has been injected by the above-described method is saturated carbon monoxide water, when discharging it to the ocean 17 as the wastewater 19, the wastewater 18 can be sufficiently injected by injecting oxygen. It must be neutralized and released. Therefore, in the marine organism attachment prevention device 2 according to the second embodiment, the intake seawater branch channel 14b transferred from the facility 13 and the high-pressure oxygen injection device 42
Is provided. Like the water storage tank 43 connected to the high-pressure carbon monoxide injection device 41, the water storage tank 44 connected to the high-pressure oxygen injection device 42 has the same size as the pipe diameter of the branch water passage 14b and the seawater 18
In consideration of the flow rate and the like, it is necessary to increase the speed of the drainage 19 in the water storage tank until it becomes sufficiently slow. In the water storage tank 44, since the fluid velocity of the waste water 19 is almost nil, if high-pressure oxygen is injected into the water storage tank 44, the oxygen is sufficiently dissolved in the seawater, and the waste water 19 having a high oxygen monoxide concentration can be easily discharged from the ocean. It is considered that the level becomes equivalent to the oxygen amount, pH and the like at 18.

【0029】なお、図6に示した海棲生物付着防止装置
2の場合、高圧一酸化炭素注入装置41に接続される貯
水槽43、及びは高圧酸素注入装置42に接続される貯
水槽44は一つであるが、貯水槽を複数個設けることに
より、さらに確実に一酸化炭素を取海水18、または酸
素を排水19に十分溶け込ませることが可能である。
In the case of the marine organism adhesion preventing device 2 shown in FIG. 6, the water storage tank 43 connected to the high pressure carbon monoxide injection device 41 and the water storage tank 44 connected to the high pressure oxygen injection device 42 However, by providing a plurality of water storage tanks, it is possible to more reliably take carbon monoxide and sufficiently dissolve seawater 18 or oxygen into wastewater 19.

【0030】高圧酸素注入装置42に接続される貯水槽
44を複数個設けた例を図7に示す。
FIG. 7 shows an example in which a plurality of water storage tanks 44 connected to the high-pressure oxygen injection device 42 are provided.

【0031】図7のように複数個の貯水槽44を設ける
ことにより流体速度がほとんど無い領域が増え、さらに
確実に排水への酸素の供給が容易になる。なお、酸素を
十分注入した排水を海は排出する際は、酸素濃度計45
により、所定の海洋17の海水の酸素量と同レベルであ
ることを確認することとする。
By providing a plurality of water storage tanks 44 as shown in FIG. 7, the region where there is almost no fluid velocity increases, and the supply of oxygen to the wastewater becomes easier. In addition, when discharging the wastewater into which oxygen is sufficiently injected from the sea, use an oxygen concentration meter 45.
Thus, it is confirmed that the oxygen level of the seawater in the predetermined ocean 17 is at the same level.

【0032】なお、図5に示した第2の実施の形態にお
ける高圧一酸化炭素注入量、注入時間、及び注入間隔等
は、第1の実施の形態で示した海棲生物死滅試験により
決定する。また、第2の実施の形態における酸素注入量
は第1の実施の形態で示した酸素注入試験で得られた最
適酸素注入量により決定するものとする。
The injection amount, injection time, injection interval, etc. of the high-pressure carbon monoxide in the second embodiment shown in FIG. 5 are determined by the marine life killing test shown in the first embodiment. . Further, the oxygen injection amount in the second embodiment is determined by the optimum oxygen injection amount obtained in the oxygen injection test shown in the first embodiment.

【0033】第3の実施の形態 本発明の第3の実施の形態である一酸化炭素注入装置3
の例を図8に示す。第3の実施の形態は、海棲生物付着
防止装置2における高圧一酸化炭素注入装置41の例で
ある。第1の実施の形態、及び第2の実施の形態の海棲
生物付着防止装置1、2における高圧一酸化炭素注入装
置11、41では、一酸化炭素注入量を予め実施した海
棲生物死滅試験から得られた海棲生物の残存率と一酸化
炭素濃度の関係31から決定した。また、一酸化炭素の
注入時間、及び注入間隔も予め実施した海棲生物死滅試
験から得られた海棲生物の残存率と時間の関係32から
決定した。しかしながら、これらの一酸化炭素注入量、
一酸化炭素注入時間、及び注入間隔は実験室レベルで実
施した海棲生物死滅試験から決定したものであることか
ら、実際の海棲生物付着防止装置1、2における海棲生
物付着防止効果を確実なものにするために、第3の実施
の形態では、オンラインモニタリングによる手法を導入
した一酸化炭素注入装置3を示す。
Third Embodiment A carbon monoxide injector 3 according to a third embodiment of the present invention.
8 is shown in FIG. The third embodiment is an example of the high-pressure carbon monoxide injection device 41 in the marine organism attachment prevention device 2. In the high-pressure carbon monoxide injectors 11 and 41 in the marine organism adhesion preventing devices 1 and 2 of the first embodiment and the second embodiment, the marine organism killing test in which the amount of injected carbon monoxide was performed in advance. Was determined from the relationship 31 between the residual rate of marine organisms obtained from and the carbon monoxide concentration. Further, the injection time and the injection interval of carbon monoxide were also determined from the relationship 32 between the survival rate of marine organisms and the time obtained from the marine life killing test conducted in advance. However, these carbon monoxide injections,
Since the carbon monoxide injection time and the injection interval were determined from the marine organism killing test conducted at the laboratory level, the actual marine organism adhesion prevention devices 1 and 2 ensure the marine organism adhesion prevention effect. In the third embodiment, a carbon monoxide injection device 3 to which a technique based on online monitoring is introduced is shown.

【0034】図8に示したオンラインモニタリングによ
る一酸化炭素注入装置41は、一酸化炭素注入用の貯水
槽43の内壁面を撮影する水中カメラ51と水中カメラ
51で撮影した映像を取り込んで、画像処理して、一酸
化炭素注入タンクに接続された貯水槽43の内壁面に付
着している幼貝などの海棲生物61の付着数をカウント
する計算機52とカウントした貯水槽43の内壁面に付
着している海棲生物61の付着数と予め設定しておいた
しきい値とを比較した結果をもとに、一酸化炭素注入タ
ンク11と貯水槽43を結ぶ配管の間に設置されたバル
ブ55に接続されたアクチュエータ54に開閉指示を送
信する計算機システム53、バルブに接続されたアクチ
ュエータ54、及びバルブ55、またそれぞれの装置、
器具の間でデータのやり取りをするケーブル56から成
立する。
The carbon monoxide injection device 41 using online monitoring shown in FIG. 8 captures an image taken by the underwater camera 51 and the underwater camera 51 for photographing the inner wall surface of the water storage tank 43 for injecting carbon monoxide. The computer 52 counts the number of marine creatures 61 such as young shellfish attached to the inner wall surface of the water storage tank 43 connected to the carbon monoxide injection tank, and the inner wall surface of the counted water storage tank 43 is processed. A valve installed between a pipe connecting the carbon monoxide injection tank 11 and the water storage tank 43 based on a result of comparing the number of the attached marine organisms 61 with a preset threshold value. A computer system 53 for transmitting an opening / closing instruction to an actuator 54 connected to an actuator 55; an actuator 54 connected to a valve;
It consists of a cable 56 for exchanging data between instruments.

【0035】貯水槽の内面を監視する水中カメラ51
は、貯水槽43内面への海棲生物への付着状態を監視し
ている。水中カメラ51で撮影された映像は、随時、水
中カメラ51と接続された画像処理用計算機52に転送
される。水中カメラ51の映像を受信した画像処理用計
算機52は、この映像に対して二値化処理などの画像処
理手法により、水中カメラ51で撮影された映像内の海
棲生物の像61を明確にして、貯水槽内面に付着した海
棲生物61の数をカウントする。カウントされた貯水槽
43内面に付着した海棲生物61の数は、一酸化炭素注
入タンク11と貯水槽43を結ぶ配管の間に設置された
バルブ55に接続されたアクチュエータ54に開閉指示
を送信する計算機システム53にデータとして送信され
る。このカウントされた貯水槽43内面に付着した海棲
生物61の数と予め設定しておいたしきい値とを比較し
て、貯水槽43内面に付着した海棲生物の数がしきい値
よりも大きい場合、すなわち、海棲生物が貯水槽内面に
繁殖していると判断された場合、アクチュエータ54に
開閉指示を送信する計算機システム53からアクチュエ
ータ54にバルブ55開の指示が出される。バルブ55
開の指示を受けたアクチュエータ54は一酸化炭素注入
タンク11と貯水槽43を結ぶ配管の間に設置されたバ
ルブ55を開き、貯水槽43に一酸化炭素を注入する。
一酸化炭素が十分注入されると、飽和一酸化炭素による
酸素欠乏、及び一酸化炭素の毒性により海棲生物は死滅
する。なお、前述の画像処理によりカウントされた海棲
生物61の数がしきい値よりも少ない場合、すなわち、
海棲生物が貯水槽42内面に繁殖していないと判断され
た場合、アクチュエータ54に開閉指示を送信する計算
機システム53からアクチュエータ54にバルブ55閉
の指示が出される。
Underwater camera 51 for monitoring the inner surface of the water tank
Monitors the state of attachment of marine organisms to the inner surface of the water tank 43. The video captured by the underwater camera 51 is transferred to the image processing computer 52 connected to the underwater camera 51 as needed. The image processing computer 52 that has received the image of the underwater camera 51 clarifies the image 61 of the marine creature in the image captured by the underwater camera 51 by an image processing method such as binarization processing on the image. Then, the number of marine organisms 61 attached to the inner surface of the water tank is counted. The counted number of marine organisms 61 attached to the inner surface of the water storage tank 43 is transmitted to the actuator 54 connected to the valve 55 installed between the carbon monoxide injection tank 11 and the pipe connecting the water storage tank 43 to open and close. Is transmitted as data to the computer system 53. By comparing the counted number of marine organisms 61 attached to the inner surface of the water tank 43 with a preset threshold value, the number of marine organisms attached to the inner surface of the water tank 43 is smaller than the threshold value. If it is large, that is, if it is determined that the marine organisms are breeding on the inner surface of the water tank, the computer system 53 that transmits the opening / closing instruction to the actuator 54 issues an instruction to the actuator 54 to open the valve 55. Valve 55
Upon receiving the instruction to open, the actuator 54 opens the valve 55 installed between the pipe connecting the carbon monoxide injection tank 11 and the water tank 43, and injects carbon monoxide into the water tank 43.
When carbon monoxide is sufficiently infused, marine organisms die due to oxygen starvation by saturated carbon monoxide and the toxicity of carbon monoxide. In addition, when the number of the marine creatures 61 counted by the above-described image processing is smaller than the threshold, that is,
When it is determined that the marine creature has not propagated on the inner surface of the water storage tank 42, the computer system 53 that transmits the opening / closing instruction to the actuator 54 issues an instruction to the actuator 54 to close the valve 55.

【0036】以上のオンラインモニタリングによる手法
を導入した一酸化炭素注入装置3を用いることにより、
取海水18への一酸化炭素注入量を最適化した海棲生物
付着防止装置2における海棲生物付着防止効果を確実に
することが可能である。
By using the carbon monoxide injector 3 incorporating the above-described online monitoring method,
It is possible to ensure the effect of preventing marine organism adhesion in the marine organism adhesion prevention device 2 in which the amount of carbon monoxide injected into the intake seawater 18 is optimized.

【0037】[0037]

【発明の効果】本発明では、取海水に一酸化炭素を注入
することにより、海水配管内に付着する海棲生物の付
着、生育を防止することができ、海棲生物の繁殖による
配管のつまり等の発電プラントの不具合を回避すること
が可能である。また、取海水の排水時には、酸素を注入
することによって、一酸化炭素の注入により飽和一酸化
炭素水となった取海水を中和して、排水による環境汚染
の発生を防止することが可能である。なお、本設備は既
存システムに一酸化炭素注入系、及び酸素注入系を追加
するだけで対応が可能であることから、追加設備コスト
を低く抑えることが可能である。
According to the present invention, by injecting carbon monoxide into seawater, it is possible to prevent the marine organisms from adhering and growing in the seawater pipes, and to block the pipes due to the propagation of marine organisms. It is possible to avoid problems of the power plant such as the above. In addition, at the time of drainage of intake seawater, oxygen is injected to neutralize intake water that has become saturated carbon monoxide water by injection of carbon monoxide, thereby preventing the occurrence of environmental pollution due to drainage. is there. In addition, since this equipment can cope with the existing system simply by adding a carbon monoxide injection system and an oxygen injection system, it is possible to reduce the cost of additional equipment.

【0038】また、配管のつまり等による発電プラント
の不具合を回避できることから維持コスト及び検査コス
トを低減、適正化することができ、安全性を高めて、安
定電力供給に対して大きく貢献することができる。
[0038] Further, since it is possible to avoid problems of the power plant due to clogging of the pipes, etc., it is possible to reduce and optimize maintenance costs and inspection costs, to enhance safety and greatly contribute to stable power supply. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態における海棲生物付
着防止装置の構成図。
FIG. 1 is a configuration diagram of a marine organism adhesion preventing device according to a first embodiment of the present invention.

【図2】高圧一酸化炭素ガスの取海水への注入例を示す
図。
FIG. 2 is a diagram showing an example of injecting high-pressure carbon monoxide gas into seawater.

【図3】海棲生物の死滅実験から得られた海棲生物量と
一酸化炭素濃度の関係の例を示す図。
FIG. 3 is a diagram showing an example of the relationship between the amount of marine organisms and the concentration of carbon monoxide obtained from a marine organism killing experiment.

【図4】海棲生物の死滅実験から得られた海棲生物量と
時間の関係の例を示す図。
FIG. 4 is a diagram showing an example of the relationship between the amount of marine organisms and time obtained from an experiment on killing marine organisms.

【図5】一酸化炭素濃度、またはpH値と酸素注入量の関
係を示す図。
FIG. 5 is a graph showing a relationship between a carbon monoxide concentration or a pH value and an oxygen injection amount.

【図6】本発明の第2の実施の形態における海棲生物付
着防止装置の構成図。
FIG. 6 is a configuration diagram of a marine organism adhesion preventing device according to a second embodiment of the present invention.

【図7】排水時における酸素注入において複数の貯水槽
を用いる場合の例を示す図。
FIG. 7 is a diagram showing an example in which a plurality of water tanks are used for oxygen injection during drainage.

【図8】オンラインモニタリングによる一酸化炭素注入
装置の例を示す図。
FIG. 8 is a diagram showing an example of a carbon monoxide injection device by online monitoring.

【符号の説明】[Explanation of symbols]

11…高圧一酸化炭素注入装置、12…高圧酸素注入装
置、13…海水を冷却水として使用する機器を有する設
備、14a…主水路、14b…分岐水路、15…取水
口、16…排水口、17…海、18…取海水、19…排
水、21…気泡上一酸化炭素、22…一酸化炭素濃度測
定計、31…海棲生物残存率と一酸化炭素注入量の関
係、32…海棲生物残存率と時間の関係、41…貯水槽
を有する高圧一酸化炭素注入装置、42…貯水槽を有す
る高圧酸素注入装置、43…高圧一酸化炭素注入用貯水
槽、44…高圧酸素注入用貯水槽、45…酸素濃度測定
計、51…水中カメラ、52…画像処理用計算機、53
…バルブ開閉指示計算機、54…バルブ開閉用アクチュ
エータ、55…バルブ、56…データ転送用ケーブル。
11 high-pressure carbon monoxide injection device, 12 high-pressure oxygen injection device, 13 equipment having equipment for using seawater as cooling water, 14a main water channel, 14b branch water channel, 15 water intake port, 16 water outlet port, 17 ... sea, 18 ... seawater, 19 ... drainage, 21 ... carbon monoxide on air bubbles, 22 ... carbon monoxide concentration meter, 31 ... relationship between the residual rate of marine organisms and the amount of injected carbon monoxide, 32 ... marine Relationship between the survival rate of living organisms and time, 41: high-pressure carbon monoxide injector with water tank, 42: high-pressure oxygen injector with water tank, 43: high-pressure carbon monoxide tank, 44: high-pressure oxygen tank Tank, 45: oxygen concentration meter, 51: underwater camera, 52: computer for image processing, 53
... Valve opening / closing instruction calculator, 54 ... Valve opening / closing actuator, 55 ... Valve, 56 ... Data transfer cable.

フロントページの続き (72)発明者 久恒 眞一 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所原子力事業部内 Fターム(参考) 3B117 AA06 BA51 Continuation of the front page (72) Inventor Shinichi Hisatsune 3-1-1 Kochi-cho, Hitachi-shi, Ibaraki F-term in the Nuclear Power Division of Hitachi, Ltd. 3B117 AA06 BA51

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 海水を使用する施設に設置された海水を
取水する配管において、取水口近傍に設置された高圧一
酸化炭素を取海水へ注入する装置と排水口近傍に設置さ
れた高圧酸素を排水へ注入装置を有することを特徴とし
た海棲生物付着防止装置。
Claims: 1. A pipe for taking in seawater installed in a facility using seawater, comprising: a device for injecting high-pressure carbon monoxide installed near an intake into seawater; and a high-pressure oxygen installed near a drainage outlet. An apparatus for preventing marine organisms from adhering, comprising a device for injecting wastewater.
【請求項2】 前記請求項1の海棲生物付着防止装置に
おける取海水への高圧一酸化炭素注入装置において、一
旦、取水を貯えるための単数、または複数の貯水槽と請
求項1の海棲生物の付着防止装置における排水への高圧
酸素注入装置において、一旦、排水を貯えるための単
数、または複数の貯水槽を有することを特徴とした海棲
生物付着防止装置。
2. The marine organism according to claim 1, wherein the high-pressure carbon monoxide injection apparatus for injecting seawater in the marine organism adhesion preventing apparatus according to claim 1 includes one or more water storage tanks for temporarily storing intake water. What is claimed is: 1. An apparatus for preventing marine organisms from adhering, comprising a single or a plurality of water tanks for temporarily storing wastewater, in a device for injecting high-pressure oxygen into wastewater in an organism's attachment prevention device.
【請求項3】 海棲生物の死滅実験から、予め得られた
海棲生物量残存率と一酸化炭素注入量の関係から推定さ
れる最適一酸化炭素注入量を、前記請求項1の海棲生物
付着防止装置における高圧一酸化炭素注入装置から取海
水に注入することを特徴とした海棲生物付着防止装置。
3. The marine organism according to claim 1, wherein the optimum amount of injected carbon monoxide estimated from the relationship between the residual rate of the amount of marine organisms and the amount of injected carbon monoxide obtained from a marine life killing experiment is determined. A marine organism attachment prevention device characterized by injecting seawater from a high-pressure carbon monoxide injection device in the organism attachment prevention device.
【請求項4】 海棲生物の死滅実験から、予め得られた
海棲生物量と時間の関係から推定される最適注入時間の
間、前記請求項1の海棲生物付着防止装置における高圧
一酸化炭素注入装置から一酸化炭素を取海水に注入する
ことを特徴とした海棲生物付着防止装置。
4. The high pressure monoxide in the marine organism adhesion preventing apparatus according to claim 1, during an optimum injection time estimated from a relationship between the amount of marine organisms and time obtained in advance from a marine organism killing experiment. A marine organism attachment prevention device characterized by injecting carbon monoxide from a carbon injection device into seawater.
【請求項5】 海棲生物の死滅実験から、予め得られた
海棲生物量と時間の関係から推定される最適注入間隔の
時間間隔を経て、前記請求項1の海棲生物付着防止装置
における高圧一酸化炭素注入装置から一酸化炭素を取海
水に注入することを特徴とした海棲生物付着防止装置。
5. The marine organism adhesion preventing device according to claim 1, wherein after the marine life killing experiment, a time interval of an optimum injection interval estimated from a relationship between a previously obtained amount of marine organisms and time is obtained. A marine organism adhesion prevention device characterized by injecting carbon monoxide from a high-pressure carbon monoxide injection device into seawater.
【請求項6】 前記請求項2における取海水への一酸化
炭素注入装置の取海水を貯えるための単数、または複数
の貯水槽において、水中カメラと水中カメラにて撮影し
た画像を処理した後、海棲生物の数を自動的に数えるカ
ウント機能を有する画像処理計算機と画像処理計算機に
より数えられた海棲生物数と海棲生物しきい値を比較し
てバルブを開閉させるアクチュエータに開閉指示を出す
計算機とバルブを開閉させるアクチュエータとバルブか
らなる取海水貯水槽を有することを特徴とした海棲生物
付着防止装置。
6. An image taken by an underwater camera and an underwater camera in a single or a plurality of storage tanks for storing the intake water of the carbon monoxide injection device into the intake seawater according to claim 2, An image processing computer with a counting function that automatically counts the number of marine organisms, and compares the number of marine organisms counted by the image processing computer with the marine organism threshold and issues an open / close instruction to an actuator that opens and closes a valve. An apparatus for preventing marine organisms from adhering, comprising a seawater storage tank comprising a computer, an actuator for opening and closing a valve, and a valve.
【請求項7】 飽和一酸化炭素水溶液に酸素を注入する
実験から、予め得られた一酸化炭素量、及びpHと酸素
注入量の関係から推定される最適酸素注入量を、前記請
求項1の海棲生物付着防止装置における酸素注入装置か
ら排水に注入することを特徴とした海棲生物付着防止装
置。
7. An optimum oxygen injection amount estimated from the relationship between pH and oxygen injection amount obtained in advance from an experiment of injecting oxygen into a saturated aqueous solution of carbon monoxide. A marine organism attachment prevention device characterized by injecting wastewater from an oxygen injection device in the marine organism attachment prevention device.
JP32502899A 1999-11-16 1999-11-16 Marine living things adhesion prevention device Pending JP2001140234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32502899A JP2001140234A (en) 1999-11-16 1999-11-16 Marine living things adhesion prevention device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32502899A JP2001140234A (en) 1999-11-16 1999-11-16 Marine living things adhesion prevention device

Publications (1)

Publication Number Publication Date
JP2001140234A true JP2001140234A (en) 2001-05-22

Family

ID=18172349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32502899A Pending JP2001140234A (en) 1999-11-16 1999-11-16 Marine living things adhesion prevention device

Country Status (1)

Country Link
JP (1) JP2001140234A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101245171B1 (en) 2011-09-23 2013-03-21 주식회사 아앤시티 Cooling facility with intake area and discharge area
KR101554676B1 (en) 2014-02-14 2015-09-25 주식회사 아앤시티 Cooling facility with indise circulation of recycling having delay discharge structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101245171B1 (en) 2011-09-23 2013-03-21 주식회사 아앤시티 Cooling facility with intake area and discharge area
WO2013042873A1 (en) * 2011-09-23 2013-03-28 주식회사 아앤시티 Plant cooling facility having an intake station and a discharge station
KR101554676B1 (en) 2014-02-14 2015-09-25 주식회사 아앤시티 Cooling facility with indise circulation of recycling having delay discharge structure

Similar Documents

Publication Publication Date Title
JP5295819B2 (en) Sea life adhesion prevention method
JP2007537036A (en) Ballast water system
JP3605128B2 (en) How to prevent marine organisms
JP2005144212A (en) Method and system for controlling adhesion and growth of marine organism
JP4102737B2 (en) Method and system for inhibiting the attachment and growth of marine organisms
JP2001140234A (en) Marine living things adhesion prevention device
JP5704634B2 (en) Method and system for inhibiting the attachment of marine organisms and method and system for reducing the chlorine concentration of water
JP2016209859A (en) Method of treating seawater cooling water
JP7036533B2 (en) Method of suppressing the adhesion of biological deposits
CN203946957U (en) Fully-automatic intelligent chemicals dosing plant
JP4316457B2 (en) Method and system for inhibiting the attachment and growth of marine organisms
CN109747795B (en) Water jet-based antifouling device and antifouling method thereof
JPH01300196A (en) Cleaning of titanium made condenser cooling tube
JPH03143595A (en) Device for preventing hindrance by living thing
CN107399806B (en) It is a kind of to utilize strong brine, the method and system of fresh water clean and maintenance seawater water intake conduit
JP2008173579A (en) Method and apparatus for preventing and exterminating aquatic life
CN116553693A (en) Process evaluation system for preventing and controlling fouling organisms of long-distance seawater pipe gallery
FR2789852B1 (en) PRIMING DEVICE FOR ALL TYPES OF FISHING WITH ALL TYPES OF PRIMERS: AT SEA, LAKE, POND, RIVER OF EDGES OR BOATS
CA3213652A1 (en) Module, system and method for delousing fish
JPH11319853A (en) Method for preventing sticking of marine living bodies and device
JP2020032327A (en) Chlorine enriching injection operation device and method
KR100557968B1 (en) Mussel monitor
KR101635155B1 (en) Seawater suction apparatus
JPH10300389A (en) Device for preventing biological fouling of heat-exchanger
JPS5930019Y2 (en) Device to prevent biofouling on waterway walls