JP4316457B2 - Method and system for inhibiting the attachment and growth of marine organisms - Google Patents

Method and system for inhibiting the attachment and growth of marine organisms Download PDF

Info

Publication number
JP4316457B2
JP4316457B2 JP2004268689A JP2004268689A JP4316457B2 JP 4316457 B2 JP4316457 B2 JP 4316457B2 JP 2004268689 A JP2004268689 A JP 2004268689A JP 2004268689 A JP2004268689 A JP 2004268689A JP 4316457 B2 JP4316457 B2 JP 4316457B2
Authority
JP
Japan
Prior art keywords
drug
concentration
cooling water
seawater
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004268689A
Other languages
Japanese (ja)
Other versions
JP2006084103A (en
Inventor
賢治 徳政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2004268689A priority Critical patent/JP4316457B2/en
Publication of JP2006084103A publication Critical patent/JP2006084103A/en
Application granted granted Critical
Publication of JP4316457B2 publication Critical patent/JP4316457B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、海水を用いて復水器などの装置を冷却するための冷却水系統内において海洋生物の付着及び成長を抑制するための方法、及びシステムに関する。   The present invention relates to a method and system for suppressing the attachment and growth of marine organisms in a cooling water system for cooling a device such as a condenser using seawater.

冷却水として海水を利用する火力発電所においては、海から海水を取り入れて復水器に供給する取水路や、復水器を通った海水を海へ放出するための放水路の内部に貝などの海洋生物が付着し易い。かかる海洋生物の付着量が多くなると、冷却水の流路が塞がれて冷却性能が低下するなどの不具合を招くおそれがある。そこで、従来より、例えば、特許文献1や特許文献2に開示されるように、次亜塩素酸ナトリウム溶液や二酸化塩素等の塩素系薬剤を冷却水の流路に注入することにより、流路において海洋生物の付着及び成長を抑制することが行われている。
特開7−265867号公報 特開11−37666号公報
In thermal power plants that use seawater as cooling water, shells, etc. are placed inside the intake channel that takes seawater from the ocean and supplies it to the condenser, and discharges the seawater that passes through the condenser to the ocean. The marine life is easy to adhere. When the adhesion amount of such marine organisms increases, there is a risk of causing problems such as blocking the cooling water flow path and lowering the cooling performance. Therefore, conventionally, as disclosed in, for example, Patent Document 1 and Patent Document 2, by injecting a chlorine-based chemical such as sodium hypochlorite solution or chlorine dioxide into the flow path of cooling water, Suppression of the attachment and growth of marine organisms has been carried out.
JP-A-7-265867 JP 11-37666 A

上述のように、火力発電所において冷却水として利用された後の海水は海へ放出されるが、環境保全のために、海への放出水に含まれる塩素濃度(残留塩素濃度)は一定の許容値(海に放出することが可能な、海水中に含まれる塩素濃度の協定値)以下であることが要求される。従って、海洋生物を除去するための塩素系薬剤の注入濃度も、上記の要求を満足できるように制限しなければならない。さらに、効率よく海洋生物を除去するためには、一定の塩素濃度を保つことが必要とされる。一方、気温の変化などによって海水の温度が上昇すると、塩素の分解量が増加して残留塩素濃度が小さくなるため、単に一定量の薬剤を注入したのでは、期待通りの除去効果を得ることができない。   As mentioned above, seawater after being used as cooling water in thermal power plants is released to the sea, but for environmental conservation, the chlorine concentration (residual chlorine concentration) contained in the discharged water to the sea is constant. It is required to be less than the allowable value (the agreed value of chlorine concentration in seawater that can be released into the sea). Therefore, the injection concentration of chlorinated chemicals for removing marine organisms must also be limited so that the above requirements can be satisfied. Furthermore, in order to remove marine organisms efficiently, it is necessary to maintain a constant chlorine concentration. On the other hand, when the temperature of seawater rises due to changes in temperature, etc., the amount of chlorine decomposed increases and the residual chlorine concentration decreases, so simply injecting a fixed amount of chemical can achieve the expected removal effect. Can not.

本発明は、上記の点に鑑みてなされたものであり、冷却対象設備を海水により冷却するにあたり、海水温度の変化に応じて塩素注入量を調節し、海へ放出される海水中の塩素濃度を低く抑えつつ、効果的に海洋生物の付着及び成長を抑制することができる方法及びシステムを提供することを目的とする。   The present invention has been made in view of the above points, and in cooling the facility to be cooled with seawater, the chlorine injection amount is adjusted according to the change in seawater temperature, and the chlorine concentration in the seawater released to the sea It is an object of the present invention to provide a method and system capable of effectively suppressing the attachment and growth of marine organisms while keeping the temperature low.

上記の目的を達成するため、請求項1に記載された発明は、冷却水として海から海水を取り入れて冷却対象設備に供給する取水路と前記冷却対象設備を通った後の海水を海へ放出する放水路とを有する冷却水流路内において海洋生物の付着及び成長を抑制する方法であって、
前記取水路に塩素系薬剤を注入するための薬剤注入部を設け、
種々の温度について薬剤濃度の時間変化を表すデータを記憶し、
前記放水路から海中へ冷却水を放出する放出口付近の薬剤濃度が所定の許容値以下となるように、前記放水路の冷却水の温度についての前記記憶したデータと、前記所定の許容値とに基づいて、前記冷却対象設備における薬剤濃度を決定し、
該決定した薬剤濃度と、前記取水路の温度についての前記記憶したデータとに基づいて、前記薬剤注入部における薬剤濃度を決定し、
該決定した薬剤濃度に基づいて前記薬剤注入部による塩素系薬剤の注入量を決定し、
該決定した量の前記塩素系薬剤を前記薬剤注入部により前記取水路に注入することを特徴とする。
To achieve the above object, the invention described in claim 1 includes a waterway preparative be supplied to the cooling target facility incorporating seawater from the sea as cooling water, seawater after passing through the cooling target facility to the sea A method for suppressing adhesion and growth of marine organisms in a cooling water flow path having a discharge water discharge path ,
A drug injection part for injecting a chlorinated drug into the intake channel is provided,
Stores data representing changes in drug concentration over time for various temperatures,
The stored data on the temperature of the cooling water in the water discharge channel, and the predetermined allowable value so that the concentration of the drug near the discharge port for discharging the cooling water from the water discharge channel into the sea is equal to or less than a predetermined allowable value. On the basis of the determination of the drug concentration in the facility to be cooled,
Based on the determined drug concentration and the stored data about the temperature of the intake channel, determine the drug concentration in the drug injection part,
Determining the injection amount of the chlorinated drug by the drug injection unit based on the determined drug concentration;
The determined amount of the chlorinated drug is injected into the intake channel by the drug injection unit .

本発明によれば、塩素系薬剤の注入濃度が海水の温度変化に応じて調節される。このため、海水温度が変化しても常に一定値以上の塩素濃度を保つことができ、海へ放出される海水中の塩素濃度を低く抑えつつ、海洋生物の付着及び成長を効果的に抑制できる。   According to the present invention, the injection concentration of the chlorinated drug is adjusted according to the temperature change of the seawater. For this reason, even if the seawater temperature changes, the chlorine concentration above a certain value can always be maintained, and the adhesion and growth of marine organisms can be effectively suppressed while keeping the chlorine concentration in the seawater released to the sea low. .

また、請求項2に記載された発明は、請求項1に記載の方法において、前記塩素系薬剤として次亜塩素酸ナトリウムを注入することを特徴とする。   The invention described in claim 2 is characterized in that, in the method described in claim 1, sodium hypochlorite is injected as the chlorinated drug.

また、請求項3に記載された発明は、冷却水として海から海水を取り入れて冷却対象設備に供給する取水路と前記冷却対象設備を通った後の海水を海へ放出する放水路とを有する冷却水流路内において海洋生物の付着及び成長を抑制するシステムであって、
前記取水路に塩素系薬剤を注入するための薬剤注入部と、
前記冷却水の温度を検出する温度検出部と、
前記検出した冷却水の温度に応じて前記薬剤注入部により前記取水路に注入する塩素系薬剤の量を決定する薬剤注入量決定部と、
前記決定した量の塩素系薬剤を前記薬剤注入部により注入させる注入制御部と、を備え、
前記薬剤注入量決定部は、種々の温度について薬剤濃度の時間変化を表すデータを記憶した記憶部を有し、前記放水路から海中へ冷却水を放出する放出口付近の薬剤濃度が所定の許容値以下となるように、前記放水路の冷却水の温度についての前記記憶したデータと、前記所定の許容値とに基づいて、前記冷却対象設備における薬剤濃度を決定し、該決定した薬剤濃度と、前記取水路の冷却水流路の温度についての前記記憶したデータとに基づいて、前記薬剤注入部における薬剤濃度を決定し、該決定した薬剤濃度に基づいて前記薬剤注入部による塩素系薬剤の注入量を決定することを特徴とする。
Further, the invention described in claim 3, and waterways preparative be supplied to the cooling target facility incorporating seawater from the sea as cooling water, the spillway and which emits seawater after passing through the cooling target facility to the sea A system for suppressing the adhesion and growth of marine organisms in a cooling water flow path having
A drug injection part for injecting a chlorinated drug into the intake channel ;
A temperature detector for detecting the temperature of the cooling water;
A drug injection amount determining unit that determines an amount of a chlorine-based drug to be injected into the intake channel by the drug injection unit according to the detected temperature of the cooling water;
An injection control unit for injecting the determined amount of chlorinated drug by the drug injection unit,
The drug injection amount determination unit has a storage unit that stores data representing changes in drug concentration over time at various temperatures, and the drug concentration near the discharge port that discharges cooling water from the discharge channel into the sea has a predetermined tolerance. A drug concentration in the facility to be cooled is determined based on the stored data on the temperature of the cooling water in the water discharge channel and the predetermined allowable value so as to be equal to or less than a value, and the determined drug concentration , Determining a drug concentration in the drug injection unit based on the stored data on the temperature of the cooling water flow path of the intake channel, and injecting a chlorine-based drug by the drug injection unit based on the determined drug concentration It is characterized by determining the quantity .

本発明によれば、冷却対象設備を海水により冷却するにあたり、海水温度の変化に応じて塩素注入量を調節し、海へ放出される海水中の塩素濃度を低く抑えつつ、効果的に海洋生物の付着及び成長を抑制する方法及びシステムを提供することができる。   According to the present invention, when cooling the facility to be cooled with seawater, the chlorine injection amount is adjusted according to the change in seawater temperature, and the concentration of chlorine in the seawater released to the sea is kept low, while effectively And a method and system for suppressing the adhesion and growth of the substrate.

図1は、本発明の一実施形態に係わる火力発電所10の概略平面図である。同図に示すように、火力発電所10は海2に臨む敷地に建設されている。火力発電所10には、例えば、燃料貯蔵設備12、LNGタンク14、発電設備16等の各種設備が設けられている。本実施形態では、発電設備16に設けられた復水器18を海水で冷却するものとしており、海2から海水を取り込んで復水器18へ供給するための取水路20と、復水器18を通った海水を海2へ放出するための放水路22とが設置されている。海水は取水路20の先端の取水口24から取り込まれ、取水路20を流れて復水器18を通過し、放水路22を流れてその先端の放水口26から海2へ放出される。なお、取水路20及び放水路22が本発明の「冷却水流路」に相当する。   FIG. 1 is a schematic plan view of a thermal power plant 10 according to an embodiment of the present invention. As shown in the figure, the thermal power plant 10 is constructed on a site facing the sea 2. The thermal power plant 10 is provided with various facilities such as a fuel storage facility 12, an LNG tank 14, and a power generation facility 16, for example. In this embodiment, the condenser 18 provided in the power generation facility 16 is cooled with seawater. The intake 20 for taking seawater from the sea 2 and supplying it to the condenser 18, and the condenser 18. A water discharge channel 22 for discharging the seawater that has passed through to the sea 2 is installed. Seawater is taken in from the water intake 24 at the tip of the intake channel 20, flows through the water intake channel 20, passes through the condenser 18, flows through the water discharge channel 22, and is discharged from the water discharge port 26 at the tip thereof to the sea 2. The intake channel 20 and the discharge channel 22 correspond to the “cooling water channel” of the present invention.

上記のように、取水路20及び放水路22には海水が流れるため、流路内には貝等の海洋生物が付着・成育しやすい。そして、流路内に多量の海洋生物が付着すると、流路が塞がれて十分な流量が得られなくなる等のために冷却性能が低下するおそれがある。特に、取水路20については、低い水温の海水を取り込めるように、取水口24が陸地からかなり離れた沖合に設けられるため、取水路20は非常に長くなって、海洋生物の付着の影響を受けやすい。   As described above, since seawater flows through the intake channel 20 and the discharge channel 22, marine organisms such as shellfish are easily attached and grown in the channel. If a large amount of marine organisms adhere to the flow path, the flow performance may be reduced because the flow path is blocked and a sufficient flow rate cannot be obtained. In particular, with regard to the intake channel 20, since the intake 24 is provided offshore so as to be able to take in seawater having a low water temperature, the intake channel 20 becomes very long and is affected by the attachment of marine organisms. Cheap.

そこで、本実施形態では、取水路20の取水口24近傍の地点で、取水路20に、塩素系薬剤として次亜塩素酸ナトリウム溶液を注入することにより、取水路20や放水路22内壁面における貝などの海洋生物の付着や成長を抑制することとしている。ただし、次亜塩素酸ナトリウムに限らず、例えば、二酸化塩素などの他の塩素系薬剤を用いてもよい。   Therefore, in this embodiment, by injecting a sodium hypochlorite solution as a chlorinated chemical into the intake channel 20 at a point near the intake port 24 of the intake channel 20, the inner wall surface of the intake channel 20 or the discharge channel 22. Suppresses the adhesion and growth of marine organisms such as shellfish. However, it is not limited to sodium hypochlorite, and other chlorinated chemicals such as chlorine dioxide may be used.

図2は、取水路20及び放水路22からなる冷却系統28の模式図である。同図に示す如く、復水器18と取水路20との接続部には、海水ポンプ30が設けられており、この海水ポンプ30により海水が取水口24から取水路20へ吸入される。また、取水路20の取水口24の近傍には、薬剤注入部32が設けられている。この薬剤注入部32は、取水路20の流れに沿って複数箇所に設けられてもよい。また、放水路22の放水口26の近傍には、海2へ放出される海水中の残留塩素濃度を検出する残留塩素濃度計34が設けられている。残留塩素濃度計34による検出信号は無線又は有線で陸地上に設けられた監視装置へ送られる。   FIG. 2 is a schematic diagram of a cooling system 28 including a water intake channel 20 and a water discharge channel 22. As shown in the figure, a seawater pump 30 is provided at a connection portion between the condenser 18 and the intake channel 20, and seawater is drawn into the intake channel 20 from the intake port 24 by the seawater pump 30. In addition, a drug injection part 32 is provided in the vicinity of the water intake 24 of the water intake channel 20. The drug injection part 32 may be provided at a plurality of locations along the flow of the intake channel 20. Further, a residual chlorine concentration meter 34 for detecting the residual chlorine concentration in the seawater discharged to the sea 2 is provided in the vicinity of the water outlet 26 of the water discharge channel 22. The detection signal from the residual chlorine concentration meter 34 is sent wirelessly or by wire to a monitoring device provided on land.

図3は、薬剤注入部32の詳細構成を示す。同図に示す如く、薬剤注入部32は、海水温度を測定する温度検出部45、最適な塩素注入濃度を算出するための薬剤注入量決定部43、データを記憶する記憶部47、海水を電気分解して注入管40に次亜塩素酸ナトリウム溶液を供給する薬剤供給装置42、塩素注入濃度を制御する注入制御部46、注入管40に設けられたバルブ44、から構成されている。このバルブ44の開閉は、注入制御部46により制御される構成としてもよい。また、注入制御部46は、薬剤注入量決定部43が決定した薬剤注入濃度を参照して、薬剤供給装置42の電流値を制御することにより塩素注入濃度を制御している。   FIG. 3 shows a detailed configuration of the drug injection unit 32. As shown in the figure, the drug injection unit 32 includes a temperature detection unit 45 that measures seawater temperature, a drug injection amount determination unit 43 that calculates an optimal chlorine injection concentration, a storage unit 47 that stores data, A chemical supply device 42 that decomposes and supplies a sodium hypochlorite solution to the injection pipe 40, an injection control unit 46 that controls the chlorine injection concentration, and a valve 44 provided in the injection pipe 40 are configured. The opening / closing of the valve 44 may be controlled by the injection control unit 46. Further, the injection control unit 46 controls the chlorine injection concentration by controlling the current value of the drug supply device 42 with reference to the drug injection concentration determined by the drug injection amount determination unit 43.

図3に示す例では、注入管40の先端が海水の下流側へ向けて屈曲され、その先端に注入口41が設けられている。なお、図4に示すように、注入管40の先端部の断面が注入口41へむけて次第に拡がるように構成してもよい。また、図5に示すように、注入管40を屈曲させずに、その下流側側面に設けた穴を注入口41としてもよい。このように、注入口41として様々な構成が考えられる。   In the example shown in FIG. 3, the tip of the injection tube 40 is bent toward the downstream side of the seawater, and an injection port 41 is provided at the tip. In addition, as shown in FIG. 4, you may comprise so that the cross section of the front-end | tip part of the injection tube 40 may spread toward the injection port 41 gradually. Further, as shown in FIG. 5, a hole provided on the downstream side surface may be used as the injection port 41 without bending the injection tube 40. Thus, various structures can be considered as the injection port 41.

なお、注入管40は、取水路20の断面の両側面及び上面に沿って配置されるものとする。このように、取水路20の底面に注水管40を配置しないのは、取水路20の底部には汚泥が堆積するので、これを避けた位置で次亜塩素酸ナトリウム溶液を注入するためである。また、注入管40は複数本設けてもよく、薬剤供給装置42及び注入制御部46は、薬剤注入部32に共通に備えられる。また、薬剤注入部32の個数は特に制限はなく、取水路20の流れに沿って複数の薬剤注入部32が設けられてもよい。   In addition, the injection pipe 40 shall be arrange | positioned along the both sides | surfaces and upper surface of the cross section of the intake channel 20. FIG. The reason why the water injection pipe 40 is not disposed on the bottom surface of the intake channel 20 is that the sludge accumulates on the bottom of the intake channel 20, so that the sodium hypochlorite solution is injected at a position avoiding this. . A plurality of injection tubes 40 may be provided, and the drug supply device 42 and the injection control unit 46 are provided in common in the drug injection unit 32. Further, the number of the drug injection parts 32 is not particularly limited, and a plurality of drug injection parts 32 may be provided along the flow of the intake channel 20.

図6は、塩素注入濃度の異なる海水について時間経過に伴う残留塩素濃度の変化の一例を示した図である。また、図7は、温度の異なる海水について時間の経過に伴う残留塩素濃度の変化の一例を示す図である。これらの図面に示すように、海水中の残留塩素濃度は、時間の経過と共に塩素が分解することで次第に低下する。   FIG. 6 is a diagram showing an example of changes in residual chlorine concentration over time for seawater with different chlorine injection concentrations. Moreover, FIG. 7 is a figure which shows an example of the change of residual chlorine concentration with progress of time about the seawater from which temperature differs. As shown in these drawings, the residual chlorine concentration in seawater gradually decreases as chlorine decomposes over time.

記憶部47は、各温度及び塩素の各初期濃度について、図6及び図7に示すような残留塩素濃度の時間変化曲線を表すデータを記憶している。そして、薬剤濃度決定部43は、これらのデータと取水路20及び、復水路18を流れる海水温度とを参照して、以下に説明するように、放水口26付近において協定値以下となるような塩素注入濃度を決定する。上述のように、塩素が注入された海水中の残留塩素濃度は、海水温度に応じた時間変化を示す。そして海水に塩素系薬剤が注入された後、放水口26から海中へ放出されるまでの時間は定まっている。したがって、取水路20及び放水路22の海水温度が分かれば、記憶部47に記憶されたデータを参照して、放水口26での残留塩素濃度を協定値以下とするような塩素系薬剤の注入量を決定することができる。   The storage unit 47 stores data representing a time variation curve of the residual chlorine concentration as shown in FIGS. 6 and 7 for each temperature and each initial concentration of chlorine. And the chemical | medical agent density | concentration determination part 43 refers to these data, the intake channel 20, and the seawater temperature which flows through the condensate channel 18, so that it may become below an agreement value near the water discharge port 26 so that it may demonstrate below. Determine the chlorine injection concentration. As described above, the residual chlorine concentration in the seawater into which chlorine has been injected shows a change over time according to the seawater temperature. After the chlorinated chemical is injected into the seawater, the time until it is released from the water outlet 26 into the sea is fixed. Therefore, if the seawater temperatures of the intake channel 20 and the discharge channel 22 are known, the chlorine-based chemical injection that makes the residual chlorine concentration at the discharge port 26 equal to or less than the agreed value with reference to the data stored in the storage unit 47. The amount can be determined.

図8は、取水口24から放水口26までの海水温度の変化の様子を簡略化して示した図である。同図に示すように、海水温度は復水器18との熱交換によって温度が上昇するため、取水路20の海水温度をT(℃)、温度上昇幅をα(℃)とすると、放水路22の海水温度は(T+α)(℃)と表される。この温度上昇幅α(℃)は、例えば、α=+7(℃)である。放水路22の海水温度は、このように取水口24付近の温度から求めることができるが、直接測定してもよい。 FIG. 8 is a simplified diagram showing the change in seawater temperature from the water intake 24 to the water outlet 26. As shown in the figure, since the seawater temperature rises due to heat exchange with the condenser 18, if the seawater temperature in the intake channel 20 is T 0 (° C) and the temperature rise width is α (° C), the seawater temperature is released. The seawater temperature of the water channel 22 is expressed as (T 0 + α) (° C.). The temperature increase width α (° C.) is, for example, α = + 7 (° C.). The seawater temperature in the discharge channel 22 can be obtained from the temperature in the vicinity of the intake port 24 as described above, but may be directly measured.

このようにして求められた取水路20及び放水路22の海水温度から、放水口26での残留塩素濃度を協定値以下とするような、薬剤注入部による塩素系薬剤の注入量を決定する。   Based on the seawater temperatures of the intake channel 20 and the discharge channel 22 determined in this manner, the injection amount of the chlorinated drug by the drug injection unit is determined so that the residual chlorine concentration at the discharge port 26 is not more than the agreed value.

図9は塩素注入濃度の決定手順を説明するための図である。同図に示すように、海水温度が復水器18の前後で上昇するため、残留塩素濃度の減少速度は、復水器18を境に大きくなっている。このような場合、復水器18前後の海水の温度変化を考慮して塩素系薬剤の注入量を決定する必要がある。   FIG. 9 is a diagram for explaining the procedure for determining the chlorine injection concentration. As shown in the figure, since the seawater temperature rises before and after the condenser 18, the rate of decrease in the residual chlorine concentration increases with the condenser 18 as a boundary. In such a case, it is necessary to determine the injection amount of the chlorinated chemical in consideration of the temperature change of the seawater around the condenser 18.

塩素系薬剤の注入量は、例えば、協定値以下となるように定めた放水口26付近の塩素濃度から復水器18付近の塩素濃度を求め、さらに、復水器18付近でこの塩素濃度となるような塩素注入濃度を求めることにより決定する。より具体的には、復水器18付近の塩素濃度は、放水口26付近の海水温度(T+α)と、塩素系薬剤が注入された海水が復水器18から放水口26へ到達するのに要する時間(t)とが分かっているため、記憶部47を参照して、海水が復水器18を通過してから時間t経過したときに、残留塩素濃度が協定値以下となるような海水温度(T+α)についての曲線を見出し、その曲線の初期濃度を復水器18における塩素濃度として決定する。塩素注入濃度についても同様に、取水口24付近の海水温度(T)と、塩素系薬剤が注入された海水が復水器18から取水口24へ到達するのに要する時間(t)とが分かっているので、塩素注入から時間t経過したときに、復水器18付近の残留塩素濃度が、先に求めた復水器18付近の塩素濃度と等しくなるような海水温度Tについての曲線を見出し、その曲線の初期濃度を薬剤注入部32における塩素注入濃度として決定する。そして、この塩素注入濃度に基づいて、薬剤注入部32からの塩素系薬剤の注入量を決定する。 The amount of chlorinated chemical injected is, for example, the chlorine concentration in the vicinity of the condenser 18 is obtained from the chlorine concentration in the vicinity of the outlet 26 determined to be equal to or less than the agreed value, and this chlorine concentration in the vicinity of the condenser 18 is calculated. This is determined by determining the chlorine injection concentration. More specifically, the chlorine concentration in the vicinity of the condenser 18 is the seawater temperature (T 0 + α) in the vicinity of the outlet 26 and the seawater into which the chlorine-based chemical has been injected reaches the outlet 26 from the condenser 18. since the known time required for the (t 0) is a refers to the storage unit 47, when the sea water is time t 0 has elapsed since passing through the condenser 18, the residual chlorine concentration less agreement value A curve for the seawater temperature (T 0 + α) is found, and the initial concentration of the curve is determined as the chlorine concentration in the condenser 18. Similarly, regarding the chlorine injection concentration, the seawater temperature (T 0 ) near the intake port 24 and the time (t 1 ) required for the seawater into which the chlorine-based chemical has been injected to reach the intake port 24 from the condenser 18 Since the residual chlorine concentration near the condenser 18 becomes equal to the previously obtained chlorine concentration near the condenser 18 when time t 1 has elapsed since chlorine injection, the seawater temperature T 0 And the initial concentration of the curve is determined as the chlorine injection concentration in the drug injection unit 32. Then, based on the chlorine injection concentration, the injection amount of the chlorine-based drug from the drug injection unit 32 is determined.

また、本実施形態では、復水器18を境に温度条件の異なる残留塩素濃度の時間変化のデータを用いて塩素系薬剤の注入量を決定しているが、あらかじめ復水器18における温度変化を考慮したデータを記憶部47に記憶しておき、このデータを用いて薬剤注入量を決定してもよい。   Further, in this embodiment, the injection amount of the chlorine-based chemical is determined by using the data of the temporal change of the residual chlorine concentration having different temperature conditions with the condenser 18 as a boundary, but the temperature change in the condenser 18 is determined in advance. May be stored in the storage unit 47, and the drug injection amount may be determined using this data.

また、上記実施形態では、火力発電所の復水器を冷却対象設備として冷却するものとしたが、本発明は復水器に限らず、海水を用いて各種設備を冷却する場合に広く適用が可能である。   In the above embodiment, the condenser of the thermal power plant is cooled as the equipment to be cooled. However, the present invention is not limited to the condenser and is widely applied when cooling various equipment using seawater. Is possible.

本発明の一実施形態に係わる火力発電所の概略平面図である。1 is a schematic plan view of a thermal power plant according to an embodiment of the present invention. 取水路、放水路からなる冷却水系統を模式的に示す図である。It is a figure which shows typically the cooling water system | strain which consists of a water intake channel and a water discharge channel. 薬剤注入部の詳細構成を示す図である。It is a figure which shows the detailed structure of a chemical | medical agent injection | pouring part. 注入管の注入口の構成例を示す図である。It is a figure which shows the structural example of the injection port of an injection tube. 注入管の注入口の別の構成例を示す図である。It is a figure which shows another structural example of the injection inlet of an injection tube. 各注入濃度における次亜塩素酸ナトリウム溶液の残留塩素濃度の時間関係に伴う変化の様子を示した図の一例である。It is an example of the figure which showed the mode of the change accompanying the time relationship of the residual chlorine concentration of the sodium hypochlorite solution in each injection density | concentration. 各海水温度における次亜塩素酸ナトリウム溶液の残留塩素濃度の時間関係に伴う変化の様子を示した図の一例である。It is an example of the figure which showed the mode of the change accompanying the temporal relationship of the residual chlorine concentration of the sodium hypochlorite solution in each seawater temperature. 取水口から放水口までの海水温度の変化の様子を簡略化して示した図である。It is the figure which simplified and showed the mode of the change of the seawater temperature from a water intake to a water discharge port. 取水口から放水口までの残留塩素濃度と分解時間との関係を簡略化して示す図である。It is a figure which simplifies and shows the relationship between the residual chlorine concentration from a water intake to a water discharge port, and decomposition | disassembly time.

符号の説明Explanation of symbols

2 海
10 火力発電所 12 燃料貯蔵設備
14 LNGタンク 16 発電設備
18 復水器 20 取水路
22 放水路 24 取水口
26 放水口 28 冷却水系統
30 海水ポンプ 32 薬剤注入部
34 残留塩素濃度計 40 注入管
41 注入口 42 薬剤供給装置
43 薬剤注入量決定部 44 バルブ
45 温度検出部 46 注入制御部
47 記憶部
2 Sea 10 Thermal Power Plant 12 Fuel Storage Facility 14 LNG Tank 16 Power Generation Facility 18 Condenser 20 Intake Channel 22 Discharge Channel 24 Intake 26 Outlet 28 Cooling Water System 30 Seawater Pump 32 Drug Injection Unit 34 Residual Chlorine Concentration Meter 40 Injection Pipe 41 Inlet 42 Drug supply device 43 Drug injection amount determination unit 44 Valve 45 Temperature detection unit 46 Injection control unit 47 Storage unit

Claims (3)

冷却水として海から海水を取り入れて冷却対象設備に供給する取水路と前記冷却対象設備を通った後の海水を海へ放出する放水路とを有する冷却水流路内において海洋生物の付着及び成長を抑制する方法であって、
前記取水路に塩素系薬剤を注入するための薬剤注入部を設け、
種々の温度について薬剤濃度の時間変化を表すデータを記憶し、
前記放水路から海中へ冷却水を放出する放出口付近の薬剤濃度が所定の許容値以下となるように、前記放水路の冷却水の温度についての前記記憶したデータと、前記所定の許容値とに基づいて、前記冷却対象設備における薬剤濃度を決定し、
該決定した薬剤濃度と、前記取水路の温度についての前記記憶したデータとに基づいて、前記薬剤注入部における薬剤濃度を決定し、
該決定した薬剤濃度に基づいて前記薬剤注入部による塩素系薬剤の注入量を決定し、
該決定した量の前記塩素系薬剤を前記薬剤注入部により前記取水路に注入することを特徴とする方法。
And waterways preparative be supplied to the cooling target facility incorporating seawater from the sea as cooling water, the cooling to target release seawater after passing through the equipment to the sea spillway and attachment and growth of marine organisms in the cooling water channel having a A method of suppressing
A drug injection part for injecting a chlorinated drug into the intake channel is provided,
Stores data representing changes in drug concentration over time for various temperatures,
The stored data on the temperature of the cooling water in the water discharge channel, and the predetermined allowable value so that the concentration of the drug near the discharge port for discharging the cooling water from the water discharge channel into the sea is equal to or less than a predetermined allowable value. On the basis of the determination of the drug concentration in the facility to be cooled,
Based on the determined drug concentration and the stored data about the temperature of the intake channel, determine the drug concentration in the drug injection part,
Determining the injection amount of the chlorinated drug by the drug injection unit based on the determined drug concentration;
A method of injecting the determined amount of the chlorinated drug into the intake channel by the drug injection unit .
前記塩素系薬剤として次亜塩素酸ナトリウムを注入することを特徴とする請求項1に記載の方法。   The method according to claim 1, wherein sodium hypochlorite is injected as the chlorinated drug. 冷却水として海から海水を取り入れて冷却対象設備に供給する取水路と前記冷却対象設備を通った後の海水を海へ放出する放水路とを有する冷却水流路内において海洋生物の付着及び成長を抑制するシステムであって、
前記取水路に塩素系薬剤を注入するための薬剤注入部と、
前記冷却水の温度を検出する温度検出部と、
前記検出した冷却水の温度に応じて前記薬剤注入部により前記取水路に注入する塩素系薬剤の量を決定する薬剤注入量決定部と、
前記決定した量の塩素系薬剤を前記薬剤注入部により注入させる注入制御部と、を備え、
前記薬剤注入量決定部は、種々の温度について薬剤濃度の時間変化を表すデータを記憶した記憶部を有し、前記放水路から海中へ冷却水を放出する放出口付近の薬剤濃度が所定の許容値以下となるように、前記放水路の冷却水の温度についての前記記憶したデータと、前記所定の許容値とに基づいて、前記冷却対象設備における薬剤濃度を決定し、該決定した薬剤濃度と、前記取水路の冷却水流路の温度についての前記記憶したデータとに基づいて、前記薬剤注入部における薬剤濃度を決定し、該決定した薬剤濃度に基づいて前記薬剤注入部による塩素系薬剤の注入量を決定することを特徴とするシステム。
And waterways preparative be supplied to the cooling target facility incorporating seawater from the sea as cooling water, the cooling to target release seawater after passing through the equipment to the sea spillway and attachment and growth of marine organisms in the cooling water channel having a A system for suppressing
A drug injection part for injecting a chlorinated drug into the intake channel ;
A temperature detector for detecting the temperature of the cooling water;
A drug injection amount determining unit that determines an amount of a chlorine-based drug to be injected into the intake channel by the drug injection unit according to the detected temperature of the cooling water;
An injection control unit for injecting the determined amount of chlorinated drug by the drug injection unit,
The drug injection amount determination unit has a storage unit that stores data representing changes in drug concentration over time at various temperatures, and the drug concentration near the discharge port that discharges cooling water from the discharge channel into the sea has a predetermined tolerance. A drug concentration in the facility to be cooled is determined based on the stored data on the temperature of the cooling water in the water discharge channel and the predetermined allowable value so as to be equal to or less than a value, and the determined drug concentration , Determining a drug concentration in the drug injection unit based on the stored data on the temperature of the cooling water flow path of the intake channel, and injecting a chlorine-based drug by the drug injection unit based on the determined drug concentration A system characterized by determining the quantity .
JP2004268689A 2004-09-15 2004-09-15 Method and system for inhibiting the attachment and growth of marine organisms Active JP4316457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004268689A JP4316457B2 (en) 2004-09-15 2004-09-15 Method and system for inhibiting the attachment and growth of marine organisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004268689A JP4316457B2 (en) 2004-09-15 2004-09-15 Method and system for inhibiting the attachment and growth of marine organisms

Publications (2)

Publication Number Publication Date
JP2006084103A JP2006084103A (en) 2006-03-30
JP4316457B2 true JP4316457B2 (en) 2009-08-19

Family

ID=36162749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004268689A Active JP4316457B2 (en) 2004-09-15 2004-09-15 Method and system for inhibiting the attachment and growth of marine organisms

Country Status (1)

Country Link
JP (1) JP4316457B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5159223B2 (en) * 2007-09-20 2013-03-06 中国電力株式会社 Biological adhesion prevention device for seawater level measuring device
WO2009077213A1 (en) * 2007-12-19 2009-06-25 Infracor Gmbh Method for the treatment of water with chorine dioxide
JP7083452B2 (en) * 2018-08-28 2022-06-13 中国電力株式会社 Chlorine-enhanced injection operation equipment and method

Also Published As

Publication number Publication date
JP2006084103A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
US7234407B1 (en) Active anti-fouling systems and processes for marine vessels
JP2011069572A (en) Hot water supply system
NO336067B1 (en) Method of protecting hydrocarbon lines
JP2010043060A (en) Method for preventing adhesion of marine organism
JP2005144212A (en) Method and system for controlling adhesion and growth of marine organism
ES2928141T3 (en) Method to monitor and control cooling water
JP4102737B2 (en) Method and system for inhibiting the attachment and growth of marine organisms
JP4316457B2 (en) Method and system for inhibiting the attachment and growth of marine organisms
JP4102736B2 (en) Method and system for inhibiting the attachment and growth of marine organisms
JP3257450B2 (en) Chemical injection control method and chemical injection control device for hydrogen sulfide remover
KR20120003025U (en) System for preventing freesing of anchor and ship having the same
JP6318444B2 (en) Seawater electrolysis system and electrolyte injection method
JP5704634B2 (en) Method and system for inhibiting the attachment of marine organisms and method and system for reducing the chlorine concentration of water
JP4390669B2 (en) Method and system for inhibiting the attachment and growth of marine organisms
KR102418132B1 (en) Apparatus for preventing freezing of ballast water
KR101621135B1 (en) Spraying equipment for elimination of green algae and red tide
KR100908201B1 (en) Sludge adhesion prevention and freezing prevention device inside ship's water supply pipe
JP2005337561A (en) Scrubber combined cooling tower
JP7083452B2 (en) Chlorine-enhanced injection operation equipment and method
JP2016074341A (en) Container unit, and ballast water treatment system
JP5632786B2 (en) Waste heat recovery boiler
JP5705761B2 (en) Seawater electrolysis chlorine injection system
KR101680632B1 (en) Apparatus for Preventing Growth of Marine Organisms
JP2006084105A (en) Oceanic life sticking quantity estimating method and system
KR101836897B1 (en) Marine growth protection device for ship

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090520

R150 Certificate of patent or registration of utility model

Ref document number: 4316457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250