JP4102737B2 - Method and system for inhibiting the attachment and growth of marine organisms - Google Patents

Method and system for inhibiting the attachment and growth of marine organisms Download PDF

Info

Publication number
JP4102737B2
JP4102737B2 JP2003380968A JP2003380968A JP4102737B2 JP 4102737 B2 JP4102737 B2 JP 4102737B2 JP 2003380968 A JP2003380968 A JP 2003380968A JP 2003380968 A JP2003380968 A JP 2003380968A JP 4102737 B2 JP4102737 B2 JP 4102737B2
Authority
JP
Japan
Prior art keywords
cooling water
flow path
seawater
water flow
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003380968A
Other languages
Japanese (ja)
Other versions
JP2005144214A (en
Inventor
賢治 徳政
洋祐 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2003380968A priority Critical patent/JP4102737B2/en
Publication of JP2005144214A publication Critical patent/JP2005144214A/en
Application granted granted Critical
Publication of JP4102737B2 publication Critical patent/JP4102737B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Catching Or Destruction (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、火力発電所の復水器等の冷却対象設備に冷却水として海水を供給する冷却水流路内において海洋生物の付着及び成長を抑制するための方法及びシステムに関する。   The present invention relates to a method and a system for suppressing adhesion and growth of marine organisms in a cooling water flow path for supplying seawater as cooling water to a cooling target facility such as a condenser of a thermal power plant.

冷却水として海水を利用する火力発電所においては、海から海水を取り入れて復水器に供給する取水路や、復水器を通った海水を海へ放出するための放水路の内部に貝等の海洋生物が付着し易い。かかる海洋生物の付着量が多くなると、冷却水の流路が塞がれて冷却性能が低下するなどの不具合を招くおそれがある。そこで、従来より、例えば、特許文献1や特許文献2に開示されるように、次亜塩素酸ナトリウム溶液や二酸化塩素等の塩素系薬剤を冷却水の流路に注入することにより、流路において海洋生物の付着及び成長を抑制ことが行われている。
特開平7−265867号公報 特開平11−37666号公報
In thermal power plants that use seawater as cooling water, shells, etc. are placed inside the intake channel that takes seawater from the ocean and supplies it to the condenser, and the discharge channel that releases the seawater that has passed through the condenser to the ocean. The marine life is easy to adhere. When the adhesion amount of such marine organisms increases, there is a risk of causing problems such as blocking the cooling water flow path and lowering the cooling performance. Therefore, conventionally, as disclosed in, for example, Patent Document 1 and Patent Document 2, by injecting a chlorine-based chemical such as sodium hypochlorite solution or chlorine dioxide into the flow path of cooling water, Suppression of the attachment and growth of marine organisms has been carried out.
JP-A-7-265867 Japanese Patent Laid-Open No. 11-37666

上述のように、火力発電所において冷却水として利用された後の海水は海へ放出されるが、環境保全のために、海への放出水に含まれる塩素濃度(残留塩素濃度)は一定の協定値以下であることが要求される。したがって、海洋生物を除去するための塩素系薬剤の注入量も、上記の要求を満足できるように制限しなければならず、この制限の範囲内で十分な除去効果を得ることは容易でない。   As mentioned above, seawater after being used as cooling water in thermal power plants is released to the sea, but for environmental conservation, the chlorine concentration (residual chlorine concentration) contained in the discharged water to the sea is constant. It is required to be below the agreed value. Therefore, the injection amount of the chlorinated chemical for removing marine organisms must be limited so as to satisfy the above requirements, and it is not easy to obtain a sufficient removal effect within the limits.

本発明は上記の点に鑑みてなされたものであり、冷却対象設備を海水により冷却するにあたり、冷却水流路内において海洋生物の付着及び成長を塩素系薬剤で効果的に抑制しつつ、海へ放出される海水中の塩素濃度を低く抑えることができるようにすることを目的とする。   The present invention has been made in view of the above points, and when cooling a facility to be cooled with seawater, the adhesion and growth of marine organisms are effectively suppressed with a chlorine-based chemical in the cooling water flow path, while entering the sea. The purpose is to make it possible to keep the chlorine concentration in the released seawater low.

上記の目的を達成するため、請求項1に記載された発明は、冷却水として海から海水を取り入れて冷却対象設備に供給し、この冷却対象設備を通った後の海水を海へ放出するための冷却水流路内において海洋生物の付着及び成長を抑制する方法であって、
前記冷却水流路の所定位置の断面壁面に沿って、塩素系薬剤を注入するための複数の薬剤注入部を設け、それら複数の薬剤注入部の中から順次切り替えて選択した薬剤注入部により前記冷却水流路内へ塩素系薬剤を注入することを特徴とする。
In order to achieve the above object, the invention described in claim 1 is for taking seawater from the sea as cooling water and supplying it to the facility to be cooled, and discharging the seawater after passing through the facility to be cooled to the sea. A method for suppressing the attachment and growth of marine organisms in the cooling water flow path of
A plurality of drug injection parts for injecting a chlorinated drug are provided along a cross-sectional wall surface at a predetermined position of the cooling water flow path, and the cooling is performed by the drug injection part selected by sequentially switching among the plurality of drug injection parts. A chlorinated chemical is injected into the water flow path.

本発明によれば、冷却水流路の所定位置の断面壁面に沿って複数の薬剤注入部を設け、それら薬剤注入部の中から順次切り替えて選択した薬剤注入部により、冷却水流路内へ塩素系薬剤を注入する。このため、薬剤注入位置の近傍では残留塩素濃度が高くなって、壁面における海洋生物の付着及び成長を効果的に抑制できる。また、塩素系薬剤を注入する薬剤注入部は順次切り替えられるので、流路の壁面全体に亘って海洋生物の付着及び成長を抑制することができる。このように、本発明によれば、冷却水流路内で局所的に高い残留塩素濃度を実現できるので、海へ放出される海水の残留塩素濃度を低く抑えながら、冷却水流路内において貝等の海洋生物の付着及び成長を効果的に抑制することができる。   According to the present invention, a plurality of drug injection portions are provided along a cross-sectional wall surface at a predetermined position of the cooling water flow path, and the chlorine injection into the cooling water flow path is performed by the drug injection portions selected by sequentially switching among the drug injection portions. Inject drugs. For this reason, the residual chlorine concentration becomes high in the vicinity of the drug injection position, and the adhesion and growth of marine organisms on the wall surface can be effectively suppressed. Moreover, since the chemical | medical agent injection | pouring part which inject | pours a chlorine type | system | group chemical | medical agent is switched sequentially, adhesion and growth of a marine organism can be suppressed over the whole wall surface of a flow path. As described above, according to the present invention, since a high residual chlorine concentration can be realized locally in the cooling water flow path, it is possible to reduce the residual chlorine concentration of seawater discharged to the sea while keeping the concentration of the shells and the like in the cooling water flow path. The adhesion and growth of marine organisms can be effectively suppressed.

また、請求項2に記載された発明は、請求項1記載の方法において、前記塩素系薬剤として次亜塩素酸ナトリウムを注入することを特徴とする。   The invention described in claim 2 is characterized in that, in the method according to claim 1, sodium hypochlorite is injected as the chlorinated drug.

また、請求項3に記載された発明は、請求項1又は2記載の方法において、前記所定位置は、前記冷却水流路に海水を取り込む取水口近傍の位置であることを特徴とする。   According to a third aspect of the present invention, in the method according to the first or second aspect, the predetermined position is a position in the vicinity of a water intake port for taking seawater into the cooling water flow path.

また、請求項4に記載された発明は、冷却水として海から海水を取り入れて冷却対象設備に供給し、この冷却対象設備を通った後の海水を海へ放出するための冷却水流路内に付着した海洋生物を除去するシステムであって、
前記冷却水流路の所定位置の断面壁面に沿って設けられた、塩素系薬剤を注入するための複数の薬剤注入部と、
前記複数の薬剤注入部の中から順次切り替えて選択した薬剤注入部により前記冷却水流路内へ塩素系薬剤を注入させる制御手段と、を備えることを特徴とする。
In the invention described in claim 4, seawater is taken from the sea as cooling water and supplied to the equipment to be cooled, and the seawater after passing through the equipment to be cooled is discharged into the cooling water flow path for discharging the seawater to the sea. A system for removing attached marine life,
A plurality of drug injection parts for injecting chlorine-based drugs provided along the cross-sectional wall surface at a predetermined position of the cooling water flow path,
Control means for injecting a chlorine-based medicine into the cooling water flow path by a medicine injection section selected by switching sequentially from the plurality of medicine injection sections.

本発明によれば、冷却対象設備を海水により冷却するにあたり、冷却水流路内において海洋生物の付着及び成長を塩素系薬剤で効果的に抑制しつつ、海へ放出される海水中の塩素濃度を低く抑えることができる。   According to the present invention, when cooling the facility to be cooled with seawater, the chlorine concentration in the seawater released to the sea can be reduced while effectively suppressing the adhesion and growth of marine organisms with the chlorine-based chemical in the cooling water flow path. It can be kept low.

図1は、本発明の一実施形態に係わる火力発電所10の概略平面図である。同図に示す如く、火力発電所10は海2に臨む敷地に建設されている。火力発電所10には、燃料貯蔵設備12、LNGタンク14、発電設備16等の各種設備が設けられている。本実施形態では、発電設備16に設けられた復水器18を海水で冷却するものとしており、海2から海水を取り込んで復水器18へ供給するための取水路20と、復水器18を通った海水を海2へ放出するための放水路22とが設置されている。海水は取水路20の先端の取水口24から取り込まれ、取水路20を流れて復水器18を通過し、放水路22を流れてその先端の放水口26から海2へ放出される。なお、取水路20及び放水路22が本発明の「冷却水流路」に相当する。   FIG. 1 is a schematic plan view of a thermal power plant 10 according to an embodiment of the present invention. As shown in the figure, the thermal power plant 10 is constructed on a site facing the sea 2. The thermal power plant 10 is provided with various facilities such as a fuel storage facility 12, an LNG tank 14, and a power generation facility 16. In the present embodiment, the condenser 18 provided in the power generation facility 16 is cooled with seawater. A water discharge channel 22 for discharging the seawater that has passed through to the sea 2 is installed. Seawater is taken in from the water intake 24 at the tip of the intake channel 20, flows through the water intake channel 20, passes through the condenser 18, flows through the water discharge channel 22, and is discharged from the water discharge port 26 at the tip thereof to the sea 2. The intake channel 20 and the discharge channel 22 correspond to the “cooling water channel” of the present invention.

上記のように、取水路20及び放水路22には海水が流れるため、流路内には貝等の海洋生物が付着・繁殖し易い。そして、流路内に多量の海洋生物が付着すると、流路が塞がれて十分な流量が得られなくなる等のために冷却性能が低下するおそれがある。特に、取水路20については、低い水温の海水を取り込めるように、取水口24が陸地からかなり離れた沖合いに設けられるため、取水路20は非常に長くなって、海洋生物の付着の影響を受け易い。   As described above, since seawater flows through the intake channel 20 and the discharge channel 22, marine organisms such as shellfish are easily attached and propagated in the channel. If a large amount of marine organisms adhere to the flow path, the flow performance may be reduced because the flow path is blocked and a sufficient flow rate cannot be obtained. In particular, with regard to the intake channel 20, since the intake 24 is provided offshore far away from the land so that low temperature seawater can be taken in, the intake channel 20 becomes very long and is affected by the attachment of marine organisms. easy.

そこで、本実施形態では、取水路20の取水口24近傍の地点で、取水路20に、塩素系薬剤として次亜塩素酸ナトリウム溶液を注入することにより、取水路20や放水路22の内壁面における貝等の海洋生物の付着及び成長を抑制することとしている。ただし、次亜塩素酸ナトリウムに限らず、例えば二酸化塩素等の他の塩素系薬剤を用いてもよい。   Therefore, in this embodiment, by injecting sodium hypochlorite solution as a chlorinated chemical into the intake channel 20 at a point near the intake port 24 of the intake channel 20, the inner wall surfaces of the intake channel 20 and the discharge channel 22. To suppress the adhesion and growth of marine organisms such as shellfish. However, it is not limited to sodium hypochlorite, and other chlorinated chemicals such as chlorine dioxide may be used.

図2は、取水路20及び放水路22からなる冷却水系統28を模式図的に示す。同図に示す如く、復水器18と取水路20との接続部には、海水ポンプ30が設けられており、この海水ポンプ30により海水が取水口24から取水路20へ吸入される。また、取水路20の取水口24の近傍には、薬剤注入部32が設けられている。この薬剤注入部32は、取水路20の断面壁面に沿って複数箇所に設けられている。また、放水路22の放水口26の近傍には、海2へ放出される海水中の残留塩素濃度を検出する残留塩素濃度計34が設けられている。残留塩素濃度計34による検出信号は無線又は有線で陸地上に設けられた監視装置へ送られる。   FIG. 2 schematically shows a cooling water system 28 including a water intake channel 20 and a water discharge channel 22. As shown in the figure, a seawater pump 30 is provided at a connection portion between the condenser 18 and the intake channel 20, and seawater is drawn into the intake channel 20 from the intake port 24 by the seawater pump 30. In addition, a drug injection part 32 is provided in the vicinity of the water intake 24 of the water intake channel 20. The drug injection part 32 is provided at a plurality of locations along the cross-sectional wall surface of the intake channel 20. Further, a residual chlorine concentration meter 34 for detecting the residual chlorine concentration in the seawater discharged to the sea 2 is provided in the vicinity of the water outlet 26 of the water discharge channel 22. The detection signal from the residual chlorine concentration meter 34 is sent wirelessly or by wire to a monitoring device provided on land.

図3は、薬剤注入部32の詳細構成を示す。同図に示す如く、薬剤注入部32は、取水路20の内部に注入口41を有する注入管40、注入管40に次亜塩素酸ナトリウム溶液を供給する薬剤供給槽42、及び、注入管40に設けられたバルブ44により構成されており、バルブ44の開閉は制御装置46により制御される。図3に示す例では、注入管40の先端が海水の下流側へ向けて屈曲され、その先端に注入口41が設けられている。なお、図4に示すように、注入管40の先端部の断面が注入口41へ向けて次第に拡がるように構成してもよい。また、図5に示すように、注入管40を屈曲させずに、その下流側側面に設けた穴を注入口41としてもよい。このように、注入口41として様々な構成が考えられる。   FIG. 3 shows a detailed configuration of the drug injection unit 32. As shown in the figure, the drug injection section 32 includes an injection pipe 40 having an injection port 41 inside the intake channel 20, a drug supply tank 42 for supplying a sodium hypochlorite solution to the injection pipe 40, and an injection pipe 40. The opening and closing of the valve 44 is controlled by a control device 46. In the example shown in FIG. 3, the tip of the injection tube 40 is bent toward the downstream side of the seawater, and an injection port 41 is provided at the tip. In addition, as shown in FIG. 4, you may comprise so that the cross section of the front-end | tip part of the injection tube 40 may spread toward the injection port 41 gradually. Further, as shown in FIG. 5, a hole provided on the downstream side surface may be used as the injection port 41 without bending the injection tube 40. Thus, various structures can be considered as the injection port 41.

図6は、取水路20の断面壁面に沿って設けられた複数の薬剤注入部32の一例を示す。この例では、5つの薬剤注入部32A,32B,32C,32D,32Eが設けられた場合を示しているが、薬剤注入部32の個数はこれに限らず、取水路20の断面壁面に沿って複数の薬剤注入部32が設けられればよい。なお、薬剤供給槽42及び制御装置46は薬剤注入部32A〜32Eに共通に備えられる。以下の記載では、薬剤注入部32A〜32Eが備える注水管40及び注水口41を、夫々、注水管40A〜40E及び注水口41A〜41Eとも表すことがある。   FIG. 6 shows an example of a plurality of drug injection portions 32 provided along the cross-sectional wall surface of the intake channel 20. In this example, the case where five drug injection parts 32A, 32B, 32C, 32D, and 32E are provided is shown, but the number of drug injection parts 32 is not limited to this, and is along the cross-sectional wall surface of the intake channel 20. A plurality of drug injection portions 32 may be provided. In addition, the medicine supply tank 42 and the control device 46 are provided in common in the medicine injection units 32A to 32E. In the following description, the water injection tube 40 and the water injection port 41 included in the drug injection units 32A to 32E may be also referred to as the water injection tubes 40A to 40E and the water injection ports 41A to 41E, respectively.

図6に示すように、薬剤注入部32A〜32Eの注入口41A〜41Eは、取水路20の断面の両側面及び上面に沿って配置されている。このように、取水路20の底面に注水管40を配置しないのは、取水路20の底部には汚泥が堆積するので、これを避けた位置で次亜塩素酸ナトリウム溶液を注入するためである。なお、図6の例では、取水路20が矩形の断面形状を有するものとしているが、円形断面の場合にも同様に、汚泥の蓄積する下部位置を避けて注水口41を配置すればよい。   As shown in FIG. 6, the injection ports 41 </ b> A to 41 </ b> E of the drug injection parts 32 </ b> A to 32 </ b> E are arranged along both side surfaces and the upper surface of the cross section of the intake channel 20. The reason why the water injection pipe 40 is not disposed on the bottom surface of the intake channel 20 is that the sludge accumulates on the bottom of the intake channel 20, so that the sodium hypochlorite solution is injected at a position avoiding this. . In addition, in the example of FIG. 6, although the intake channel 20 shall have a rectangular cross-sectional shape, the water inlet 41 should just be arrange | positioned avoiding the lower position where sludge accumulates similarly in the case of a circular cross section.

図7は、制御装置46により制御される薬剤注入部32A〜32Eのバルブ44の開閉状態(すなわち、薬剤注入のオン/オフ状態)の時間変化を示す。同図に示すように、本実施形態では、5つの薬剤注入部32A〜32Eを順次切り替えて選択した何れかの薬剤注入部32から次亜塩素酸ナトリウム溶液を注入している。このように、複数の薬剤注入部32A〜32Eを順次切り替えて次亜塩素酸ナトリウム溶液を注入することにより、取水路20の断面内の残留塩素濃度分布は、次亜塩素酸ナトリウム溶液の注入位置で濃度が高くなるような不均一なものとなる。   FIG. 7 shows the change over time of the open / close state of the valve 44 of the drug injection sections 32A to 32E controlled by the control device 46 (that is, the on / off state of drug injection). As shown in the figure, in this embodiment, the sodium hypochlorite solution is injected from any one of the drug injection units 32 selected by sequentially switching the five drug injection units 32A to 32E. In this way, by sequentially switching the plurality of drug injection parts 32A to 32E and injecting the sodium hypochlorite solution, the residual chlorine concentration distribution in the cross section of the intake channel 20 is the injection position of the sodium hypochlorite solution. As a result, the density becomes uneven.

図8は、薬剤注入部32Aにより次亜塩素酸ナトリウム溶液を注入した場合の取水路20の断面での残留塩素濃度分布の一例を示す。なお、同図において、色が濃いほど残留塩素濃度が高いことを示している。取水路20の内部には水流を乱す障害物はほとんど存在しないから、少なくとも、取水路20内では海水の流れはほぼ層流に保たれて、図8に例示するような不均一な残留塩素濃度分布がほぼ維持されることになる。一方、放水口26から海2へ放出される海水の残留塩素濃度は、放水路22の全断面で平均化した値となるから、低く抑えられる。   FIG. 8 shows an example of the residual chlorine concentration distribution in the cross section of the intake channel 20 when the sodium hypochlorite solution is injected by the drug injection part 32A. In the figure, the darker the color, the higher the residual chlorine concentration. Since there are almost no obstacles that disturb the water flow inside the intake channel 20, at least the flow of seawater is kept in a laminar flow within the intake channel 20, and the non-uniform residual chlorine concentration as illustrated in FIG. Distribution is almost maintained. On the other hand, the residual chlorine concentration of the seawater discharged from the water outlet 26 to the sea 2 becomes a value averaged over the entire cross section of the water discharge channel 22, and is thus kept low.

このように、本実施形態では、取水路20の断面壁面に沿って設けた薬剤注入部32A〜32Cの何れかから次亜塩素酸ナトリウム溶液を注入することにより、局所的に高い残留塩素濃度を実現して、その部分での海洋生物の付着及び成長を効果的に抑制しつつ、海2へ放出される海水の残留塩素濃度を低く抑えることができる。そして、次亜塩素酸ナトリウム溶液を注入する薬剤注入部32を順次切り替えることで、取水路20の底面を除く壁面全周に亘って、海洋生物の付着及び成長を抑制することができる。なお、取水路20の底面については、上記の如く汚泥が堆積して海洋生物が付着することはない場合は、次亜塩素酸ナトリウム溶液を注入しなくても何ら支障はない。   Thus, in this embodiment, by injecting the sodium hypochlorite solution from any one of the drug injection parts 32A to 32C provided along the cross-sectional wall surface of the intake channel 20, a high residual chlorine concentration is locally produced. Realizing it, it is possible to keep the residual chlorine concentration of the seawater released to the sea 2 low while effectively suppressing the adhesion and growth of marine organisms in that part. Then, by sequentially switching the drug injection part 32 for injecting the sodium hypochlorite solution, the attachment and growth of marine organisms can be suppressed over the entire wall surface excluding the bottom surface of the intake channel 20. In addition, about the bottom face of the intake channel 20, when sludge accumulates and marine organisms do not adhere as mentioned above, there is no problem even if the sodium hypochlorite solution is not injected.

なお、上記の実施形態では、複数の薬剤注入部32のうち何れか1つの薬剤注入部32から次亜塩素酸ナトリウム溶液を注入するものとしたが、これに限らず、複数の薬剤注入部32から同時に次亜塩素酸ナトリウム溶液を注入することとしてもよい。例えば、上記実施形態において、薬剤注入部32A,32E、及び、薬剤注入部32B,32Dから夫々同時に注入を行うものとして、(薬剤注入部32A,32E)→(薬剤注入部32C)→(薬剤注入部32B,32D)→(薬剤注入部32A,32E)のように切り替える場合も本発明の範囲に含まれる。   In the above-described embodiment, the sodium hypochlorite solution is injected from any one of the plurality of drug injection units 32. However, the present invention is not limited to this, and the plurality of drug injection units 32 is used. The sodium hypochlorite solution may be injected at the same time. For example, in the above-described embodiment, it is assumed that the drug injection units 32A and 32E and the drug injection units 32B and 32D perform injection simultaneously, respectively (drug injection units 32A and 32E) → (drug injection unit 32C) → (drug injection) The case where switching is performed as in (Parts 32B, 32D) → (Pharmaceutical injection units 32A, 32E) is also included in the scope of the present invention.

また、上記実施形態では、火力発電所の復水器を冷却対象設備として冷却するものとしたが、本発明は復水器に限らず、海水を用いて各種設備を冷却する場合に広く適用が可能である。   In the above embodiment, the condenser of the thermal power plant is cooled as the equipment to be cooled. However, the present invention is not limited to the condenser and is widely applied when cooling various equipment using seawater. Is possible.

本発明の一実施形態に係わる火力発電所の概略平面図である。1 is a schematic plan view of a thermal power plant according to an embodiment of the present invention. 取水路及び放水路からなる冷却水系統を模式図的に示す図である。It is a figure which shows typically the cooling water system which consists of a water intake channel and a water discharge channel. 薬剤注入部の詳細構成を示す図である。It is a figure which shows the detailed structure of a chemical | medical agent injection | pouring part. 注入管の注入口の構成例を示す図である。It is a figure which shows the structural example of the injection port of an injection tube. 注入管の注入口の別の構成例を示す図である。It is a figure which shows another structural example of the injection inlet of an injection tube. 制御装置により制御される薬剤注入部32A〜32Eのバルブの開閉状態(すなわち、薬剤注入のオン/オフ状態)の時間変化を示す図である。It is a figure which shows the time change of the opening / closing state (namely, on / off state of a chemical | medical agent injection | pouring) of the valve | bulb of the chemical | medical agent injection | pouring parts 32A-32E controlled by a control apparatus. 取水路の断面内での残留塩素濃度分布の一例を示す図である。It is a figure which shows an example of residual chlorine concentration distribution in the cross section of an intake channel. 取水路の断面での残留塩素濃度分布の一例を示す図である。It is a figure which shows an example of residual chlorine concentration distribution in the cross section of an intake channel.

符号の説明Explanation of symbols

2 海
10 火力発電所
18 復水器
20 取水路
22 放水路
24 取水口
26 放水口
28 冷却水系統
30 海水ポンプ
32(32A〜32E) 薬剤注入部
40(40A〜40E) 注入管
41(41A〜41E) 注入口
42 薬剤供給槽
44 バルブ
46 制御装置
2 Sea 10 Thermal Power Plant 18 Condenser 20 Intake Channel 22 Inlet Channel 24 Inlet 26 Outlet 28 Cooling Water System 30 Seawater Pump 32 (32A to 32E) Drug Injection Portion 40 (40A to 40E) Infusion Tube 41 (41A to 41A to 41A 41E) Inlet 42 Drug supply tank 44 Valve 46 Control device

Claims (4)

冷却水として海から海水を取り入れて冷却対象設備に供給し、この冷却対象設備を通った後の海水を海へ放出するための冷却水流路内において海洋生物の付着及び成長を抑制する方法であって、
前記冷却水流路の所定位置の断面壁面に沿って、塩素系薬剤を注入するための複数の薬剤注入部を設け、それら複数の薬剤注入部の中から順次切り替えて選択した薬剤注入部により前記冷却水流路内へ塩素系薬剤を注入することを特徴とする方法。
This is a method for suppressing the adhesion and growth of marine organisms in the cooling water flow path for taking seawater from the sea as the cooling water and supplying it to the equipment to be cooled, and discharging the seawater that has passed through this equipment to the sea. And
A plurality of drug injection parts for injecting a chlorinated drug are provided along a cross-sectional wall surface at a predetermined position of the cooling water flow path, and the cooling is performed by the drug injection part selected by sequentially switching among the plurality of drug injection parts. A method comprising injecting a chlorinated drug into a water flow path.
前記塩素系薬剤として次亜塩素酸ナトリウムを注入することを特徴とする請求項1記載の方法。   The method according to claim 1, wherein sodium hypochlorite is injected as the chlorinated drug. 前記所定位置は、前記冷却水流路に海水を取り込む取水口近傍の位置であることを特徴とする請求項1又は2記載の方法。   The method according to claim 1, wherein the predetermined position is a position in the vicinity of a water intake port for taking seawater into the cooling water flow path. 冷却水として海から海水を取り入れて冷却対象設備に供給し、この冷却対象設備を通った後の海水を海へ放出するための冷却水流路内において海洋生物の付着及び成長を抑制するシステムであって、
前記冷却水流路の所定位置の断面壁面に沿って設けられた、塩素系薬剤を注入するための複数の薬剤注入部と、
前記複数の薬剤注入部の中から順次切り替えて選択した薬剤注入部により前記冷却水流路内へ塩素系薬剤を注入させる制御手段と、を備えることを特徴とするシステム。

It is a system that suppresses the adhesion and growth of marine organisms in the cooling water flow path for taking seawater from the sea as the cooling water and supplying it to the equipment to be cooled and discharging the seawater that has passed through this equipment to the sea. And
A plurality of drug injection parts for injecting chlorine-based drugs provided along the cross-sectional wall surface at a predetermined position of the cooling water flow path,
And a control means for injecting a chlorine-based medicine into the cooling water flow path by a medicine injection section selected by switching sequentially from among the plurality of medicine injection sections.

JP2003380968A 2003-11-11 2003-11-11 Method and system for inhibiting the attachment and growth of marine organisms Expired - Lifetime JP4102737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003380968A JP4102737B2 (en) 2003-11-11 2003-11-11 Method and system for inhibiting the attachment and growth of marine organisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003380968A JP4102737B2 (en) 2003-11-11 2003-11-11 Method and system for inhibiting the attachment and growth of marine organisms

Publications (2)

Publication Number Publication Date
JP2005144214A JP2005144214A (en) 2005-06-09
JP4102737B2 true JP4102737B2 (en) 2008-06-18

Family

ID=34690493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003380968A Expired - Lifetime JP4102737B2 (en) 2003-11-11 2003-11-11 Method and system for inhibiting the attachment and growth of marine organisms

Country Status (1)

Country Link
JP (1) JP4102737B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9657805B2 (en) 2011-11-08 2017-05-23 Performance Machine, Llc Frequency sensitive shock absorber

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012115720A (en) * 2010-11-29 2012-06-21 Hakuto Co Ltd Biocidal method of circulating water system in open type water cooling tower
JP5802058B2 (en) * 2011-06-03 2015-10-28 稔 豊島 Marine organism adhesion prevention paint
CN104735980A (en) 2012-08-14 2015-06-24 中国电力株式会社 Method for stopping attachment-period larvae from swimming or crawling
JP6215967B2 (en) 2014-03-24 2017-10-18 中国電力株式会社 How to kill airfoil and barnacles by light irradiation
WO2015145526A1 (en) 2014-03-24 2015-10-01 中国電力株式会社 Method for stopping swimming or crawling of adhesion-stage larvae
CN106793769B (en) 2014-12-08 2020-10-23 中国电力株式会社 Method for inhibiting adhesion of ampullaria gigas
EP3181759B1 (en) 2015-03-27 2021-01-27 The Chugoku Electric Power Co., Inc. Method for preventing adhesion of fouling organisms
JP7083452B2 (en) * 2018-08-28 2022-06-13 中国電力株式会社 Chlorine-enhanced injection operation equipment and method
CN117046414B (en) * 2023-09-12 2024-04-09 潍坊恒远环保水处理设备有限公司 Sodium hypochlorite generator with automatic hydrogen discharging function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9657805B2 (en) 2011-11-08 2017-05-23 Performance Machine, Llc Frequency sensitive shock absorber

Also Published As

Publication number Publication date
JP2005144214A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP4102737B2 (en) Method and system for inhibiting the attachment and growth of marine organisms
KR100898733B1 (en) A Container for Transportation of Living Fish and Shellfish
KR101129620B1 (en) anti-fouling system and control method thereof
JP4102736B2 (en) Method and system for inhibiting the attachment and growth of marine organisms
CN101010557B (en) Heat exchanger vessel with means for recirculating cleaning particles
JP2005144212A (en) Method and system for controlling adhesion and growth of marine organism
JP2006180829A (en) Apparatus for receiving fish or shellfish
JP5704634B2 (en) Method and system for inhibiting the attachment of marine organisms and method and system for reducing the chlorine concentration of water
JP4390669B2 (en) Method and system for inhibiting the attachment and growth of marine organisms
JP2010013098A (en) Ballast treatment water supply ship
JP4316457B2 (en) Method and system for inhibiting the attachment and growth of marine organisms
KR101525136B1 (en) A counteragent-supplier to prevent clopping counteragent pipe and a ballast water treatment system using it
KR20130053551A (en) Apparatus for treating water, method for treating water and a ship having the same
KR101621135B1 (en) Spraying equipment for elimination of green algae and red tide
KR200445602Y1 (en) Hypochlorite Diffuser of The Sea Water Electrolyzing System
JP2001140234A (en) Marine living things adhesion prevention device
JP5431835B2 (en) Antifouling method and intake device for inner wall of intake pipe
KR100557968B1 (en) Mussel monitor
JP2012086200A (en) System and method for ballast water treatment
KR102186631B1 (en) Seawater treatment system having high temperature reduction function
JP7491158B2 (en) Marine biofouling control device
KR101836897B1 (en) Marine growth protection device for ship
KR20150054591A (en) Sea chest grid cleaning device using fire pump
NO346812B1 (en) Module, system and method for delousing fish
JP2008189205A (en) Ballast treated water receiving device and ship

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4102737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250