JP2020032327A - Chlorine enriching injection operation device and method - Google Patents

Chlorine enriching injection operation device and method Download PDF

Info

Publication number
JP2020032327A
JP2020032327A JP2018159012A JP2018159012A JP2020032327A JP 2020032327 A JP2020032327 A JP 2020032327A JP 2018159012 A JP2018159012 A JP 2018159012A JP 2018159012 A JP2018159012 A JP 2018159012A JP 2020032327 A JP2020032327 A JP 2020032327A
Authority
JP
Japan
Prior art keywords
water
seawater
chlorine
value
intake tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018159012A
Other languages
Japanese (ja)
Other versions
JP7083452B2 (en
Inventor
陽介 濱本
Yosuke Hamamoto
陽介 濱本
陽亮 住田
Yosuke Sumida
陽亮 住田
誠 片寄
Makoto Katayose
誠 片寄
村上 博之
Hiroyuki Murakami
博之 村上
裕介 三奈木
Yusuke Minaki
裕介 三奈木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2018159012A priority Critical patent/JP7083452B2/en
Publication of JP2020032327A publication Critical patent/JP2020032327A/en
Application granted granted Critical
Publication of JP7083452B2 publication Critical patent/JP7083452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

To provide a chlorine enriching injection operation device and method which can perform supply of a required amount of chlorine from a seawater electrolysis device.SOLUTION: A chlorine enriching injection operation device comprises: switch transition pattern occurrence detection means 61,62 to detect occurrence of a 1→≥2 switch transition pattern which indicates that a water channel through which to inject a sodium hypochlorite solution (chlorine) of three water channels of a water intake tank is switched from a water channel involving one seawater pump in operation to a water channel involving two or more seawater pumps in operation; and conducting electric current value control means 63,64 to control a conducting electric current value of a periodic inspection rectifier by: storing an occurrence detection time of the occurrence of the 1→≥2 switch transition pattern detected by the switch transition pattern occurrence detection means 61,62; obtaining a discharge port residual chlorine concentration base value a predetermined lag time after the water channel through which to inject the sodium hypochlorite solution of the three water channels is switched to a water channel other than the water channel involving the two or more seawater pumps after the occurrence detection time; and comparing the obtained discharge port residual chlorine concentration base value with a control target value.SELECTED DRAWING: Figure 11

Description

本発明は、原子力発電所などに設けられている海水電解装置に使用するのに好適な塩素強化注入運転装置および方法に関する。   The present invention relates to a chlorine-enhanced injection operation apparatus and method suitable for use in a seawater electrolysis apparatus provided in a nuclear power plant or the like.

原子力および火力発電所では、冷却水として海水を利用している。海から海水を取り入れて復水器に供給する取水路の内部や、復水器を通った海水を海へ放出するための放水路の内部に、フジツボ類やイガイ類をはじめとする貝などの海中生物が付着し易い。海中生物の付着量が多くなると、海水の流路が塞がれて冷却性能が低下するなどの不具合を招くおそれがある。   Nuclear and thermal power plants use seawater as cooling water. Shells, such as barnacles and mussels, are placed inside the intake channel that takes in seawater from the sea and supplies it to the condenser, and inside the discharge channel that discharges seawater that has passed through the condenser to the sea. Marine organisms easily attach. An increase in the amount of marine organisms attached may cause problems such as blocking the flow path of seawater and lowering cooling performance.

冷却水として海水を使用したことに起因するこのような障害を防止するため、熱交換器設備では海中生物やスライムの付着防止のために薬液注入などが行われており、また、復水器では付着した海中生物やスライムの除去のためにスポンジボールなどの連続細管洗浄装置が使用されている。   In order to prevent such obstacles caused by the use of seawater as cooling water, heat exchanger equipment is used to inject chemicals to prevent the adhesion of marine organisms and slime, and in the condenser, A continuous thin tube washing device such as a sponge ball is used to remove attached marine organisms and slime.

しかし、下記の特許文献3の段落0008に指摘されているように、海中生物やスライムの付着防止に電解塩素などの塩素剤を注入する場合、塩素剤の注入量を可能な限り高濃度にする必要があると同時に放水口残留塩素濃度を検出下限値(例えば、DPD法で0.05mg/L)未満に制御する必要がある。しかしながら、塩素剤の減衰は、海水中のアンモニウム塩、亜硝酸塩および第一鉄イオンなどの還元性無機物質や還元性有機物質、プランクトン類の量によって著しく変化する。そのため、塩素剤を高濃度添加すると放水口残留塩素濃度が検出下限値を超える場合が生じ得る。一方、放水口残留塩素濃度を検出下限値未満にすると、防汚対象箇所において塩素剤が防汚有効濃度に達しない場合が生じ得る。塩素剤が防汚有効濃度に達しない場合は海中生物やスライムが付着することになり、復水器の真空度が低下し、発電効率の低下に直結したり、熱交換器の熱貫流率が低下したりする。   However, as pointed out in paragraph 0008 of Patent Document 3 below, when injecting a chlorinating agent such as electrolytic chlorine to prevent the adhesion of marine organisms and slime, the amount of the chlorinating agent to be injected should be as high as possible. At the same time, it is necessary to control the concentration of residual chlorine at the outlet from the lower limit of detection (eg, 0.05 mg / L by the DPD method). However, the decay of the chlorinating agent varies significantly depending on the amount of reducing inorganic and organic substances, such as ammonium salts, nitrites and ferrous ions, and planktons in seawater. Therefore, when a chlorine agent is added at a high concentration, the residual chlorine concentration at the outlet may exceed the lower limit of detection. On the other hand, if the concentration of residual chlorine at the outlet is less than the lower detection limit, the chlorine agent may not reach the effective antifouling concentration at the antifouling target location. If the chlorine agent does not reach the effective antifouling concentration, marine organisms and slime will adhere to it, reducing the degree of vacuum in the condenser and directly reducing the power generation efficiency, and reducing the heat transfer rate of the heat exchanger. Or drop.

また、熱交換器では、海中生物またはスライムが付着し、伝熱効率の低下や熱交換器細管の詰まりによる配管圧力上昇によってフランジシールなどの破損、配管内部ライニング材の剥離およびポンプ動力の増加などの悪影響が発生する懸念がある。   In addition, in the heat exchanger, marine organisms or slime may adhere to the pipes, causing a decrease in heat transfer efficiency or a rise in pipe pressure due to clogging of the heat exchanger tubes, causing damage to flange seals, peeling of lining material inside pipes, and increasing pump power. There is a concern that adverse effects may occur.

海中生物やスライムの発生量は、海水温度に依存していることが知見として分かっている。特に4〜5月は海水温度の上昇と同時にプランクトン類が繁殖し、海水系ストレーナへの付着堆積により差圧上昇を起こすことが知られている。   It is known from knowledge that the amount of marine organisms and slime generated depends on the seawater temperature. In particular, it is known that plankton species breed at the same time as the seawater temperature rises in April and May, and that the pressure difference rises due to adhesion and deposition on a seawater strainer.

そこで、従来から薬液注入には、次亜塩素酸ナトリウム溶液(以下、「塩素」と称する。)や二酸化塩素などの塩素系薬剤を海水に注入することや、取水口からの次亜塩素酸ナトリウム溶液注入に加えて、補機冷却水海水系ポンプが設置されている取水槽へ直接注入して取水口からの注入で失われる次亜塩素酸ナトリウム成分を補強するため塩素強化注入ラインを設け、復水器および補機冷却水熱交換器海水側への海中生物の付着を抑制することが行われている。   Therefore, conventionally, a chemical solution has been injected by injecting a chlorine-based chemical such as a sodium hypochlorite solution (hereinafter referred to as “chlorine”) or chlorine dioxide into seawater, or by adding sodium hypochlorite from an intake port. In addition to the solution injection, a chlorine strengthening injection line was installed to reinforce the sodium hypochlorite component lost by injection from the intake by directly injecting it into the intake tank where the auxiliary equipment cooling water seawater system pump was installed, 2. Description of the Related Art Adhesion of marine organisms to the seawater side of a condenser and an auxiliary cooling water heat exchanger has been performed.

具体的には、薬液注入法として電解塩素などの塩素剤や過酸化水素水溶液などが海水冷却水系の海中生物やスライム対策に原子力発電所の定検や長期停止中でも、プラント内で使用する補機冷却水熱交換器の冷却水として、補機冷却水海水系からの海水を熱交換器に通水している。
なお、循環水ポンプは、プラント停止中は点検のため停止していることが多い。
Specifically, as a chemical liquid injection method, chlorinating agents such as electrolytic chlorine and aqueous hydrogen peroxide are used as auxiliary equipment to be used in plants during regular inspections and long-term shutdowns of nuclear power plants to counter marine organisms and slime in seawater cooling water systems. Seawater from the auxiliary cooling water seawater system is passed through the heat exchanger as cooling water for the cooling water heat exchanger.
Note that the circulating water pump is often stopped for inspection while the plant is stopped.

補機冷却水海水系に海水を供給するため、補機冷却水海水系ポンプを運転している。補機冷却水海水系ポンプは取水槽に配置されており、取水槽は3つの水路に分かれている。   An auxiliary equipment cooling water seawater system pump is operated to supply seawater to the auxiliary equipment cooling water seawater system. The auxiliary equipment cooling water seawater pump is disposed in the intake tank, and the intake tank is divided into three waterways.

また、原子力発電所の補機冷却海水系ポンプは原子炉補機冷却水海水系およびタービン補機冷却水海水系に分かれており、それぞれ各取水槽にポンプが配置されている。
原子炉補機冷却水海水系は各水路に2台の補機冷却海水系ポンプが設置されており、タービン補機冷却水海水系は各水路に1台の補機冷却海水系ポンプが設置されている。
通常運転中は、原子炉補機冷却水海水系は各水路で補機冷却海水系ポンプを1〜2台運転しており、タービン補機冷却水海水系は各水路で計3台の補機冷却海水系ポンプのうち2台だけ運転している。
定検中は、各補機冷却海水系ポンプは点検中で停止されていたり、原子炉建屋への冷却水を供給するために運転されたりしているが、点検や必要台数によって運転台数は各水路で異なっており、水路間では運転台数のアンバランス状態となっている。
Auxiliary cooling seawater pumps of nuclear power plants are divided into reactor auxiliary cooling water seawater systems and turbine auxiliary cooling water seawater systems, and pumps are arranged in each intake tank.
The reactor auxiliary cooling water seawater system has two auxiliary cooling seawater pumps installed in each channel, and the turbine auxiliary cooling water seawater system has one auxiliary cooling seawater pump installed in each channel. ing.
During normal operation, one or two auxiliary cooling seawater pumps are operated in each water channel for the reactor auxiliary cooling water seawater system, and a total of three auxiliary cooling water seawater systems are used for each turbine auxiliary cooling water seawater system. Only two of the cooling seawater pumps are operating.
During the periodic inspection, the auxiliary equipment cooling seawater pumps are stopped during inspections and are operating to supply cooling water to the reactor building. There is a difference between the waterways, and the number of operating units is unbalanced between the waterways.

定検中や長期停止中では、循環水ポンプが停止していることが多いため、海水の供給量が少なくなるので、海水電解装置で供給する塩素は少なくて済む。そのため、取水口側の塩素注入は停止し、取水槽側の塩素強化注入ラインのみの塩素注入で調整を行っている。   During a regular inspection or during a long-term stoppage, the circulating water pump is often stopped, so the amount of supplied seawater is reduced, so that the amount of chlorine supplied by the seawater electrolyzer can be reduced. Therefore, chlorine injection on the intake side has been stopped, and adjustment has been made by chlorine injection only on the chlorine strengthening injection line on the intake tank side.

なお、下記の特許文献1には、海水温度と海中生物発生とに相関があることを利用し、プロセス量である温度に比例して電解電流値を制御することにより最適な制御を得るために、電解装置入口側海水管に配置された温度センサーと、温度センサーの検出した温度信号によって水温と電流効率との関係式により出力電流を自動的補正する演算回路を有する制御盤とを具備し、制御盤の出力によって電解装置の出力電流を制御するようにした、海水電気分解装置の出力制御方式が開示されている。   The following Patent Document 1 utilizes the fact that there is a correlation between seawater temperature and generation of marine organisms, and obtains optimal control by controlling the electrolytic current value in proportion to the temperature, which is the process amount. A temperature sensor disposed on the seawater pipe on the electrolysis apparatus inlet side, and a control panel having an arithmetic circuit that automatically corrects the output current by a relational expression between water temperature and current efficiency based on a temperature signal detected by the temperature sensor, An output control method of a seawater electrolysis apparatus in which the output current of an electrolysis apparatus is controlled by the output of a control panel is disclosed.

下記の特許文献2には、復水器または熱交換器を通過した海水中の残留塩素をCOで化学的に分解を行い、環境への放出量を低減させるために、海中生物を含有する水を用いて熱交換対象設備と熱交換するにあたり塩素系薬剤を熱交換のための水に注入した後に、COマイクロバブルを注入することにより、熱交換対象設備から放出する水の残留塩素濃度を低く抑えながら、熱交換水流路への海中生物の付着を抑制する、海中生物の付着を抑制する方法が開示されている Patent Literature 2 below contains marine organisms in order to chemically decompose residual chlorine in seawater that has passed through a condenser or heat exchanger with CO 2 and reduce the amount released to the environment. In performing heat exchange with the equipment to be heat-exchanged using water, a chlorine-based chemical is injected into water for heat exchange, and then CO 2 microbubbles are injected to thereby inject residual chlorine concentration of water released from the equipment to be heat-exchanged. A method for suppressing the adhesion of marine organisms to the heat exchange water flow path while keeping the water flow low, and a method for suppressing the adhesion of marine organisms are disclosed.

下記の特許文献3には、取水口に塩素剤および海水電解液を注入し、取水槽に過酸化水素および過酸化水素発生剤の少なくとも一方を添加し、取水口から取水槽にかけては、塩素で海中生物の発生を抑制し、強化注入として過酸化水素および過酸化水素発生剤を用いることで海中生物のさらなる発生を予防し、過酸化水素による塩素の分解効果で環境に放出される残留塩素を抑制するために、海水冷却水を取水するための取水路と、取水路から復水器または熱交換器に海水冷却水を送液するためのポンプと、ポンプと復水器または熱交換器とを接続する配管とを含む冷却水系において、取水路に塩素剤および海水電解液の少なくとも一方を添加すること、および、ポンプまたは配管に過酸化水素および過酸化水素発生剤の少なくとも一方を添加することを含む、海水冷却水の処理方法が開示されている。   In Patent Document 3 below, a chlorine agent and a seawater electrolyte are injected into an intake port, at least one of hydrogen peroxide and a hydrogen peroxide generator is added to an intake tank, and chlorine is supplied from the intake port to the intake tank with chlorine. Suppresses the generation of marine organisms and prevents further generation of marine organisms by using hydrogen peroxide and hydrogen peroxide generator as a strengthening injection, and reduces residual chlorine released to the environment due to the decomposition effect of chlorine by hydrogen peroxide. In order to control, the intake channel for taking in the seawater cooling water, the pump for sending the seawater cooling water from the intake channel to the condenser or the heat exchanger, and the pump and the condenser or the heat exchanger In a cooling water system that includes a pipe connecting the at least one of a chlorine agent and a seawater electrolyte to an intake channel, and at least one of hydrogen peroxide and a hydrogen peroxide generator to a pump or a pipe. Comprising, processing method of seawater cooling water is disclosed.

特開平2−175889号公報JP-A-2-175889 特開2011−104586号公報JP 2011-104586 A 特開2016−209855号公報JP-A-2006-209855

しかしながら、塩素注入量の調整は一般的に放水口残留塩素濃度で決定するため、放水口でのサンプリングにより環境への放出量を監視している。このとき、放出量は法令上では検出されない放水口残留塩素濃度(0.05ppm以下)にすることが求められており、これらを満足するようにサンプリング結果をもとに海水電解装置の電解槽に通電する電流値を変更する必要がある。
この電流値は、放水口残留塩素濃度を手分析して決定しており、海水温度にほぼ比例して海中生物が発生していることの知見をもとに調整を行っている。定検中や長期運転停止中でも海水電解装置は運転しており、その際は各水路の塩素強化注入ラインを8時間のインターバルで注入切替を行いながら塩素を注入しているが、ポンプ運転台数と強化注入インターバルとの関係で放水口残留塩素濃度が一定値とならず上昇する現象がみられた。この原因として、塩素強化注入量および注入時間は各水路で同じであるものの、水路の運転ポンプ台数が異なる場合、放水口側へ放出される海水移動時間が異なるため、放水口に放出される残留塩素濃度が重畳または相殺されて一定値にならずに変動する現象が知見として得られている。
法令上では濃度管理でサンプリング装置より検出下限値(0.05ppm以下)で規制されるため、放水口へ放出される海水移動時間の多寡があっても検知できる濃度以下を維持する方法を開発する必要があった。
However, since the adjustment of the chlorine injection amount is generally determined by the residual chlorine concentration at the outlet, the amount released into the environment is monitored by sampling at the outlet. At this time, it is required that the amount of release is set to the residual chlorine concentration (0.05 ppm or less) at the water outlet which is not detected by law. It is necessary to change the value of the supplied current.
This current value is determined by manual analysis of the residual chlorine concentration at the outlet, and is adjusted based on the knowledge that marine organisms are generated almost in proportion to the seawater temperature. The seawater electrolyzer operates even during regular inspections and long-term operation shutdowns. In this case, chlorine is injected while switching the injection of chlorine-reinforced injection lines in each channel at 8-hour intervals. There was a phenomenon in which the residual chlorine concentration at the outlet was not constant but increased due to the strengthening injection interval. The reason for this is that although the chlorine-reinforced injection amount and injection time are the same for each channel, if the number of operating pumps in the channel is different, the seawater transfer time to the outlet side will be different, and the residual water discharged to the outlet will be different. A phenomenon in which the chlorine concentration fluctuates without superimposing or canceling out to a constant value has been obtained as knowledge.
According to laws and regulations, the concentration is regulated by the lower limit of detection (0.05 ppm or less) from the sampling device, so a method to maintain the concentration below the detectable level even if there is a large amount of travel time of seawater discharged to the outlet is developed. Needed.

なお、上記の特許文献1記載の海水電気分解装置の出力制御方式は、海水温度と海中生物発生との因果関係より海中生物の死滅に必要な塩素注入量を自動的に制御することを目的としているため、プラント運転中のように循環水ポンプが運転されており各水路を通過する海水量がほぼ同一である場合は効果的であると思われるが、本発明で主に解決することを意図している定検中の海水ポンプ運転台数が少ない場合には必ずしも効果的であるとは限らない。   The output control method of the seawater electrolysis apparatus described in Patent Document 1 described above is intended to automatically control the amount of chlorine injection required to kill marine organisms based on the causal relationship between seawater temperature and marine organism generation. Therefore, it seems to be effective if the circulating water pump is operated and the amount of seawater passing through each water channel is almost the same as during plant operation, but it is mainly intended to solve the problem with the present invention. It is not always effective if the number of operating seawater pumps during regular inspection is small.

上記の特許文献2記載の海中生物の付着を抑制する方法および上記の特許文献3記載の海水冷却水の処理方法は、化学的に残留塩素を低減するには優れた方法であるが、海水電解装置の他にCOや過酸化水素発生装置を用いる必要があり、また、通常運転中および定検中の海水量の増減に対応するような制御装置を別に設ける必要があるため、コストがかかるという問題がある。 Although the method for suppressing the adhesion of marine organisms described in Patent Document 2 and the method for treating seawater cooling water described in Patent Document 3 are excellent methods for chemically reducing residual chlorine, seawater electrolysis is used. In addition to the equipment, it is necessary to use a CO 2 or hydrogen peroxide generator, and it is necessary to provide a separate control device to cope with an increase or decrease in the amount of seawater during normal operation and during regular inspection, which increases costs. There is a problem.

本発明の目的は、海水低流量時における残留塩素濃度上昇を低減して濃度の均一化を図りつつコスト低減も視野に海水電解装置からの必要量の塩素供給を行うことができる塩素強化注入運転装置および方法を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a chlorine-enhanced injection operation capable of supplying a required amount of chlorine from a seawater electrolysis device with a view to reducing costs while reducing the increase in the residual chlorine concentration at the time of low flow of seawater. It is to provide an apparatus and a method.

本発明の塩素強化注入運転装置は、海水を原料として製造した次亜塩素酸ナトリウム溶液を複数の水路に分割された取水槽(40)に注入する海水電解装置(10)に用いるための塩素強化注入運転装置(60)であって、前記海水電解装置が、前記次亜塩素酸ナトリウム溶液を製造するための電解槽と、前記電解槽に接続された整流器と、前記次亜塩素酸ナトリウム溶液を前記取水槽の前記複数の水路に順次注入するための取水槽注入切替弁(30)とを備え、前記取水槽が、前記各水路に複数台の海水ポンプを備え、前記塩素強化注入運転装置が、前記複数の水路のうち前記次亜塩素酸ナトリウム溶液を注入する水路が前記海水ポンプの運転台数が1台の水路から2台以上の水路に前記取水槽注入切替弁によって切り替えられたことを示す1→2台以上切替移行パターンの発生を検出するための切替移行パターン発生検出手段と、前記切替移行パターン発生検出手段によって前記1→2台以上切替移行パターンの発生が検出された発生検出時間を記憶し、該発生検出時間後に前記複数の水路のうち前記次亜塩素酸ナトリウム溶液を注入する水路が前記2台以上の水路以外の水路に前記取水槽注入切替弁によって切り替えられてから所定の遅れ時間後の放水口残留塩素濃度ベース値を取得し、該取得した放水口残留塩素濃度ベース値を制御目標値と比較して、前記整流器の通電電流値を制御するための通電電流値制御手段とを具備することを特徴とする。
ここで、前記次亜塩素酸ナトリウム溶液を注入する水路が、前記取水槽注入切替弁によって2時間のインターバルで順次切り替えられてもよい。
前記通電電流値制御手段が、前記1→2台以上切替移行パターンの発生が検出されるとともに前記遅れ時間後の前記放水口残留塩素濃度ベース値が前記制御目標値よりも大きいと、前記通電電流値を通電電流制御値だけ下げ、前記1→2台以上切替移行パターンの発生が検出されるとともに前記遅れ時間後の前記放水口残留塩素濃度ベース値が前記制御目標値よりも小さいと、前記通電電流値を前記通電電流制御値だけ上げてもよい。
前記制御目標値が、海水温度が低下傾向になる直前の放水口残留塩素濃度ベース値であってもよい。
前記複数の水路が、3つの水路であり、前記海水電解装置が、該海水電解装置が設置された設備の定検中に前記次亜塩素酸ナトリウム溶液を製造して前記取水槽に注入するための定検用電解槽(13)を備え、前記海水ポンプが、前記定検中に前記取水槽から補機冷却水熱交換器(120)に冷却水を供給するための6台の原子炉補機冷却水ポンプ(41)および3台のタービン補機冷却水ポンプ(42)であり、前記3つの水路の各水路に、2台の前記原子炉補機冷却水ポンプおよび1台の前記タービン補機冷却水ポンプが備えられ、前記整流器が、前記定検用電解槽に接続された定検用整流器(14)であってもよい。
本発明の塩素強化注入運転方法は、海水を原料として製造した次亜塩素酸ナトリウム溶液を3つの水路に分割された取水槽(40)に注入する海水電解装置(10)に用いるための塩素強化注入運転方法であって、前記海水電解装置が、前記次亜塩素酸ナトリウム溶液を製造するための電解槽と、前記電解槽に接続された整流器と、前記次亜塩素酸ナトリウム溶液を前記取水槽の前記3つの水路に順次注入するための取水槽注入切替弁(30)とを備え、前記取水槽が、前記各水路に複数台の海水ポンプを備え、前記塩素強化注入運転方法が、前記3つの水路のうち前記次亜塩素酸ナトリウム溶液を注入する水路が前記海水ポンプの運転台数が1台の水路から2台以上の水路に前記取水槽注入切替弁によって切り替えられたことを示す1→2台以上切替移行パターンの発生を検出するための第1のステップと、前記1→2台以上切替移行パターンの発生が検出された発生検出時間を記憶する第2のステップと、前記発生検出時間後に前記3つの水路のうち前記次亜塩素酸ナトリウム溶液を注入する水路が前記2台以上の水路以外の水路に前記取水槽注入切替弁によって切り替えられてから所定の遅れ時間後の放水口残留塩素濃度ベース値を取得する第3のステップと、前記取得した放水口残留塩素濃度ベース値を制御目標値と比較して前記整流器の通電電流値を制御するための第4のステップとを具備することを特徴とする。
ここで、前記次亜塩素酸ナトリウム溶液を注入する水路が、前記取水槽注入切替弁によって2時間のインターバルで順次切り替えられてもよい。
前記第4のステップにおいて、前記第2のステップで前記1→2台以上切替移行パターンが検出されるとともに、前記第3のステップで取得された前記遅れ時間後の前記放水口残留塩素濃度ベース値が前記制御目標値よりも大きいと、前記通電電流値を通電電流制御値だけ下げ、前記第2のステップで前記1→2台以上切替移行パターンが検出されるとともに、前記第3のステップで取得された前記遅れ時間後の前記放水口残留塩素濃度ベース値が前記制御目標値よりも小さいと、前記通電電流値を前記通電電流制御値だけ上げてもよい。
The chlorine-strengthening injection operation device of the present invention is a chlorine-strengthening for use in a seawater electrolyzer (10) for injecting a sodium hypochlorite solution produced from seawater as a raw material into an intake tank (40) divided into a plurality of waterways. An injection operation device (60), wherein the seawater electrolysis device includes: an electrolytic cell for producing the sodium hypochlorite solution; a rectifier connected to the electrolytic cell; and a sodium hypochlorite solution. An intake tank injection switching valve (30) for sequentially injecting the water into the plurality of water paths of the intake tank; the intake tank includes a plurality of seawater pumps in each of the water paths; In the plurality of water channels, the water channel into which the sodium hypochlorite solution is injected indicates that the operation number of the seawater pump is switched from one water channel to two or more water channels by the water intake tank injection switching valve. A switching transition pattern generation detecting means for detecting the occurrence of a 1 → 2 or more switching transition pattern; and an occurrence detection time when the occurrence of the 1 → 2 or more switching transition pattern is detected by the switching transition pattern occurrence detecting means. A predetermined delay from when the water channel for injecting the sodium hypochlorite solution of the plurality of water channels is switched to a water channel other than the two or more water channels by the water intake tank injection switching valve after the occurrence detection time. An outlet current chlorine concentration base value after the time is obtained, the obtained outlet water residual chlorine concentration base value is compared with a control target value, and an energizing current value control means for controlling an energizing current value of the rectifier. It is characterized by having.
Here, the water channel into which the sodium hypochlorite solution is injected may be sequentially switched at intervals of 2 hours by the water intake tank injection switching valve.
The energizing current value control means is configured to detect the occurrence of the 1 → 2 or more switching transition pattern and, if the base value of the outlet residual chlorine concentration after the delay time is larger than the control target value, When the occurrence of the switching transition pattern of 1 → 2 or more is detected and the base value of the outlet residual chlorine concentration after the delay time is smaller than the control target value, the energizing is performed. The current value may be increased by the energizing current control value.
The control target value may be a discharge port residual chlorine concentration base value immediately before the seawater temperature tends to decrease.
The plurality of water passages are three water passages, and the seawater electrolyzer produces the sodium hypochlorite solution during the periodic inspection of the equipment in which the seawater electrolyzer is installed and injects it into the water intake tank. And a seawater pump for supplying cooling water from the intake tank to the auxiliary cooling water heat exchanger (120) during the periodic inspection. An engine cooling water pump (41) and three turbine auxiliary cooling water pumps (42), wherein each of the three water channels has two reactor auxiliary cooling water pumps and one turbine auxiliary cooling water pump. An apparatus cooling water pump may be provided, and the rectifier may be a regular inspection rectifier (14) connected to the regular inspection electrolytic cell.
The chlorine-enriched pouring operation method of the present invention provides a chlorine-enhanced pouring method for use in a seawater electrolysis apparatus (10) in which a sodium hypochlorite solution produced from seawater is injected into an intake tank (40) divided into three waterways. An injection operation method, wherein the seawater electrolysis apparatus includes an electrolytic cell for producing the sodium hypochlorite solution, a rectifier connected to the electrolytic cell, and the sodium hypochlorite solution in the water intake tank. A water intake tank injection switching valve (30) for sequentially injecting the water into the three water channels, the water intake tank includes a plurality of seawater pumps in each of the water channels, and the chlorine-enhanced injection operation method comprises the steps of: One of the two water channels, into which the sodium hypochlorite solution is injected, indicates that the number of operating seawater pumps has been switched from one water channel to two or more water channels by the water intake tank injection switching valve. A first step for detecting the occurrence of the switching transition pattern, a second step of storing an occurrence detection time when the occurrence of the 1 → 2 or more switching transition pattern is detected, and Out of the three channels, the channel for injecting the sodium hypochlorite solution is switched to a channel other than the two or more channels by the water intake tank switching valve. A third step of obtaining a value, and a fourth step of controlling the current value of the rectifier by comparing the obtained base value of the residual chlorine concentration of the water outlet with a control target value. And
Here, the water channel into which the sodium hypochlorite solution is injected may be sequentially switched at intervals of 2 hours by the water intake tank injection switching valve.
In the fourth step, the 1 → 2 or more switching transition pattern is detected in the second step, and the discharge port residual chlorine concentration base value after the delay time obtained in the third step Is larger than the control target value, the energizing current value is decreased by the energizing current control value, and the 1 → 2 or more switching transition pattern is detected in the second step, and acquired in the third step. If the water outlet residual chlorine concentration base value after the delay time is smaller than the control target value, the energizing current value may be increased by the energizing current control value.

本発明の塩素強化注入運転装置および方法は、以下に示す効果を奏する。
(1)海水低流量時における残留塩素濃度上昇を低減して濃度の均一化を図りつつ海水電解装置からの必要量の塩素供給を行うことができる。
(2)コスト低減を図ることができる。
The chlorine strengthening injection operation device and method of the present invention have the following effects.
(1) The required amount of chlorine can be supplied from the seawater electrolysis apparatus while reducing the increase in the residual chlorine concentration at the time of the low flow rate of the seawater and making the concentration uniform.
(2) Cost can be reduced.

海水冷却水を利用する復水器または熱交換器の冷却水系の一例を示す図である。It is a figure which shows an example of the cooling water system of the condenser or heat exchanger which utilizes seawater cooling water. 取水槽40に配置される海水ポンプについて説明するための図である。It is a figure for explaining a seawater pump arranged in intake tank 40. 海水電解装置10の構成を示す図である。It is a figure showing composition of seawater electrolysis device 10. 海水電解装置10の塩素強化注入運転制御の考え方について説明するための図である。It is a figure for explaining a concept of chlorine strengthening injection operation control of seawater electrolysis device 10. 8時間塩素注入切替時の放水口残留塩素濃度変化の一例を示すグラフである。It is a graph which shows an example of the discharge outlet residual chlorine concentration change at the time of 8 hours chlorine injection switching. 2時間塩素注入切替時の放水口残留塩素濃度変化の一例を示すグラフである。It is a graph which shows an example of the water outlet residual chlorine concentration change at the time of 2 hours chlorine injection switching. 1時間塩素注入切替時の放水口残留塩素濃度変化の一例を示すグラフである。It is a graph which shows an example of the water outlet residual chlorine concentration change at the time of 1 hour chlorine injection switching. 30分間塩素注入切替時の放水口残留塩素濃度変化の一例を示すグラフである。It is a graph which shows an example of the water outlet residual chlorine concentration change at the time of 30 minutes chlorine injection switching. 放水口残留塩素濃度ベース値が現れる時期および海水温度の低下時期の放水口残留塩素濃度変化の一例を示すグラフである。It is a graph which shows an example of the outlet chlorine concentration change at the time when the outlet chlorine concentration base value appears, and when the seawater temperature decreases. 海水温度が低下傾向になる直前の放水口残留塩素濃度ベース値を制御目標値とした定検用整流器電流制御の効果について説明するための図である。It is a figure for explaining the effect of the rectifier current control for regular detection which made the base value of the concentration of residual chlorine in the outlet immediately before the seawater temperature tends to decrease the control target value. 本発明の一実施例による塩素強化注入運転装置60の構成を示すブロック図である。It is a block diagram showing composition of chlorine strengthening injection operation device 60 by one example of the present invention. 海水ポンプ運転信号部61の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the seawater pump operation signal part 61. 取水槽注入切替弁制御部62の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the intake tank injection switching valve control part 62. ベース値制御トリガ設定部63の動作を示すフローチャートである。6 is a flowchart illustrating an operation of a base value control trigger setting unit 63. 放水口残留塩素濃度ベース値取得・比較制御部64の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the water outlet residual chlorine concentration base value acquisition / comparison control part 64.

上記の目的を、海水ポンプ運転台数の1→2台以上切替移行パターン発生が検出されると、切替移行された2台運転水路が全閉されてから2時間後に取得した放水口残留塩素濃度ベース値を制御目標値と比較して定検用整流器の通電電流値を制御することにより実現した。   The above purpose is based on the water discharge port residual chlorine concentration acquired two hours after the switching operation of the two water-operated water passages is fully closed when the switching transition pattern is detected from 1 to 2 or more of the number of operating seawater pumps. This is realized by comparing the value with the control target value and controlling the current flowing through the rectifier for regular detection.

以下、本発明の塩素強化注入運転装置および方法の実施例について図面を参照して説明する。
本発明の塩素強化注入運転装置および方法は、原子力発電所や火力発電所における海水電解装置において定検中に循環水ポンプを停止して補機冷却水海水系ポンプを運転している状態で放水口残留塩素濃度を検出限界以下に保ちつつ適切な塩素注入による海中生物の低減を図るために、以下の特徴を有する。
(1)上述の状態において塩素強化注入タイマを適切に設定して放水口残留塩素濃度上昇を抑制するとともに均一な放水口残留塩素濃度を保つ。
(2)海水状況に応じて適切な通電電流値制御(定検用整流器電流制御)および塩素強化注入インターバルを組み合わせて自動制御する。
Hereinafter, an embodiment of a chlorine strengthening injection operation device and method of the present invention will be described with reference to the drawings.
The chlorine-enhanced injection operation apparatus and method of the present invention stop the circulating water pump during a periodic inspection in a seawater electrolyzer in a nuclear power plant or a thermal power plant, and release the circulating water pump while operating the auxiliary cooling water seawater pump. In order to reduce marine organisms by appropriate chlorine injection while keeping the water inlet residual chlorine concentration below the detection limit, it has the following features.
(1) In the above-described state, the chlorine-intensified injection timer is appropriately set to suppress an increase in the residual chlorine concentration at the outlet and maintain a uniform residual chlorine concentration at the outlet.
(2) Automatic control is performed in combination with appropriate energizing current value control (rectifier rectifier current control) and chlorine strengthening injection interval according to seawater conditions.

冷却水海水系は、図1に示すように、海水電解装置10(図3参照)の取水槽40と、復水器110と、補機冷却水熱交換器120(原子炉補機冷却水系熱交換器およびタービン補機冷却水系熱交換器)と、放水槽130と、補機冷却水熱交換器120からの冷却水を放水槽130に戻すための補機海水系放水庭140と、放水接合槽150とを備える。   As shown in FIG. 1, the cooling water seawater system includes a water intake tank 40 of the seawater electrolysis apparatus 10 (see FIG. 3), a condenser 110, and an auxiliary equipment cooling water heat exchanger 120 (reactor auxiliary equipment cooling water system heat source). Exchanger and turbine auxiliary cooling water system heat exchanger), a water discharge tank 130, an auxiliary equipment seawater system water discharge garden 140 for returning cooling water from the auxiliary cooling water heat exchanger 120 to the water discharge tank 130, and a discharge connection. And a tank 150.

ここで、取水槽40には、図2に示すように、海1から2個の取水口2および取水路3を介して冷却水(海水)を取水するための2台の海水取水ポンプ11(図3参照)と、補機冷却水熱交換器120に冷却水を供給するための6台の原子炉補機冷却水ポンプ41および3台のタービン補機冷却水ポンプ42と、復水器110へ冷却水を供給するための3台の循環水ポンプ43とが設置されている。   Here, as shown in FIG. 2, the water intake tank 40 has two seawater intake pumps 11 (for taking in cooling water (seawater) from the sea 1 via the two intake ports 2 and the intake path 3. FIG. 3), six reactor accessory coolant pumps 41 and three turbine accessory coolant pumps 42 for supplying coolant to the accessory coolant heat exchanger 120, and a condenser 110. And three circulating water pumps 43 for supplying cooling water to the pump.

放水槽130に戻された冷却水は、放水路4、放水接合槽150および2個の放水口5を介して海1に放水される。
また、各取水口2には、海水中に含まれる藻類や海中生物その他夾雑物を取り除くためのレイキ付きバースクリーンやロータリースクリーン等のスクリーンが設置されている。
The cooling water returned to the water discharge tank 130 is discharged to the sea 1 through the water discharge channel 4, the water discharge junction tank 150, and the two water discharge ports 5.
Also, each intake port 2 is provided with a screen such as a bar screen with a rake or a rotary screen for removing algae, marine organisms and other contaminants contained in seawater.

海水電解装置10は、図3に示すように、塩素(次亜塩素酸ナトリウム溶液)を製造する原料となる海水を取水するための海水取水ポンプ11(2台)と、海水中に含まれる夾雑物を取り除くための渦巻き式ストレーナ12とを備える。   As shown in FIG. 3, the seawater electrolysis apparatus 10 includes two (2) seawater intake pumps 11 for taking in seawater as a raw material for producing chlorine (sodium hypochlorite solution) and impurities contained in seawater. A spiral strainer 12 for removing objects.

海水電解装置10は、定検用に使用される部分と通常運転中に使用される部分とに分けられている。
定検用に使用される部分は、渦巻き式ストレーナ12と後述する脱気槽液位調節弁21を介して接続された低出力の定検用電解槽13と、定検用電解槽13に接続された定検用整流器14と、定検用整流器14に接続された出力電流設定器15とを備える。
通常運転中に使用される部分は、2台の高出力の電解槽16(電解槽(A)および電解槽(B))と、2台の電解槽16にそれぞれ接続された2台の整流器17(整流器(A)および整流器(B))と、2台の整流器17に接続された出力電流設定器18とを備える。
The seawater electrolysis apparatus 10 is divided into a part used for regular inspection and a part used during normal operation.
The part used for the regular inspection is connected to a low-output electrolytic cell 13 for constant inspection connected via a spiral strainer 12 and a deaeration tank liquid level control valve 21 described later, and to the electrolytic cell 13 for regular inspection. And the output current setting unit 15 connected to the rectifier 14.
The parts used during normal operation include two high-output electrolytic cells 16 (electrolytic cells (A) and (B)) and two rectifiers 17 connected to the two electrolytic cells 16 respectively. (Rectifier (A) and rectifier (B)), and an output current setter 18 connected to two rectifiers 17.

海水電解装置10は、定検用電解槽13および電解槽16から送れられてくる電解液(次亜塩素酸ナトリウム溶液)を貯留して水素などを脱気する装置として機能する脱気槽19と、脱気槽19の貯留水量を制御するための液位計(LT)20および脱気槽液位調節弁21(電動)と、脱気槽19における脱気の効率を良くするための送風機22とをさらに備える。   The seawater electrolysis device 10 includes a degassing tank 19 that functions as a device that stores the electrolytic solution (sodium hypochlorite solution) sent from the electrolytic cell 13 and the electrolytic cell 16 for regular inspection and degass hydrogen and the like. , A liquid level meter (LT) 20 for controlling the amount of water stored in the degassing tank 19 and a degassing tank liquid level control valve 21 (electrically driven), and a blower 22 for improving degassing efficiency in the degassing tank 19. And further comprising:

海水電解装置10は、脱気槽19に貯留された電解液を各電解槽16、各取水口2および取水槽40に送液するための注入ポンプ23をさらに備える。
電解液は、電解槽流量スイッチ付流量計(FIS)24を介して各電解槽16に送液され、取水槽注入流量調節弁前弁25(電動)を通されたのち各取水口流量スイッチ付流量計(FIS)26および各取水口注入流量調節弁27(手動)を介して各取水口2に送液されるとともに、取水槽流量スイッチ付流量計(FIS)28、取水槽注入流量調節弁29(手動)および取水槽注入切替弁30(電動)を介して取水槽40に送液される。
取水槽注入切替弁30は、後述する塩素強化注入運転装置60の取水槽注入切替弁制御部62(図11参照)によって切替制御されて取水槽40のA、BおよびC水路に電解液を順次注入するためのものである。
The seawater electrolysis apparatus 10 further includes an injection pump 23 for sending the electrolytic solution stored in the degassing tank 19 to each of the electrolytic tanks 16, each of the water intakes 2, and the water of the water intake tank 40.
The electrolytic solution is sent to each electrolytic cell 16 via a flow meter (FIS) 24 with an electrolytic cell flow switch, passes through an intake tank injection flow control valve front valve 25 (electrically driven), and then has an intake port flow switch. The liquid is fed to each intake 2 through a flow meter (FIS) 26 and each intake port injection flow control valve 27 (manual), and a flow meter (FIS) 28 with an intake tank flow switch, an intake tank injection flow control valve. The liquid is sent to the water intake tank 40 via the 29 (manual) and the intake tank injection switching valve 30 (electrically driven).
The intake tank injection switching valve 30 is switch-controlled by an intake tank injection switching valve control unit 62 (see FIG. 11) of the chlorine-enhanced injection operation device 60 described later, and the electrolyte is sequentially supplied to the A, B, and C channels of the intake tank 40. It is for injection.

海水電解装置10は、塩素強化注入運転制御に必要な機器として、塩素強化注入運転装置60が内蔵された海水電解装置制御盤51と、海水電解装置制御盤51と接続された放水口残留塩素濃度サンプリング装置52と、取水槽40に設置されるとともに海水電解装置制御盤51と接続された取水槽温度計53とをさらに備える。   The seawater electrolysis apparatus 10 includes a seawater electrolysis apparatus control panel 51 in which a chlorine enhancement injection operation apparatus 60 is incorporated, and a water outlet residual chlorine concentration connected to the seawater electrolysis apparatus control panel 51, as devices required for the chlorine enhancement injection operation control. It further includes a sampling device 52 and an intake tank thermometer 53 installed in the intake tank 40 and connected to the seawater electrolysis device control panel 51.

次に、海水電解装置10の塩素強化注入運転制御の考え方について、図4を参照して説明する。
放水口残留塩素濃度は、運用上から、週1回程度の放水接合槽150(図1参照)での手分析や、放水口残留塩素濃度サンプリング装置52(図3参照)による連続測定結果から海水電解装置10の定検用整流器14の通電電流値(電解電流値)を決定し、放水口残留塩素濃度をDPD法で0.02〜0.04ppmの範囲内になるよう調整を行っている。そのため、通電電流値は、夏季では高く、冬季では低く運用される。
このように、従来では、通電電流値の手動制御によって放水口残留塩素濃度を制御するように運用していたが、前述したように定検中に取水槽40の各水路(以下、「A水路,B水路およびC水路」と称する。)での海水ポンプ運転台数がアンバランス状態となると、以下の現象が発生することが知見として得られている。
Next, the concept of the chlorine enhanced injection operation control of the seawater electrolysis apparatus 10 will be described with reference to FIG.
From the operational point of view, the residual chlorine concentration in the seawater is determined from the results of manual analysis in the discharge junction tank 150 (see FIG. 1) about once a week and the continuous measurement by the sampling device 52 (see FIG. 3). The energizing current value (electrolytic current value) of the rectifier 14 for constant detection of the electrolysis apparatus 10 is determined, and adjustment is performed so that the residual chlorine concentration at the outlet is in the range of 0.02 to 0.04 ppm by the DPD method. Therefore, the current value is high in summer and low in winter.
As described above, in the related art, the operation was performed such that the concentration of residual chlorine at the outlet was controlled by manual control of the supplied current value. However, as described above, each of the channels (hereinafter referred to as “A channel”) of the water intake tank 40 during the regular inspection. , B channel and C channel "), the following phenomenon occurs when the number of operating seawater pumps becomes unbalanced.

塩素強化注入されると、次亜塩素酸ナトリウム溶液は海水より比重が重いため、一旦取水槽40の底部付近に滞留する。各水路に注入される塩素量は注入時間×注入濃度で表されるが、各水路の注入時間および注入濃度は一定であるため、一定量の塩素が均等に注入される。   When chlorine-reinforced injection is performed, the sodium hypochlorite solution temporarily stays near the bottom of the water intake tank 40 because the specific gravity of the sodium hypochlorite solution is higher than that of seawater. The amount of chlorine injected into each channel is represented by injection time × injection concentration. Since the injection time and the injection concentration in each channel are constant, a constant amount of chlorine is injected evenly.

各水路の海水ポンプ運転台数が異なると、注入された塩素を熱交換器から放水口5へ放出する流量が異なるため、滞留した塩素を放出する時間は、海水ポンプ運転台数が少ない水路ほど長くなり、海水ポンプ運転台数が多い水路ほど短くなる。そのため,1台運転水路では、放水口5に長く塩素が放出される。このとき、1台運転水路から2台運転水路に切り替わると、1台運転水路への塩素注入がなくなっても、取水槽40に滞留した塩素が放水路4に放出され続けている状態で2台運転水路からの塩素放出が始まるため、結果的に放水口5で重畳されて、放水口残留塩素濃度が上昇する現象が生じている。   If the number of operating seawater pumps in each channel is different, the flow rate of releasing the injected chlorine from the heat exchanger to the outlet 5 will be different, so the time to release the retained chlorine will be longer for the channels with the smaller number of operating seawater pumps. The shorter the number of operating seawater pumps, the shorter the channel. Therefore, chlorine is discharged to the discharge port 5 for a long time in the single-unit operation waterway. At this time, when switching from the single-unit operation channel to the two-unit operation channel, even if the chlorine injection into the single-unit operation channel stops, the two units remain in a state in which the chlorine retained in the water intake tank 40 is continuously discharged to the water discharge channel 4. Since the release of chlorine from the operation waterway starts, a phenomenon occurs in which the chlorine concentration is superimposed on the water outlet 5 and the residual chlorine concentration of the water outlet increases.

この現象を回避するために定検用整流器14の通電電流値を低下させると、見掛け上は放水口残留塩素濃度ピークを低下させることができるが、必要量の塩素が注入できなくなるおそれが生じる。   If the current value of the rectifier 14 for regular detection is reduced to avoid this phenomenon, the peak of the residual chlorine concentration in the water outlet can be reduced apparently, but the required amount of chlorine may not be injected.

これらの現象は海水温度が低下する時期に生じ易いことが知見として得られており、海中生物の減少に伴う塩素消費絶対量の低下がみられる場合に生じ易い。海水温度が上昇する際に起き難いのは、海中生物やスライムが活発に繁殖を開始しており、それらの除去に必要な塩素が消費され易くなるためであり、結果的に放水口残留塩素濃度は下がり傾向となるためである。   It has been found that these phenomena are likely to occur when the temperature of the seawater decreases, and are likely to occur when the absolute amount of chlorine consumption decreases due to a decrease in marine organisms. It is difficult to occur when the seawater temperature rises because marine organisms and slime are actively breeding and the chlorine required for their removal is likely to be consumed, and as a result, the concentration of residual chlorine in the outlet Is due to a downward trend.

これらの現象は取水槽40の各水路を8時間のインターバル(塩素強化注入インターバル)で切り替えるときに見られており、放水口残留塩素濃度は切替後の約3時間で上昇ピークを迎えている。   These phenomena are observed when the water channels of the water intake tank 40 are switched at intervals of 8 hours (chlorine strengthening injection interval), and the concentration of residual chlorine at the outlet reaches a peak approximately 3 hours after the switching.

そのため、放出される残留塩素濃度の重畳を回避し、各水路から放出される残留塩素量を分散させることにより、放水口残留塩素濃度の上昇を抑制する対策を検討した。   Therefore, measures to suppress the rise in the residual chlorine concentration at the outlet were studied by avoiding the overlap of the residual chlorine concentration released and dispersing the amount of residual chlorine released from each channel.

まず、塩素強化注入インターバルについて検討した。
上記の特許文献3の段落0034には、塩素剤または海水電解液の1日当たりの添加時間は30分以上が好ましく24時間添加してもよく、より好ましい添加時間は1〜24時間であり、添加は連続添加でもよく間欠添加でもよい旨が記載されている。
First, the chlorine strengthening injection interval was examined.
In paragraph 0034 of Patent Document 3, the addition time of the chlorinating agent or the seawater electrolyte per day is preferably 30 minutes or more, and may be added for 24 hours, more preferably 1 to 24 hours. Describes that it may be continuous addition or intermittent addition.

そこで、取水槽40は3つの水路に分割されているため、従来は8時間の塩素強化注入インターバルとしていたが、塩素強化注入インターバルを短縮して1回当たりの取水槽40の各水路の塩素の絶対量を少なくして、取水槽40の底部の塩素を排出し易くすることにより、水路切替後の塩素放出継続時間を短縮することとした。   Therefore, since the intake tank 40 is divided into three channels, the chlorine-enriched injection interval was conventionally set to 8 hours. However, the chlorine-enriched injection interval was shortened, and the chlorine content of each channel of the intake tank 40 was reduced once. By reducing the absolute amount and making it easier to discharge the chlorine at the bottom of the water intake tank 40, the chlorine release continuation time after switching the water channel was shortened.

塩素強化注入インターバルの短縮の根拠は、以下に示すとおりである。
塩素強化注入インターバルを2時間、1時間および30分として、放水接合槽150付近に設けた連続サンプリング装置の残留塩素濃度計測装置による指示値を測定した。
なお、注入する塩素の絶対量を少なくすることは防汚効果の低下および塩素注入開始時の海水成分による塩素分解効果により防汚効果がなくなるおそれがあるため、塩素強化注入インターバルの下限値は30分とした。
The grounds for shortening the chlorine strengthening injection interval are as follows.
With the chlorine strengthening injection intervals set to 2 hours, 1 hour and 30 minutes, the values indicated by the residual chlorine concentration measuring device of the continuous sampling device provided near the water discharge joining tank 150 were measured.
It should be noted that reducing the absolute amount of chlorine to be injected may lower the antifouling effect, and may degrade the antifouling effect due to the chlorine decomposition effect of the seawater component at the start of chlorine injection. Minutes.

海水ポンプの運転条件として、以下の条件で検証を行った。
A水路:原子炉補機冷却水ポンプ41運転中、タービン補機冷却水ポンプ42運転中
B水路:原子炉補機冷却水ポンプ41運転中
C水路:原子炉補機冷却水ポンプ41運転中
Verification was performed under the following conditions as operating conditions of the seawater pump.
A channel: Reactor accessory cooling water pump 41 is operating, turbine accessory cooling water pump 42 is operating B channel: Reactor accessory cooling water pump 41 is operating C channel: Reactor accessory cooling water pump 41 is operating

8時間の塩素強化注入インターバル(8時間注入)では、図5に示すように、C水路(1台運転水路)からA水路(2台運転水路)への切替後は、C水路(1台運転水路)から漸減しながら塩素が放出されるが、塩素注入が開始されたA水路(2台運転水路)から放出される塩素が重畳して大きなピークを形成することが分かる。
また、B水路(1台運転水路)からC水路(1台運転水路)への切替後の約3時間でピークを形成したのちに漸減する傾向がみられており、放水口残留塩素濃度は安定しないことが分かる。
In the 8-hour chlorine-strengthening injection interval (8-hour injection), as shown in FIG. 5, after switching from the C-channel (single-unit operation channel) to the A-line (two-unit operation channel), the C-channel (single-unit operation channel) It can be seen that chlorine is released while gradually decreasing from the water channel), but chlorine released from the water channel A (two-unit operation water channel) where chlorine injection has been started overlaps to form a large peak.
In addition, there is a tendency that a peak is formed in about 3 hours after switching from the B channel (single operating channel) to the C channel (single operating channel) and then gradually decreases. It turns out not to be.

2時間の塩素強化注入インターバル(2時間注入)では、図6に示すように、C水路(1台運転水路)からA水路(2台運転水路)への切替後は、C水路(1台運転水路)から漸減しながら塩素が放出されるが、塩素注入が開始されたA水路(2台運転水路)から放出される塩素が重畳しているが、C水路(1台運転水路)の放水口残留塩素濃度ベース値(安定時の放水口残留塩素濃度の値)を高い状態とならないようにコントロールできるため、A水路(2台運転水路)の放水口残留塩素濃度ピーク値はC水路(1台運転水路)の放水口残留塩素濃度ベース値と重畳したがピーク到達点を抑制することができた。   In the 2-hour chlorine strengthening injection interval (2-hour injection), as shown in FIG. 6, after switching from the C-channel (single-unit operation channel) to the A-channel (two-unit operation channel), the C-channel (single-unit operation channel) Chlorine is gradually released from the water channel), and chlorine released from the water channel A (two operating water channels) where chlorine injection has been started is superimposed, but the water outlet of the water channel C (one operating water channel) Since the residual chlorine concentration base value (the value of the residual chlorine concentration at the outlet at the time of stable operation) can be controlled so as not to be high, the peak value of the residual chlorine concentration at the outlet of the A channel (two operating channels) is the C channel (1 unit). Although this overlapped with the base value of the residual chlorine concentration at the outlet of the operating channel, the peak point could be suppressed.

1時間の塩素強化注入インターバル(1時間注入)では、図7に示すように、A〜C水路の3水路分の放水口残留塩素濃度が重畳されるため、却って放水口残留塩素濃度ピーク値が高い状態となり、8時間の塩素強化注入インターバルの放水口残留塩素濃度ピーク値とさほど変わらなかった。   In the 1-hour chlorine strengthening injection interval (1 hour injection), as shown in FIG. 7, the residual chlorine concentration at the outlet of the three channels A to C is superimposed. It was high and did not differ much from the peak value of the residual chlorine concentration at the outlet at the 8-hour chlorine-enriched injection interval.

30分の塩素強化注入インターバル(30分注入)では、図8に示すように、放水口残留塩素濃度ピークの発生は解消されず、放水口残留塩素濃度ベース値は低いままとなった。
この原因としては、通電電流値を増やせば、C水路(1台運転水路)の放水口残留塩素濃度ベース値の上昇によってA水路(2台運転水路)の放水口残留塩素濃度ピーク到達点が高くなると考えられる。
As shown in FIG. 8, at the 30-minute chlorine strengthening injection interval (30-minute injection), the occurrence of the peak of the residual chlorine concentration at the outlet was not eliminated, and the base value of the residual chlorine concentration at the outlet remained low.
The reason for this is that if the energizing current value is increased, the peak of the residual chlorine concentration at the outlet of the A channel (two operating channels) becomes higher due to an increase in the base value of the residual chlorine concentration at the outlet of the C channel (one operating channel). It is considered to be.

このように、塩素強化注入インターバルを短縮することにより、各水路から放出される放水口残留塩素濃度ベース値を抑えることで、重畳が起こっても放水口残留塩素濃度ピーク値を抑制することが可能となるため、通電電流値を大きく低下させなくても放水口残留塩素濃度ベース値を安定させた上で放水口残留塩素濃度ピーク値を抑制することが可能となることが分かった。   In this way, by shortening the chlorine strengthening injection interval, by suppressing the outlet chlorine concentration base value discharged from each channel, it is possible to suppress the outlet chlorine concentration peak value even when superposition occurs. Therefore, it was found that it was possible to stabilize the base value of the residual chlorine concentration at the outlet and to suppress the peak value of the residual chlorine concentration at the outlet without greatly reducing the energizing current value.

そこで、塩素強化注入インターバルを2時間とし、そのうえで放水口残留塩素濃度ベース値を一定制御とするよう海水電解装置10の定検用整流器14の通電電流値を自動調整することについて検討した。   Therefore, it was studied to automatically adjust the energizing current value of the rectifier 14 for constant detection of the seawater electrolysis apparatus 10 so that the chlorine-enhanced injection interval was set to 2 hours and the base value of the residual chlorine concentration at the outlet was kept constant.

まず、図9に示す実測データおよび図10に示す放水口残留塩素濃度を入力とした定検用整流器電流制御について説明する。
(1)定検用整流器電流制御の目的
放水口残留塩素濃度は、協定値が決まっており、検出限界(DPD法による手分析において0.05ppm)以下にする必要がある。このため、1週間に1度手動によるサンプリングを行い、放水口残留塩素濃度を協定値以下とするように通電電流値を決定し、手動で調整を行っている。
その際、海洋条件の変化により海中生物やスライムの発生が異なると塩素消費量も異なるため、海水温度が一定であっても必ずしも放水口残留塩素濃度が一定とならない可能性があるので、自動制御により海洋条件に合った通電電流値を自動制御する必要がある。
First, the rectifier current control for constant detection using the measured data shown in FIG. 9 and the residual chlorine concentration at the outlet shown in FIG. 10 as inputs will be described.
(1) Purpose of rectifier current control for constant detection The residual chlorine concentration at the outlet of the water outlet is determined to be an agreement value, and it must be below the detection limit (0.05 ppm in manual analysis by the DPD method). For this reason, manual sampling is performed once a week, and the supplied current value is determined so that the residual chlorine concentration at the outlet is equal to or less than the agreement value, and the adjustment is manually performed.
At that time, if the generation of marine organisms and slime is different due to changes in ocean conditions, the chlorine consumption will also be different, so even if the seawater temperature is constant, the concentration of residual chlorine at the outlet may not always be constant, so automatic control Therefore, it is necessary to automatically control the value of the supplied current that matches the ocean conditions.

(2)定検用整流器電流制御の入力条件についての整理
通電電流値は、現状ではワンポイントの手分析結果により通電電流設定値を決定し、例えば1週間を通してこの通電電流設定値で運用しているため、海中生物の繁茂状態や海水温度の変化等の海洋条件が変わると、必ずしも最適な通電電流値ではなくなる可能性があった。
手分析に比較し、連続サンプリング装置では海洋条件の変化に伴う残留塩素濃度がリアルタイムに出力されるため、通電電流値設定の入力条件として、より現実に即した定検用整流器電流制御が可能となる。よって、制御対象は、残留塩素濃度として、安定時の放水口残留塩素濃度の値(放水口残留塩素濃度ベース値)を制御対象とする定検用整流器電流制御とした。
(2) Arrangement of input conditions for rectifier rectifier current control For the current value, the current value is determined based on the results of one-point manual analysis at present. Therefore, when the marine conditions such as the marine organisms' prosperity and the seawater temperature change, the current value may not always be the optimal current value.
Compared to manual analysis, the continuous sampling device outputs the residual chlorine concentration associated with changes in ocean conditions in real time, making it possible to control the rectifier current for regular inspection more realistically as an input condition for setting the current value. Become. Therefore, the control target was the rectifier current control for constant detection, in which the value of the residual chlorine concentration at the outlet at stable time (base value of the residual chlorine concentration at the outlet) was used as the residual chlorine concentration.

(3)定検用整流器電流制御の考え方
図9(a),(b)に、放水口残留塩素濃度ベース値が現れる時期および海水温度の低下時期の放水口残留塩素濃度変化グラフの一例を示す。
実測データ期間中は、取水槽40の各水路間の海水ポンプアンバランス運転(以下、「取水槽水路間海水ポンプアンバランス運転」と称する。)が発生している状態である。
放水口残留塩素濃度ベース値と放水口残留塩素濃度ピーク値との関係性について説明する。
図9(a)に示す実測データによれば、海水温度が最高値となる8月では、通電電流170Aで放水口残留塩素濃度ベース値は約0.004ppmとなっている。その後、9月1日からは、海水温度が低下してきており、放水口残留塩素濃度ベース値は漸次上昇傾向となっている。
また、図9(b)に示す実測データによれば、10月15日からの海水温度の低下に伴い放水口残留塩素濃度ベース値が徐々に高くなっていることが確認され、10月19日には海水温度が11時間で約0.5℃程度の低下が発生して放水口残留塩素濃度ピーク値が顕著に高くなった。また、放水口残留塩素濃度ベース値が上昇したら放水口残留塩素濃度ピーク値も上昇する傾向がみられる。
以上の実測データから、放水口残留塩素濃度ベース値が上昇すると放水口残留塩素濃度ピーク値の上昇量が大きくなる傾向があることが分かる。
ただし、海水温度と放水口残留塩素濃度ピークの発生との関係性に着目してみると、海水温度は細かく変動しているが、放水口残留塩素濃度ピークの発生は規則性がない。
まとめると、海水温度低下→放水口残留塩素濃度ベース値上昇は強い相関があり、放水口残留塩素濃度ベース値上昇→放水口残留塩素濃度ピーク値上昇も強い相関があるが、海水温度低下→放水口残留塩素濃度ピーク値上昇は比較的弱い相関であることが分かった。
よって、放水口残留塩素濃度ピーク値上昇は放水口残留塩素濃度ベース値との相関性が大きいため、放水口残留塩素濃度ベース値に着目すればよいことが結論付けられる。
(3) Concept of rectifier current control for constant detection Figs. 9 (a) and 9 (b) show an example of a change graph of the residual chlorine concentration at the outlet when the base value of the residual chlorine concentration at the outlet and when the seawater temperature decreases. .
During the actual measurement data period, the seawater pump unbalance operation between the water channels of the water intake tank 40 (hereinafter, referred to as “seawater pump unbalance operation between water intake tank waterways”) is occurring.
The relationship between the outlet chlorine concentration base value and the outlet chlorine concentration peak value will be described.
According to the actual measurement data shown in FIG. 9A, in August when the seawater temperature reaches the highest value, the discharge water outlet residual chlorine concentration base value is about 0.004 ppm at a current of 170 A. Since September 1, the seawater temperature has been decreasing, and the base value of the residual chlorine concentration at the outlet has been gradually increasing.
According to the actual measurement data shown in FIG. 9B, it was confirmed that the base value of the residual chlorine concentration at the outlet was gradually increased with a decrease in the seawater temperature from October 15, and it was confirmed that October 19 The seawater temperature dropped about 0.5 ° C. in 11 hours, and the peak value of the residual chlorine concentration at the outlet was significantly increased. In addition, when the base value of the residual chlorine concentration at the outlet increases, the peak value of the residual chlorine concentration at the outlet tends to increase.
From the actual measurement data described above, it can be seen that when the base value of the residual chlorine concentration at the outlet increases, the amount of increase in the peak value of the residual chlorine concentration at the outlet tends to increase.
However, paying attention to the relationship between the seawater temperature and the occurrence of the outlet chlorine concentration peak, the seawater temperature fluctuates finely, but the occurrence of the outlet chlorine concentration peak is not regular.
In summary, there is a strong correlation between a decrease in seawater temperature → a rise in the base value of the residual chlorine concentration at the outlet, and a rise in the base value of the residual chlorine concentration in the outlet → a rise in the peak value of the residual chlorine concentration in the discharge port. It was found that the increase in the peak of the residual chlorine concentration at the mouth was a relatively weak correlation.
Therefore, it can be concluded that the peak value of the residual chlorine concentration at the outlet is highly correlated with the base value of the residual chlorine concentration at the outlet.

以上、海水温度低下、海中生物発生状況、放水口残留塩素濃度ベース値および海水ポンプ運転状況の各パラメータ変化で放水口残留塩素濃度ピーク発生の有無が考えられたが、そのうちの放水口残留塩素濃度ベース値が放水口残留塩素濃度ピーク発生に影響を与えることが分かったとともに制御が容易であるため、放水口残留塩素濃度ベース値を制御対象とする。
なお、放水口残留塩素濃度ベース値の制御目標値は、季節要因や海洋条件に変化が生じるが、例えば、海水温度が低下傾向になる直前の放水口残留塩素濃度ベース値(上述した実測データでは0.004ppm)とする。
As described above, it was considered whether or not there was a peak of the residual chlorine concentration at the outlet at the change of each parameter of the seawater temperature drop, the occurrence of marine organisms, the base value of the residual chlorine concentration at the outlet, and the operating condition of the seawater pump. Since it was found that the base value affected the peak of the residual chlorine concentration at the outlet, and the control was easy, the base value of the residual chlorine concentration at the outlet was used as the control target.
Note that the control target value of the outlet residual chlorine concentration base value varies depending on seasonal factors and marine conditions. For example, the outlet residual chlorine concentration base value immediately before the seawater temperature tends to decrease (in the above-described measured data, 0.004 ppm).

次に、海水温度が低下傾向になる直前の放水口残留塩素濃度ベース値を制御目標値とした定検用整流器電流制御の効果について、図10を参照して説明する。
海水温度の低下による放水口残留塩素濃度ベース値の上昇+海水ポンプ運転台数1→2台切替後、放水口残留塩素濃度ピーク発生の遅れ時間が2時間であることを考慮して、放水口残留塩素濃度ベース値が制御目標値(=0.004ppm)を上回っていたら通電電流値を10A下げる制御を行う。
これにより、図10の右側に示すように、次に海水ポンプ運転台数が1台から2台に切り替わるまでに通電電流値を下げられるため、その後の放水口残留塩素濃度ピーク値の上昇量を抑制することができる。
海水温度が上昇する場合は、この逆の制御となる。
Next, the effect of the rectifier current control for regular inspection using the outlet discharge residual chlorine concentration base value immediately before the seawater temperature tends to decrease as the control target value will be described with reference to FIG.
Increase in the base value of residual chlorine concentration at the outlet due to a decrease in seawater temperature + After switching the number of operating seawater pumps from 1 to 2 units, take into account that the delay time of the peak of the residual chlorine concentration at the outlet is 2 hours, and If the chlorine concentration base value exceeds the control target value (= 0.004 ppm), control is performed to lower the energizing current value by 10 A.
As a result, as shown on the right side of FIG. 10, the energizing current value can be reduced until the number of operating seawater pumps next time is switched from one to two, so that the subsequent increase in the peak value of the residual chlorine concentration in the water outlet is suppressed. can do.
When the seawater temperature rises, the reverse control is performed.

次に、本発明の一実施例による塩素強化注入運転装置60について、図11〜15を参照して説明する。
塩素強化注入運転装置60は、海水ポンプ運転台数の1→2台以上切替移行パターン(1台から2台以上の切替行パターン)が発生した場合、その時間(発生検出時間)を記憶し、その後に2台以上運転水路(海水ポンプ運転台数が2台以上の水路)が取水槽注入切替弁30によって閉じられてから2時間後の放水口残留塩素濃度ベース値を取得して放水口残留塩素濃度ベース値の制御目標値と比較し、定検用整流器14の通電電流値の上げ下げ制御を行うものとする。
なお、1→2台以上切替移行パターン(すなわち、取水槽水路間海水ポンプアンバランス運転)が解消しているならば、制御を停止する。
Next, a chlorine strengthening injection operation device 60 according to an embodiment of the present invention will be described with reference to FIGS.
The chlorine-enhanced injection operation device 60 stores the time (occurrence detection time) when a switching transition pattern (1 to 2 or more switching line patterns) of 1 → 2 or more of the number of operating seawater pumps occurs, and thereafter 2 hours after the operation waterway (the waterway with two or more seawater pumps operated) is closed by the intake tank injection switching valve 30, the water outlet residual chlorine concentration base value is obtained two hours after, and the water outlet residual chlorine concentration is obtained. It is assumed that the control value is compared with the control target value of the base value, and the energizing current value of the rectifier 14 for regular detection is increased or decreased.
If the switching transition pattern of 1 → 2 or more units (that is, the seawater pump unbalance operation between the intake tank and the waterway) has been eliminated, the control is stopped.

塩素強化注入運転装置60は、図11に示すように、海水ポンプ運転信号部61と、取水槽注入切替弁制御部62と、ベース値制御トリガ設定部63と、放水口残留塩素濃度ベース値取得・比較制御部64とを具備する。   As shown in FIG. 11, the chlorine-enhanced injection operation device 60 includes a seawater pump operation signal unit 61, an intake tank injection switching valve control unit 62, a base value control trigger setting unit 63, and a discharge port residual chlorine concentration base value acquisition. A comparison control unit 64 is provided.

ここで、海水ポンプ運転信号部61は、以下の条件が成立していることを前提に制御を行う。
(条件1)取水槽注入切替弁30の切替え順序がA水路→B水路→C水路→A水路の順となっている。
(条件2)3つの水路のうち循環水ポンプ43を除く海水ポンプ運転台数が0台である水路は1つの水路のみとする。
Here, the seawater pump operation signal unit 61 performs control on the assumption that the following conditions are satisfied.
(Condition 1) The switching order of the intake tank injection switching valve 30 is in the order of A channel, B channel, C channel, and A channel.
(Condition 2) Out of the three waterways, only one waterway has zero seawater pumps except the circulating water pump 43.

具体的には、海水ポンプ運転信号部61は、図12に示すように、循環水ポンプ43を除く各水路の海水ポンプ運転台数を記憶する(ステップS11,S21,S31)とともに、各水路の海水ポンプ運転台数をモニタする。   Specifically, as shown in FIG. 12, the seawater pump operation signal unit 61 stores the number of operating seawater pumps in each waterway except for the circulating water pump 43 (steps S11, S21, S31), and also stores the seawater in each waterway. Monitor the number of operating pumps.

自水路の海水ポンプ運転台数が0台であれば、自水路の海水ポンプ運転台数の記憶をバイパスして、自水路の海水ポンプ運転台数のモニタを停止する(S12〜S14,S22〜S24,S32〜S34)。   If the number of operating seawater pumps in the own channel is 0, the monitoring of the number of operating seawater pumps in the own channel is stopped by bypassing the storage of the number of operating seawater pumps in the own channel (S12 to S14, S22 to S24, S32). To S34).

自水路の海水ポンプ運転台数が1台であれば、一つ先の切替対象の水路(例えば自水路がA水路であればB水路を指す。以下では「一つ先切替対象水路」と称する。)の海水ポンプ運転台数を把握し、一つ先切替対象水路の海水ポンプ運転台数が1台であれば「問題無し」と判定し、一方、一つ先切替対象水路の海水ポンプ運転台数が2台以上であれば「取水槽水路間海水ポンプアンバランス運転」と判定する(S15〜S18,S25〜S28,S35〜S38,S41)。   If the number of operating seawater pumps in the own channel is one, the next target channel (for example, if the own channel is A channel, indicates channel B. Hereinafter, it will be referred to as "one-switch target channel"). ), The number of operating seawater pumps in the channel to be switched one ahead is determined to be “no problem” if the number of operating seawater pumps in the channel to be switched ahead is one. If the number is equal to or more than the number of the water tanks, it is determined that the operation is "unbalance operation of the seawater pump between the intake tanks and the waterways" (S15 to S18, S25 to S28, S35 to S38, S41).

自水路の海水ポンプ運転台数が2台以上であれば、そのままとする(S19,S29,S39)。   If the number of operating seawater pumps in the own waterway is two or more, it is left as it is (S19, S29, S39).

一つ先切替対象水路の海水ポンプ運転台数が0台であれば、二つ先の切替対象の水路(例えば自水路がA水路であればC水路を指す。以下では「二つ先切替対象水路」と称する。)の海水ポンプ運転台数を把握し、二つ先切替対象水路の海水ポンプ運転台数が1台であれば「問題無し」と判定し、一方、二つ先切替対象水路の海水ポンプ運転台数が2台以上であれば「取水槽水路間海水ポンプアンバランス運転」と判定する(S15〜S18,S25〜S28,S35〜S38,S41)。   If the number of operating seawater pumps in the one-way switching target channel is 0, the two-way switching target channel (for example, if the own channel is A channel, indicates channel C. Hereinafter, the "two-point switching target channel" ). The number of operating seawater pumps in the two-way switching target waterway is determined to be "no problem" if the number of operating seawater pumps in the two-way switching target waterway is one. If the number of operating units is two or more, it is determined to be "seawater pump unbalance operation between intake tank channels" (S15 to S18, S25 to S28, S35 to S38, S41).

海水ポンプ運転信号部61は、以上の判定を示す海水ポンプ運転判定信号を取水槽注入切替弁制御部62に出力する。   The seawater pump operation signal unit 61 outputs a seawater pump operation determination signal indicating the above determination to the water tank injection switching valve control unit 62.

取水槽注入切替弁制御部62は、海水ポンプ運転信号部61から入力される海水ポンプ運転判定信号に応じて、図13に示すように、自水路の海水ポンプ運転台数が0台であれば、自水路の取水槽注入切替弁30の全閉信号を発信して、自水路の取水槽注入切替弁30が開かれることを阻止する(ステップS111,S121,S132)。
これは、運転していない水路に塩素が不必要に注入され、海水ポンプ再起動時に高濃度の塩素が放水口に放出されることを防止するためのインターロックである。
According to the seawater pump operation determination signal input from the seawater pump operation signal unit 61, as shown in FIG. 13, if the number of operating seawater pumps in the own water channel is 0, A fully closed signal of the water intake tank injection switching valve 30 of the own water channel is transmitted to prevent the intake water tank injection switching valve 30 of the own water channel from being opened (steps S111, S121, and S132).
This is an interlock for preventing chlorine from being unnecessarily injected into a non-operated waterway and releasing high-concentration chlorine to the outlet when the seawater pump is restarted.

また、取水槽注入切替弁制御部62は、外部から定検用電解槽13の通電開始信号が入力されると、海水ポンプ運転信号部61から入力される海水ポンプ運転判定信号に基づいて取水槽注入切替弁30の開閉制御を行う。   Further, when an energization start signal for the constant test electrolytic tank 13 is input from outside, the intake tank injection switching valve control unit 62 determines the intake tank based on the seawater pump operation determination signal input from the seawater pump operation signal unit 61. Open / close control of the injection switching valve 30 is performed.

すなわち、A水路の取水槽注入切替弁30が閉じられていると、B,C水路取水槽注入切替弁制御サブルーチンを起動して、BおよびC水路の取水槽注入切替弁30を2時間インターバルで交互に開閉させる(ステップS112)。
B水路の取水槽注入切替弁30が閉じられていると、AおよびC水路取水槽注入切替弁制御サブルーチンを起動して、CおよびA水路の取水槽注入切替弁30を2時間インターバルで交互に開閉させる(ステップS122)。
C水路の取水槽注入切替弁30が閉じられていると、AおよびB水路取水槽注入切替弁制御サブルーチンを起動して、AおよびB水路の取水槽注入切替弁30を2時間インターバルで交互に開閉させる(ステップS132)。
That is, if the intake tank injection switching valve 30 of the A channel is closed, the B and C channel intake tank injection switching valve control subroutine is started, and the intake tank injection switching valves 30 of the B and C channels are set at two-hour intervals. It is opened and closed alternately (step S112).
When the intake tank injection switching valve 30 of the B channel is closed, the A and C channel intake tank injection switching valve control subroutine is started, and the intake tank injection switching valves 30 of the C and A channels are alternately switched at 2 hour intervals. It is opened and closed (step S122).
When the intake tank injection switching valve 30 of the C channel is closed, the A and B channel intake tank injection switching valve control subroutine is started, and the intake tank injection switching valves 30 of the A and B channels are alternately switched at 2 hour intervals. It is opened and closed (step S132).

なお、全水路が海水ポンプ1台以上で運転されている場合は、A、BおよびC水路取水槽注入切替弁制御サブルーチンを起動して、A、BおよびC水路の取水槽注入切替弁30をA水路の取水槽注入切替弁30→B水路の取水槽注入切替弁30→C水路の取水槽注入切替弁30→A水路の取水槽注入切替弁30の順に2時間インターバルで開閉させる(ステップS141)。   When all the waterways are operated by one or more seawater pumps, the A, B and C waterway intake tank injection switching valve control subroutines are started, and the intake tank injection switching valves 30 of the A, B and C waterways are activated. The intake / injection tank switching valve 30 of the A channel → the intake tank / injection switching valve 30 of the B channel → the intake tank / injection switching valve 30 of the C channel → the intake tank / injection switching valve 30 of the A channel are opened and closed at intervals of 2 hours (step S141). ).

ベース値制御トリガ設定部63は、1→2台以上切替移行パターンと取水槽水路間海水ポンプアンバランス運転発生とのANDの条件が成立すると放水口残留塩素濃度ピークが発生するため、放水口残留塩素ピーク値を抑制するための制御開始時間(発生検出時間)を記憶するためのものである。
なお、ベース値制御トリガ設定部63の動作パターンは、1水路注入停止時および全水路注入時の2つに分かれ、2台運転水路の取水槽注入切替弁30が全閉されてから2時間後に現れる安定した放水口残留塩素濃度ベース値を取得する。
The base value control trigger setting unit 63 determines whether the peak of the residual chlorine concentration in the outlet is generated when the AND condition of the switching transition pattern of 1 → 2 or more units and the occurrence of the unbalance operation of the seawater pump between the intake tank and the water channel is generated, and thus the residual of the outlet remains. This is for storing a control start time (occurrence detection time) for suppressing the chlorine peak value.
The operation pattern of the base value control trigger setting unit 63 is divided into two, that is, when one channel is stopped and when all channels are injected, two hours after the intake tank injection switching valve 30 of the two-unit operation channel is fully closed. Obtain the stable outflow outlet residual chlorine concentration base value that appears.

具体的には、図14に示すように、取水槽注入切替弁制御部62でB,C水路取水槽注入切替弁制御サブルーチンが起動される(ステップS211)とともに海水ポンプ運転信号部61で「B水路1台運転およびC水路2台以上運転」が検出される(ステップS212)と、C水路(2台以上運転)の取水槽注入切替弁30が全閉された時間を記憶し(S213)、2時間の塩素強化注入タイマを起動させたのち(ステップS261)、C水路の取水槽注入切替弁30が全閉された2時間後の放水口残留濃度ベース値を取得させるための放水口残留濃度ベース値取得トリガ信号を放水口残留塩素濃度ベース値取得・比較制御部64に出力する(ステップS262)。   More specifically, as shown in FIG. 14, the intake tank injection switching valve control section 62 starts the B and C waterway intake tank injection switching valve control subroutine (step S211), and the seawater pump operation signal section 61 outputs "B". When "one waterway operation and two or more C waterways operation" is detected (step S212), the time when the intake tank injection switching valve 30 of the C waterway (two or more waterways operation) is fully closed is stored (S213). After activating the 2-hour chlorine-enriched injection timer (step S261), the water outlet residual concentration for obtaining the water outlet residual concentration base value 2 hours after the intake tank injection switching valve 30 of the C channel is fully closed. A base value acquisition trigger signal is output to the water outlet residual chlorine concentration base value acquisition / comparison control unit 64 (step S262).

取水槽注入切替弁制御部62でC,A水路取水槽注入切替弁制御サブルーチンが起動される(ステップS221)とともに海水ポンプ運転信号部61で「C水路1台運転およびA水路2台以上運転」が検出される(ステップS222)と、A水路(2台以上運転)の取水槽注入切替弁30が全閉された時間を記憶し(S223)、2時間の塩素強化注入タイマを起動させたのち(ステップS261)、A水路の取水槽注入切替弁30が全閉された2時間後の放水口残留濃度ベース値を取得させるための放水口残留濃度ベース値取得トリガ信号を出力する(ステップS262)。   The intake tank injection switching valve control unit 62 starts the C and A water channel intake tank injection switching valve control subroutine (step S221), and the seawater pump operation signal unit 61 “operates one C channel and two or more A channels”. Is detected (step S222), the time when the intake tank injection switching valve 30 of the A channel (two or more operation) is fully closed is stored (S223), and the 2-hour chlorine-enhanced injection timer is started. (Step S261), a water outlet residual concentration base value acquisition trigger signal for acquiring the water outlet residual concentration base value two hours after the intake tank injection switching valve 30 of the A channel is fully closed (Step S262). .

取水槽注入切替弁制御部62でA,B水路取水槽注入切替弁制御サブルーチンが起動される(ステップS231)とともに海水ポンプ運転信号部61で「A水路1台運転およびB水路2台以上運転」が検出される(ステップS232)と、B水路(2台以上運転)の取水槽注入切替弁30が全閉された時間を記憶し(S233)、2時間の塩素強化注入タイマを起動させたのち(ステップS261)、B水路の取水槽注入切替弁30が全閉された2時間後の放水口残留濃度ベース値を取得させるための放水口残留濃度ベース値取得トリガ信号を出力する(ステップS262)。   The intake tank injection switching valve control unit 62 starts the A and B waterway intake tank injection switching valve control subroutine (step S231), and the seawater pump operation signal unit 61 “operates one A channel and two or more B channels”. Is detected (step S232), the time when the water intake tank injection switching valve 30 of the B channel (two or more operation) is fully closed is stored (S233), and the 2-hour chlorine-enriched injection timer is started. (Step S261), a water outlet residual concentration base value acquisition trigger signal for acquiring the water outlet residual concentration base value two hours after the intake tank injection switching valve 30 of the B channel is fully closed (Step S262). .

取水槽注入切替弁制御部62でA,B,C水路取水槽注入切替弁制御サブルーチンが起動される(ステップS241)とともに海水ポンプ運転信号部61で「B水路1台運転およびC水路2台以上運転」、「C水路1台運転およびA水路2台以上運転」または「A水路1台運転およびB水路2台以上運転」が検出される(ステップS212,S222,S232)と、2台以上運転水路の取水槽注入切替弁30が全閉された時間を記憶し(S251)、2時間の塩素強化注入タイマを起動させたのち(ステップS261)、2台以上運転水路の取水槽注入切替弁30が全閉された2時間後の放水口残留濃度ベース値を取得させるための放水口残留濃度ベース値取得トリガ信号を出力する(ステップS262)。   The intake tank injection switching valve control unit 62 starts the A, B, and C waterway intake tank injection switching valve control subroutine (step S241), and the seawater pump operation signal unit 61 outputs "one B water channel operation and two or more C water channels." If "operation", "operation of one C channel and operation of two or more A water channels" or "operation of one A channel and operation of two or more B water channels" is detected (steps S212, S222, and S232), two or more vehicles are operated. The time at which the water intake tank injection switching valve 30 is fully closed is stored (S251), and a two-hour chlorine-enhanced injection timer is started (Step S261), and two or more intake water tank injection switching valves 30 for operating water channels. Then, a water outlet residual concentration base value acquisition trigger signal for acquiring a water outlet residual concentration base value two hours after is completely closed is output (step S262).

放水口残留塩素濃度ベース値取得・比較制御部64は、定検用整流器14の通電電流値の1回の制御値(以下、「通電電流制御値」と称する。)を10Aとし、通電電流上限値を180Aとするとともに通電電流下限値を110A(すなわち、海水温度が低下する時期の通電電流値の調整幅を70A)として、2台以上運転水路の取水槽注入切替弁30が全閉された2時間後の放水口残留濃度ベース値に基づいて定検用整流器14の通電電流値の制御を行う。   The water outlet residual chlorine concentration base value acquisition / comparison control unit 64 sets a single control value (hereinafter, referred to as a “conduction current control value”) of a conduction current value of the rectifier 14 for regular detection to 10 A, and sets a maximum conduction current. The value was set to 180 A, and the lower limit value of the energizing current was set to 110 A (that is, the adjustment range of the energizing current value at the time when the seawater temperature decreased was 70 A). The current value of the constant detection rectifier 14 is controlled based on the water outlet residual concentration base value after 2 hours.

具体的には、図15に示すように、ベース値制御トリガ設定部63から放水口残留濃度ベース値取得トリガ信号が入力されると(ステップS311)、出力電流設定器15から定検用整流器14の通電電流値を取得するとともに、放水口残留塩素濃度サンプリング装置52から放水口残留塩素濃度ベース値を取得して、取得した通電電流値および放水口残留塩素濃度ベース値を記憶する(ステップS312)。   Specifically, as shown in FIG. 15, when a trigger signal for acquiring a base value of the concentration of the water outlet is input from the base value control trigger setting unit 63 (step S311), the rectifier 14 for regular detection is output from the output current setter 15. And a base value of the residual chlorine concentration of the water outlet from the water outlet residual chlorine concentration sampling device 52, and stores the obtained current value and the base value of the residual chlorine concentration of the water outlet (step S312). .

また、放水口残留塩素濃度ベース値取得・比較制御部64は、取得した放水口残留塩素濃度ベース値と制御目標値(=0.004ppm)との比較処理を行う(ステップS313)。   Further, the water outlet residual chlorine concentration base value acquisition / comparison control unit 64 performs a comparison process between the acquired water outlet residual chlorine concentration base value and the control target value (= 0.004 ppm) (step S313).

その結果、取得した放水口残留塩素濃度ベース値が制御目標値と同一であると、定検用整流器14の通電電流値をそのままとする(ステップS314)。   As a result, if the obtained base value of the residual chlorine concentration at the outlet is the same as the control target value, the current flowing through the rectifier 14 for regular detection is left as it is (step S314).

一方、取得した放水口残留塩素濃度ベース値が制御目標値よりも大きいと、取得した通電電流値が通電電流下限値(=110A)か否かを調べる(ステップS315)。   On the other hand, if the acquired outlet water residual chlorine concentration base value is larger than the control target value, it is checked whether or not the acquired energizing current value is the energizing current lower limit value (= 110 A) (step S315).

その結果、取得した通電電流値が通電電流下限値(=110A)以上であると、通電電流値を通電電流制御値(=10A)ほど下げるように指示する通電電流値下げ指示信号を出力電流設定器15に出力する(ステップS316)。
これにより、定検用整流器14の通電電流値が出力電流設定器15によって10Aほど下げられる。
As a result, if the obtained energizing current value is equal to or more than the energizing current lower limit value (= 110 A), the energizing current value lowering instruction signal instructing the energizing current value to decrease by the energizing current control value (= 10 A) is output to the output current setting device. 15 (step S316).
Thereby, the current value of the rectifier 14 for regular detection is reduced by about 10 A by the output current setting device 15.

一方、取得した通電電流値が通電電流下限値(=110A)であると、定検用整流器14の通電電流値をそのままとする(ステップS314)。   On the other hand, if the acquired energizing current value is the energizing current lower limit value (= 110 A), the energizing current value of the rectifier 14 for regular detection is left as it is (step S314).

また、ステップS313において取得した放水口残留塩素濃度ベース値が制御目標値よりも小さいと、取得した通電電流値が通電電流上限値(=180A)か否かを調べる(ステップS317)。   If the water outlet residual chlorine concentration base value obtained in step S313 is smaller than the control target value, it is checked whether the obtained energizing current value is the energizing current upper limit value (= 180A) (step S317).

その結果、取得した通電電流値が通電電流上限値(=180A)以下であると、通電電流値を通電電流制御値(=10A)ほど上げるように指示する通電電流値上げ指示信号を出力電流設定器15に出力する(ステップS318)。
これにより、定検用整流器14の通電電流値が出力電流設定器15によって10Aほど上げられる。
As a result, if the obtained energizing current value is equal to or less than the energizing current upper limit value (= 180 A), the energizing current value increase instruction signal for instructing to increase the energizing current value by the energizing current control value (= 10 A) is output to the output current setting device. 15 (step S318).
As a result, the current flowing through the rectifier 14 for regular detection is increased by about 10 A by the output current setting unit 15.

一方、取得した通電電流値が通電電流上限値(=180A)であると、定検用整流器14の通電電流値をそのままとする(ステップS314)。   On the other hand, if the acquired energizing current value is the energizing current upper limit value (= 180 A), the energizing current value of the rectifier 14 for regular detection is left as it is (step S314).

放水口残留塩素濃度ベース値取得・比較制御部64は、以上の動作を繰り返し行って、水路間での運転台数のアンバランス状態が継続中は常に放水口残留塩素濃度ベース値を監視して定検用整流器14の通電電流値の制御を行う。
これにより、放水口残留塩素濃度ベース値を一定にするよう制御できるため、効果的かつ結果的に放水口残留塩素濃度ピーク値を抑制することができる。
The discharge port residual chlorine concentration base value acquisition / comparison control unit 64 repeats the above operation to constantly monitor and determine the discharge port residual chlorine concentration base value while the unbalanced number of operating units between the waterways continues. The current value of the detection rectifier 14 is controlled.
This makes it possible to control the outlet water residual chlorine concentration base value to be constant, so that it is possible to effectively and eventually suppress the outlet water residual chlorine concentration peak value.

なお、以上では、塩素強化注入インターバルを2時間として説明したが、発電所の水路面積および海水ポンプ流量および海水条件により、2時間以外としてもよい。
また、通電電流値、遅延時間および制御目標値は、実機データの運転データを採取して決定するものであるから、ここで挙げた数値に汎用性はなく、発明者で確認した固有のものである。
In the above description, the chlorine strengthening injection interval is described as 2 hours, but may be other than 2 hours depending on the channel area of the power plant, the flow rate of the seawater pump, and seawater conditions.
Further, since the energized current value, the delay time, and the control target value are determined by collecting the operation data of the actual machine data, the numerical values listed here are not versatile, but are unique values confirmed by the inventor. is there.

次に、副次的効果として、塩素強化注入インターバルを2時間で運用するメリットについて説明する。
海中生物は海水温度により繁殖が変化することについては上述したが、日中太陽光が海面に照射されてもプランクトン類が繁殖するため、海水温度に関らないことも予想される。
塩素強化注入インターバルが2時間であれば、日中も頻繁に切り替られることになり、8時間時と比べある水路に日中注入されないことはなく、効果的な防汚効果が期待できる。
Next, as a secondary effect, a merit of operating the chlorine strengthening injection interval in two hours will be described.
As mentioned above, marine organisms vary in reproduction depending on the seawater temperature. However, even if sunlight is irradiated on the sea surface during the day, plankton species will proliferate, and it is expected that marine organisms will not be affected by seawater temperature.
If the chlorine-enhanced injection interval is 2 hours, it will be switched more frequently during the day, so that it will not be injected into the waterway during the day than at 8 hours, and an effective antifouling effect can be expected.

また、放水口残留塩素濃度変化が平坦化できれば,一層の防汚効果を得るため通電電流値の基準値を上昇させることができ、防汚効果の向上に寄与できる。ちなみに、復水器や熱交換器細管などに強力に付着するフジツボ類などの除去については、知見により0.02ppm程度の放水口残留塩素濃度で制御する必要があり、制御目標値は0.03ppm±0.01ppm程度で通年運用できれば、効果的であることが得られている。   In addition, if the change in the residual chlorine concentration at the outlet can be flattened, the reference value of the supplied current value can be increased to obtain a further antifouling effect, which can contribute to the improvement of the antifouling effect. By the way, it is necessary to control the removal of barnacles and the like that strongly adhere to condensers and heat exchanger thin tubes, etc., based on knowledge, with a concentration of residual chlorine at the outlet of about 0.02 ppm, and the control target value is 0.03 ppm. If it can be operated at about ± 0.01 ppm for the whole year, it is effective.

以上、本発明について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更などがあっても、本発明に含まれる。
例えば、定検用電解槽13と2つの電解槽16としているが、2つの電解槽16だけの場合でもよく、脱気槽19は電解液受槽と読み替えてもかまわない。
また、コストの観点を無視すれば塩素強化注入ラインの切替により一時的に注入ポンプ23の出口側が締切運転となることを防止するために、注入ポンプ23の最小流量を脱気槽19に導くミニマムフローラインを設けてもよい。
また、上述したとおり、塩素強化注入タイマの設定は例として挙げており、他の設定であっても同様に本発明に含まれる。
As described above, the present invention has been described. However, the specific configuration is not limited to the above-described embodiment, and even if there is a change in design within a range not departing from the gist of the present invention, the present invention is included in the present invention. .
For example, the fixed test electrolytic cell 13 and two electrolytic cells 16 are used. However, only two electrolytic cells 16 may be used, and the degassing tank 19 may be replaced with an electrolytic solution receiving tank.
If the cost viewpoint is neglected, the minimum flow rate of the injection pump 23 is guided to the deaeration tank 19 in order to prevent the outlet side of the injection pump 23 from being temporarily shut off by switching the chlorine-reinforced injection line. A flow line may be provided.
Further, as described above, the setting of the chlorine enhanced injection timer is given as an example, and other settings are also included in the present invention.

1 海
2 取水口
3 取水路
4 放水路
5 放水口
10 海水電解装置
11 海水取水ポンプ
12 渦巻き式ストレーナ
13 定検用電解槽
14 定検用整流器
15 出力電流設定器
16 電解槽
17 整流器
18 出力電流設定器
19 脱気槽
20 液位計
21 脱気槽液位調節弁
22 送風機
23 注入ポンプ
24 電解槽流量スイッチ付流量計
25 取水槽注入流量調節弁前弁
26 取水口流量スイッチ付流量計
27 各取水口注入流量調節弁
28 取水槽流量スイッチ付流量計
29 取水槽注入流量調節弁
30 取水槽注入切替弁
40 取水槽
41 原子炉補機冷却水ポンプ
42 タービン補機冷却水ポンプ
43 循環水ポンプ
51 海水電解装置制御盤
52 放水口残留塩素濃度サンプリング装置
53 取水槽温度計
60 塩素強化注入運転装置
61 海水ポンプ運転信号部
62 取水槽注入切替弁制御部
63 ベース値制御トリガ設定部
64 放水口残留塩素濃度ベース値取得・比較制御部
110 復水器
120 補機冷却水熱交換器
130 放水槽
140 補機海水系放水庭
150 放水接合槽
S11〜S18,S21〜S28,S31〜S38,S41,S111,S112,S121,S122,S131,S132,S141,S211〜S213,S221〜S223,S231〜S233,S241,S251,S261,S262,S311〜S318 ステップ
DESCRIPTION OF SYMBOLS 1 Sea 2 Intake port 3 Intake channel 4 Outlet channel 5 Outlet port 10 Seawater electrolysis device 11 Seawater intake pump 12 Spiral strainer 13 Electrolyzer for regular inspection 14 Rectifier for regular inspection 15 Output current setting device 16 Electrolyzer 17 Rectifier 18 Output current Setting device 19 Deaeration tank 20 Liquid level gauge 21 Deaeration tank liquid level control valve 22 Blower 23 Injection pump 24 Flowmeter with electrolytic tank flow switch 25 Intake tank injection flow control valve front valve 26 Flowmeter with water intake port flow switch 27 Intake port injection flow control valve 28 Flow meter with intake tank flow switch 29 Intake tank injection flow control valve 30 Intake tank injection switching valve 40 Intake tank 41 Reactor auxiliary cooling water pump 42 Turbine auxiliary cooling water pump 43 Circulating water pump 51 Seawater electrolyzer control panel 52 Outlet residual chlorine concentration sampling device 53 Intake tank thermometer 60 Chlorine strengthening injection operation device 61 Seawater pump operation signal unit 62 Tank injection switching valve control unit 63 Base value control trigger setting unit 64 Outlet residual chlorine concentration base value acquisition / comparison control unit 110 Condenser 120 Auxiliary equipment cooling water heat exchanger 130 Drainage tank 140 Auxiliary equipment seawater system water discharge garden 150 Water discharge Joining tanks S11 to S18, S21 to S28, S31 to S38, S41, S111, S112, S121, S122, S131, S132, S141, S211 to S213, S221 to S223, S231 to S233, S241, S251, S261, S262. S311 to S318 Step

Claims (8)

海水を原料として製造した次亜塩素酸ナトリウム溶液を複数の水路に分割された取水槽(40)に注入する海水電解装置(10)に用いるための塩素強化注入運転装置(60)であって、
前記海水電解装置が、
前記次亜塩素酸ナトリウム溶液を製造するための電解槽と、
前記電解槽に接続された整流器と、
前記次亜塩素酸ナトリウム溶液を前記取水槽の前記複数の水路に順次注入するための取水槽注入切替弁(30)とを備え、
前記取水槽が、前記各水路に複数台の海水ポンプを備え、
前記塩素強化注入運転装置が、
前記複数の水路のうち前記次亜塩素酸ナトリウム溶液を注入する水路が前記海水ポンプの運転台数が1台の水路から2台以上の水路に前記取水槽注入切替弁によって切り替えられたことを示す1→2台以上切替移行パターンの発生を検出するための切替移行パターン発生検出手段と、
前記切替移行パターン発生検出手段によって前記1→2台以上切替移行パターンの発生が検出された発生検出時間を記憶し、該発生検出時間後に前記複数の水路のうち前記次亜塩素酸ナトリウム溶液を注入する水路が前記2台以上の水路以外の水路に前記取水槽注入切替弁によって切り替えられてから所定の遅れ時間後の放水口残留塩素濃度ベース値を取得し、該取得した放水口残留塩素濃度ベース値を制御目標値と比較して、前記整流器の通電電流値を制御するための通電電流値制御手段と、
を具備することを特徴とする、塩素強化注入運転装置。
A chlorine-enriched injection operation device (60) for use in a seawater electrolysis device (10) for injecting a sodium hypochlorite solution produced using seawater as a raw material into an intake tank (40) divided into a plurality of waterways,
The seawater electrolysis device,
An electrolytic cell for producing the sodium hypochlorite solution,
A rectifier connected to the electrolytic cell,
An intake tank injection switching valve (30) for sequentially injecting the sodium hypochlorite solution into the plurality of water channels of the intake tank;
The water intake tank includes a plurality of seawater pumps in each of the waterways,
The chlorine-enhanced injection operation device,
The water channel for injecting the sodium hypochlorite solution out of the plurality of water channels indicates that the number of operating seawater pumps has been switched from one water channel to two or more water channels by the intake tank injection switching valve. A switching transition pattern occurrence detecting means for detecting the occurrence of two or more switching transition patterns;
An occurrence detection time when the occurrence of the 1 → 2 or more switching transition pattern is detected by the switching transition pattern occurrence detecting means is stored, and after the occurrence detection time, the sodium hypochlorite solution is injected into the plurality of water passages. The water outlet to be obtained is obtained from a water outlet residual chlorine concentration base value after a predetermined delay time since the water channel is switched to a water channel other than the two or more water channels by the water intake tank switching valve, and the obtained water outlet water residual chlorine concentration base is obtained. Comparing the value with a control target value, a current value control means for controlling the current value of the rectifier,
A chlorine-enhanced injection operation device, comprising:
前記次亜塩素酸ナトリウム溶液を注入する水路が、前記取水槽注入切替弁によって2時間のインターバルで順次切り替えられることを特徴とする、請求項1記載の塩素強化注入運転装置。   2. The chlorine-enriched injection operation device according to claim 1, wherein a water channel into which the sodium hypochlorite solution is injected is sequentially switched at intervals of 2 hours by the intake tank injection switching valve. 3. 前記通電電流値制御手段が、
前記1→2台以上切替移行パターンの発生が検出されるとともに前記遅れ時間後の前記放水口残留塩素濃度ベース値が前記制御目標値よりも大きいと、前記通電電流値を通電電流制御値だけ下げ、
前記1→2台以上切替移行パターンの発生が検出されるとともに前記遅れ時間後の前記放水口残留塩素濃度ベース値が前記制御目標値よりも小さいと、前記通電電流値を前記通電電流制御値だけ上げる、
ことを特徴とする、請求項1または2記載の塩素強化注入運転装置。
The energizing current value control means,
If the occurrence of the 1 → 2 or more switching transition pattern is detected and the water outlet residual chlorine concentration base value after the delay time is larger than the control target value, the energizing current value is reduced by the energizing current control value. ,
If the occurrence of the 1 → 2 or more switching transition pattern is detected and the outlet port residual chlorine concentration base value after the delay time is smaller than the control target value, the energized current value is reduced by the energized current control value. increase,
The chlorine-enriched injection operation device according to claim 1 or 2, wherein:
前記制御目標値が、海水温度が低下傾向になる直前の放水口残留塩素濃度ベース値であることを特徴とする、請求項1乃至3いずれかに記載の塩素強化注入運転装置。   4. The chlorine-enhanced injection operation apparatus according to claim 1, wherein the control target value is a discharge port residual chlorine concentration base value immediately before the seawater temperature tends to decrease. 前記複数の水路が、3つの水路であり、
前記海水電解装置が、該海水電解装置が設置された設備の定検中に前記次亜塩素酸ナトリウム溶液を製造して前記取水槽に注入するための定検用電解槽(13)を備え、
前記海水ポンプが、前記定検中に前記取水槽から補機冷却水熱交換器(120)に冷却水を供給するための6台の原子炉補機冷却水ポンプ(41)および3台のタービン補機冷却水ポンプ(42)であり、
前記3つの水路の各水路に、2台の前記原子炉補機冷却水ポンプおよび1台の前記タービン補機冷却水ポンプが備えられ、
前記整流器が、前記定検用電解槽に接続された定検用整流器(14)である、
ことを特徴とする、請求項1乃至4いずれかに記載の塩素強化注入運転装置。
The plurality of waterways are three waterways,
The seawater electrolyzer includes a regular test electrolytic tank (13) for producing the sodium hypochlorite solution and injecting the same into the water intake tank during a regular test of equipment in which the seawater electrolyzer is installed,
Six reactor auxiliary equipment cooling water pumps (41) and three turbines for supplying cooling water from the intake tank to the auxiliary equipment cooling water heat exchanger (120) during the regular inspection. An auxiliary cooling water pump (42),
Each of the three water channels is provided with two reactor auxiliary device cooling water pumps and one turbine auxiliary device cooling water pump,
The rectifier is a rectifier (14) for a regular test connected to the electrolytic cell for a regular test,
The chlorine-enhanced injection operation device according to any one of claims 1 to 4, characterized in that:
海水を原料として製造した次亜塩素酸ナトリウム溶液を3つの水路に分割された取水槽(40)に注入する海水電解装置(10)に用いるための塩素強化注入運転方法であって、
前記海水電解装置が、
前記次亜塩素酸ナトリウム溶液を製造するための電解槽と、
前記電解槽に接続された整流器と、
前記次亜塩素酸ナトリウム溶液を前記取水槽の前記3つの水路に順次注入するための取水槽注入切替弁(30)とを備え、
前記取水槽が、前記各水路に複数台の海水ポンプを備え、
前記塩素強化注入運転方法が、
前記3つの水路のうち前記次亜塩素酸ナトリウム溶液を注入する水路が前記海水ポンプの運転台数が1台の水路から2台以上の水路に前記取水槽注入切替弁によって切り替えられたことを示す1→2台以上切替移行パターンの発生を検出するための第1のステップと、
前記1→2台以上切替移行パターンの発生が検出された発生検出時間を記憶する第2のステップと、
前記発生検出時間後に前記3つの水路のうち前記次亜塩素酸ナトリウム溶液を注入する水路が前記2台以上の水路以外の水路に前記取水槽注入切替弁によって切り替えられてから所定の遅れ時間後の放水口残留塩素濃度ベース値を取得する第3のステップと、
前記取得した放水口残留塩素濃度ベース値を制御目標値と比較して前記整流器の通電電流値を制御するための第4のステップと、
を具備することを特徴とする、塩素強化注入運転方法。
A chlorine-enriched injection operation method for use in a seawater electrolysis apparatus (10) for injecting a sodium hypochlorite solution produced using seawater as a raw material into an intake tank (40) divided into three waterways,
The seawater electrolysis device,
An electrolytic cell for producing the sodium hypochlorite solution,
A rectifier connected to the electrolytic cell,
An intake tank injection switching valve (30) for sequentially injecting the sodium hypochlorite solution into the three water channels of the intake tank;
The water intake tank includes a plurality of seawater pumps in each of the waterways,
The chlorine-reinforced injection operation method,
The water channel for injecting the sodium hypochlorite solution among the three water channels indicates that the number of operating seawater pumps has been switched from one water channel to two or more water channels by the water intake tank injection switching valve. → a first step for detecting the occurrence of a switching transition pattern of two or more units,
A second step of storing an occurrence detection time in which the occurrence of the 1 → 2 or more switching transition pattern is detected;
After the occurrence detection time, of the three water paths, a water path for injecting the sodium hypochlorite solution is switched to a water path other than the two or more water paths by the water intake tank switching valve after a predetermined delay time. A third step of obtaining an outlet residual chlorine concentration base value;
A fourth step of controlling the current value of the rectifier by comparing the acquired outlet water residual chlorine concentration base value with a control target value;
A chlorine-enhanced injection operation method, comprising:
前記次亜塩素酸ナトリウム溶液を注入する水路が、前記取水槽注入切替弁によって2時間のインターバルで順次切り替えられることを特徴とする、請求項6記載の塩素強化注入運転方法。   7. The chlorine-enriched injection operation method according to claim 6, wherein a water channel into which the sodium hypochlorite solution is injected is sequentially switched at intervals of 2 hours by the intake tank injection switching valve. 前記第4のステップにおいて、
前記第2のステップで前記1→2台以上切替移行パターンが検出されるとともに、前記第3のステップで取得された前記遅れ時間後の前記放水口残留塩素濃度ベース値が前記制御目標値よりも大きいと、前記通電電流値を通電電流制御値だけ下げ、
前記第2のステップで前記1→2台以上切替移行パターンが検出されるとともに、前記第3のステップで取得された前記遅れ時間後の前記放水口残留塩素濃度ベース値が前記制御目標値よりも小さいと、前記通電電流値を前記通電電流制御値だけ上げる、
ことを特徴とする、請求項6または7記載の塩素強化注入運転方法。
In the fourth step,
In the second step, the 1 → 2 or more switching transition pattern is detected, and the discharge port residual chlorine concentration base value after the delay time acquired in the third step is smaller than the control target value. If it is larger, the current value is reduced by the current control value,
In the second step, the 1 → 2 or more switching transition pattern is detected, and the discharge port residual chlorine concentration base value after the delay time acquired in the third step is smaller than the control target value. If smaller, the energizing current value is increased by the energizing current control value,
The method of claim 6 or 7, wherein the chlorine-reinforced injection operation is performed.
JP2018159012A 2018-08-28 2018-08-28 Chlorine-enhanced injection operation equipment and method Active JP7083452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018159012A JP7083452B2 (en) 2018-08-28 2018-08-28 Chlorine-enhanced injection operation equipment and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018159012A JP7083452B2 (en) 2018-08-28 2018-08-28 Chlorine-enhanced injection operation equipment and method

Publications (2)

Publication Number Publication Date
JP2020032327A true JP2020032327A (en) 2020-03-05
JP7083452B2 JP7083452B2 (en) 2022-06-13

Family

ID=69669017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018159012A Active JP7083452B2 (en) 2018-08-28 2018-08-28 Chlorine-enhanced injection operation equipment and method

Country Status (1)

Country Link
JP (1) JP7083452B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54129745A (en) * 1978-03-30 1979-10-08 Hitachi Zosen Corp Controller for anti-creature apparatus
JPS63280804A (en) * 1987-05-14 1988-11-17 Toshiba Corp Cooling water take-in equipment
JP2005144213A (en) * 2003-11-11 2005-06-09 Chugoku Electric Power Co Inc:The Method and system for controlling adhesion and growth of marine organism
JP2005144212A (en) * 2003-11-11 2005-06-09 Chugoku Electric Power Co Inc:The Method and system for controlling adhesion and growth of marine organism
JP2005144214A (en) * 2003-11-11 2005-06-09 Chugoku Electric Power Co Inc:The Method and system for controlling adhesion and growth of marine organism
JP2006084103A (en) * 2004-09-15 2006-03-30 Chugoku Electric Power Co Inc:The Method and system for inhibiting attachment and growth of marine plants
JP2014156642A (en) * 2013-02-18 2014-08-28 Chugoku Electric Power Co Inc:The Seawater supply system and seawater supply method
JP2015132483A (en) * 2014-01-09 2015-07-23 三菱日立パワーシステムズ株式会社 Water intake facility and method in nuclear power plant
JP2015150483A (en) * 2014-02-13 2015-08-24 三菱重工環境・化学エンジニアリング株式会社 Seawater electrolysis system and method for injecting electrolytic solution

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54129745A (en) * 1978-03-30 1979-10-08 Hitachi Zosen Corp Controller for anti-creature apparatus
JPS63280804A (en) * 1987-05-14 1988-11-17 Toshiba Corp Cooling water take-in equipment
JP2005144213A (en) * 2003-11-11 2005-06-09 Chugoku Electric Power Co Inc:The Method and system for controlling adhesion and growth of marine organism
JP2005144212A (en) * 2003-11-11 2005-06-09 Chugoku Electric Power Co Inc:The Method and system for controlling adhesion and growth of marine organism
JP2005144214A (en) * 2003-11-11 2005-06-09 Chugoku Electric Power Co Inc:The Method and system for controlling adhesion and growth of marine organism
JP2006084103A (en) * 2004-09-15 2006-03-30 Chugoku Electric Power Co Inc:The Method and system for inhibiting attachment and growth of marine plants
JP2014156642A (en) * 2013-02-18 2014-08-28 Chugoku Electric Power Co Inc:The Seawater supply system and seawater supply method
JP2015132483A (en) * 2014-01-09 2015-07-23 三菱日立パワーシステムズ株式会社 Water intake facility and method in nuclear power plant
JP2015150483A (en) * 2014-02-13 2015-08-24 三菱重工環境・化学エンジニアリング株式会社 Seawater electrolysis system and method for injecting electrolytic solution
KR20160103119A (en) * 2014-02-13 2016-08-31 미츠비시 쥬코 칸쿄 카가쿠 엔지니어링 가부시키가이샤 Seawater electrolysis system and electrolytic solution infusion method

Also Published As

Publication number Publication date
JP7083452B2 (en) 2022-06-13

Similar Documents

Publication Publication Date Title
US7208117B2 (en) Automated process for inhibiting corrosion in an inactive boiler containing an aqueous system
CN102105406B (en) Apparatus and method for treating ballast water
US20110132815A1 (en) Portable Water Treatment System and Apparatus
EP2558419A1 (en) Portable water treatment method
KR20110046478A (en) Method and system for controlling biological contamination of ship's parts
KR101335264B1 (en) Electrolysis ballast water treatment apparatus
KR101258940B1 (en) Ballast Water Treatment System
JP2010043060A (en) Method for preventing adhesion of marine organism
TW202035226A (en) Self-treating electrolytic biocide generating system with retro-fitting features for use on-board a watercraft
CN201309865Y (en) Full-automatic agent-feeding device
JP2020032327A (en) Chlorine enriching injection operation device and method
JP6114437B1 (en) Corrosive anion removing apparatus and method for regenerating anion exchange resin
US5948279A (en) Method and apparatus for controlling macrofoulers in on-demand water conduits
KR101050396B1 (en) Device for injecting ozone into ballast water for a ship
JP2005144212A (en) Method and system for controlling adhesion and growth of marine organism
US20070102367A1 (en) Apparatus and process for water conditioning
CN213194900U (en) Stainless steel pipeline serial washing device for preventing microbial corrosion
KR101168279B1 (en) Apparatus for treating ballast water and Vessel having the apparatus
CN112939153B (en) Ship ballast water treatment method and system
CN203946957U (en) Fully-automatic intelligent chemicals dosing plant
CN207933176U (en) Sewage recovering system applied to cooling water system
JP4316457B2 (en) Method and system for inhibiting the attachment and growth of marine organisms
JP2006231199A (en) Seawater-electrolyzing chlorine injection device and method
JP3340889B2 (en) Heat exchanger cleaning equipment
JP2023063729A (en) Chemical supply device for sea water pump and method for supplying chemical for sea water pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220515

R150 Certificate of patent or registration of utility model

Ref document number: 7083452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150