JPS62293541A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPS62293541A
JPS62293541A JP13717186A JP13717186A JPS62293541A JP S62293541 A JPS62293541 A JP S62293541A JP 13717186 A JP13717186 A JP 13717186A JP 13717186 A JP13717186 A JP 13717186A JP S62293541 A JPS62293541 A JP S62293541A
Authority
JP
Japan
Prior art keywords
film
reflective film
magneto
recording medium
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13717186A
Other languages
Japanese (ja)
Inventor
Hiromichi Enomoto
洋道 榎本
Takahiro Matsuzawa
孝浩 松沢
Katsuyuki Takeda
竹田 克之
Yoshitaka Takahashi
佳孝 高橋
Shozo Ishibashi
正三 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP13717186A priority Critical patent/JPS62293541A/en
Publication of JPS62293541A publication Critical patent/JPS62293541A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • G11B11/10589Details
    • G11B11/10591Details for improving write-in properties, e.g. Curie-point temperature

Abstract

PURPOSE:To improve the recording sensitivity of a magneto-optical recording medium provided with a thin magnetic film and reflective film by specifying the temp. conductivity of the reflective film to a specific value. CONSTITUTION:This magneto-optical recording medium is constituted of a transparent substrate, the thin magnetic film having the axis of easy magnetization in the direction perpendicular to the film plane and the reflective film as the main constituting elements thereof. The temp. conductivity a=k(c.rho), (k: heat conductivity, c: specific heat, rho: density) of the reflective film is so determined as to attain 1.5cm<2>/sec. With magneto-optical recording, the recording sensitivity is higher as the heat by laser light is more liable to accumulate in the recording medium film. The reflective film, therefore, has preferably the low heat conductivity, more particularly preferably <=1.5cm<2>/sec Cu, Al, Ti, Au, Ni, Mn, Bi Sn are usable for the reflective film and two kinds thereof may be mixed.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、記録感度に優れる光磁気記録媒体に関する。[Detailed description of the invention] 3. Detailed description of the invention [Industrial application field] The present invention relates to a magneto-optical recording medium with excellent recording sensitivity.

〔発明の背景〕[Background of the invention]

光磁気記録は、記録密度が高い、非接触で記録・読み出
しが可能、高速ランダムアクセスができる、信号の並列
処理が可能、さらに書換えもできるなどの特徴、を有し
ているため、近年、特に注目されている。
Magneto-optical recording has become particularly popular in recent years due to its features such as high recording density, non-contact recording/reading, high-speed random access, parallel signal processing, and rewriting. Attention has been paid.

光磁気記録媒体の基本的構成は、透明樹脂またはガラス
を基板とし、これに希土類−遷移金属アモルファス合金
、たとえばGdFeやGdTbFe等の磁性薄膜を設け
たものである。
The basic structure of a magneto-optical recording medium is that a transparent resin or glass substrate is provided with a magnetic thin film of rare earth-transition metal amorphous alloy, such as GdFe or GdTbFe.

周知のように、光磁気記録は、記録に際して、熱磁気記
録によって磁性薄膜にレーザー光を照射して反転磁区を
形成するとともに、読み出しに際しては、磁性薄膜にレ
ーザーの直線偏光を入射し、記録した磁化状B(大きさ
、方向)に対応して反射光または透過光の偏光面が回転
する現象を利用するものである。反射光の偏光面が回転
する現象がカー効果、その回転角がカー回転角と呼ばれ
ている。
As is well known, magneto-optical recording uses thermomagnetic recording to irradiate a magnetic thin film with laser light to form reversed magnetic domains, and for readout, linearly polarized laser light is incident on the magnetic thin film to record the information. This method utilizes a phenomenon in which the plane of polarization of reflected light or transmitted light rotates in response to magnetization B (magnitude and direction). The phenomenon in which the plane of polarization of reflected light rotates is called the Kerr effect, and the angle of rotation is called the Kerr rotation angle.

このカー効果を利用する読み出しでのSN比は、性能指
数=θやX ff (R:反射率)に比例し、この性能
指数は光磁気記録媒体の特性に主として依存する。そこ
で、従来から、カー回転角θにを増大し、SN比を高め
るために、種々の提案がなされてきた。
The SN ratio in reading using the Kerr effect is proportional to the figure of merit = θ or X ff (R: reflectance), and this figure of merit mainly depends on the characteristics of the magneto-optical recording medium. Therefore, various proposals have been made to increase the Kerr rotation angle θ and improve the signal-to-noise ratio.

たとえば、特開昭56−156943号公報では、磁性
薄膜と透明基板との間に透明誘電体膜を介在させ、見掛
は上のカー回転角の増大を図っている。
For example, in Japanese Patent Application Laid-Open No. 56-156943, a transparent dielectric film is interposed between a magnetic thin film and a transparent substrate to apparently increase the Kerr rotation angle.

さらに、磁性薄膜上に透明誘電体膜を形成し、しかもそ
の上にさらに反射層を設けたり、磁性薄膜上に誘電体層
を設けることなく、反射層を直接設けることによって、
カー回転角の増大を図ることも知られている。
Furthermore, by forming a transparent dielectric film on a magnetic thin film and further providing a reflective layer thereon, or by directly providing a reflective layer without providing a dielectric layer on the magnetic thin film,
It is also known to increase the Kerr rotation angle.

いずれにしても、見掛は上のカー回転角増大のために反
射層を設ける場合、反射層はA1等の熱伝導率の高い金
属からなるので、熱磁気記録の際のレーザー光による熱
が反射膜を伝って逃げ易く、磁性薄膜に熱が十分に蓄積
せず、記録感度が十分でない問題があった。
In any case, when a reflective layer is provided to increase the apparent Kerr rotation angle, the reflective layer is made of a metal with high thermal conductivity such as A1, so the heat generated by the laser beam during thermomagnetic recording is There was a problem in that heat easily escapes through the reflective film, does not accumulate enough heat in the magnetic thin film, and does not have sufficient recording sensitivity.

そこで、本発明の主たる目的は、記録感度に優れる光磁
気記録媒体を提供することにある。
Therefore, the main object of the present invention is to provide a magneto-optical recording medium with excellent recording sensitivity.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、透明基板と、膜面に垂直な方向に容易軸を
もつ磁性薄膜と、反射膜を構成要素の一部とする光磁気
記録媒体において、上記反射膜の温度伝導率a=K/(
c・ρ)、(ただし、K:熱伝導率、C:比熱、ρ:密
度)が1.5ci/sec以下であることで達成される
The above objective is to provide a magneto-optical recording medium that includes a transparent substrate, a magnetic thin film having an easy axis in a direction perpendicular to the film surface, and a reflective film as some of its constituent elements, the temperature conductivity of the reflective film being a=K/ (
c・ρ) (where K: thermal conductivity, C: specific heat, ρ: density) is 1.5 ci/sec or less.

〔発明の具体例構成〕[Specific example configuration of the invention]

以下本発明をさらに詳説する。 The present invention will be explained in more detail below.

本発明では、透明基板と、膜面に垂直な方向に容易軸を
もつ磁性薄膜と、反射膜を構成要素の一部と、する光磁
気記録媒体において、上記反射膜の温度伝導率a=K/
(c・ρ)、(ただし、K:熱伝導率、C:比熱、ρ;
密度)が1.5 cnl / sec以下とされる。
In the present invention, in a magneto-optical recording medium that includes a transparent substrate, a magnetic thin film having an easy axis in a direction perpendicular to the film surface, and a reflective film as part of its constituent elements, the temperature conductivity of the reflective film is a=K /
(c・ρ), (K: thermal conductivity, C: specific heat, ρ;
density) is 1.5 cnl/sec or less.

光磁気記録では、前述のように、熱磁気記録によるので
、レーザー光による熱が記録媒体膜内に蓄り易い方が、
記録感度の向上を図ることができる。したがって、反射
膜としては、熱伝導率が低い、特に1.5aa/sec
以下が好ましいことが、後記実施例で示すような本発明
者らの種々の実験で明らかになった。
As mentioned above, magneto-optical recording uses thermomagnetic recording, so it is easier for the heat from the laser light to accumulate in the recording medium film.
Recording sensitivity can be improved. Therefore, as a reflective film, thermal conductivity is low, especially 1.5 aa/sec.
The following was found to be preferable through various experiments conducted by the present inventors as shown in Examples below.

本発明において、記録感度改善のために、反射膜の温度
伝導率を1.5 cal / sec以下とするために
は、反射膜の材質を適切に選定するほか、その成膜条件
、たとえばスパッタ法による場合、スパッタ条件を選定
することによって可能である。
In the present invention, in order to make the temperature conductivity of the reflective film 1.5 cal/sec or less in order to improve the recording sensitivity, in addition to appropriately selecting the material of the reflective film, the film formation conditions, such as sputtering method, etc. This can be achieved by selecting sputtering conditions.

本発明において、透明基板と、磁性薄膜と、反射膜を構
成要素の一部とする限り、構造は限定されない。たとえ
ば、透明基板/誘電体膜/磁性薄膜/誘電体膜/反射膜
/保護層の順の構造、透明基板/誘電体膜/磁性薄膜/
反射膜の順の構造や、この種のものを透明基板を外側に
して貼り合せたものなどである。
In the present invention, the structure is not limited as long as the transparent substrate, magnetic thin film, and reflective film are part of the constituent elements. For example, a structure in the order of transparent substrate/dielectric film/magnetic thin film/dielectric film/reflective film/protective layer, transparent substrate/dielectric film/magnetic thin film/
These include a structure in which a reflective film is sequentially applied, and a structure in which such a structure is laminated with a transparent substrate facing outward.

本発明における反射膜としては、CuまたはAβのほか
、Ti、 Pt、 Au、 Ni、 Mn、 Bi、 
Snを用いることができ、二種以上を混合したものであ
ってもよい。この膜厚としては500人〜1000人が
好ましい。成膜手段としては、スパッタ法、真空蒸着法
、イオンブレーティング法、プラズマCVD法などを挙
げることができる。
In addition to Cu or Aβ, the reflective film in the present invention includes Ti, Pt, Au, Ni, Mn, Bi,
Sn can be used, and a mixture of two or more types may be used. The film thickness is preferably 500 to 1000. Examples of the film forming method include a sputtering method, a vacuum evaporation method, an ion blating method, and a plasma CVD method.

磁性薄膜の材質としては、希土類−遷移金属アモルファ
ス合金が一般には好ましいが、結晶体の形式であっても
よい。これらの例としては、GdFe。
The material for the magnetic thin film is generally a rare earth-transition metal amorphous alloy, but it may also be in the form of a crystalline body. Examples of these are GdFe.

TbFe、 GdCo、 DyFe、 GdTbFe、
 TbDyFe、 TbFeC0゜GdTbCo、 G
dTbFeCo、 GdFeB1. GdTbFeGe
 ;あるいはこれらにBi+ Sr+ Ge等の添加元
素が添加されたもの; MnB1. PtCo、 Mn
CuB1. MnA I Ge等がある。
TbFe, GdCo, DyFe, GdTbFe,
TbDyFe, TbFeC0゜GdTbCo, G
dTbFeCo, GdFeB1. GdTbFeGe
; or those to which additional elements such as Bi+ Sr+ Ge are added; MnB1. PtCo, Mn
CuB1. There are MnA I Ge and the like.

磁性薄膜の厚さは200人〜1500人が好ましい。こ
の膜形成手段としては、反射膜と同様でよい。
The thickness of the magnetic thin film is preferably 200 to 1,500. The means for forming this film may be the same as that for the reflective film.

本発明において用いることができる透明基板としては、
ポリメチルメタクリレート(PMM八)、ポリカーボネ
ート、ポリ塩化ビニル、ポリイミド、ポリアミド、エポ
キシ、三酢酸セルロース、ポリエチレンテレフタレート
等の樹脂基板のほか、ガラスやセラミック等も挙げるこ
とができる。
Transparent substrates that can be used in the present invention include:
Examples include resin substrates such as polymethyl methacrylate (PMM8), polycarbonate, polyvinyl chloride, polyimide, polyamide, epoxy, cellulose triacetate, and polyethylene terephthalate, as well as glass and ceramics.

本発明例において好適に用いることができる透明誘電体
としては、A I N、 Si3N4. A I Si
N等の窒化物のほか、CeF3. Mgp、、 MgF
z、LaF:++ CaFz+NaF、 ZnS+ s
io、 5ift、 CeF、、 AlFs+ Taz
O3等を挙げることができる。
Transparent dielectrics that can be suitably used in the examples of the present invention include AIN, Si3N4. A I Si
In addition to nitrides such as N, CeF3. Mgp,, MgF
z, LaF: ++ CaFz+NaF, ZnS+ s
io, 5ift, CeF,, AlFs+ Taz
O3 etc. can be mentioned.

誘電体膜の膜厚としては、200人〜2000人が好ま
しい。成膜法は反射膜と同様でよい。
The thickness of the dielectric film is preferably 200 to 2000. The film forming method may be the same as that for the reflective film.

保護(オーバーコート)層としては、たとえばアクリル
系の紫外線硬化樹脂を、スピンコード法などによって形
成することによって得る。この層厚は、1〜20μmが
望ましい。
The protective (overcoat) layer is obtained by forming, for example, an acrylic ultraviolet curing resin by a spin coding method or the like. The thickness of this layer is preferably 1 to 20 μm.

C実施例〕 以下、実施例について説明し、本発明の効果を明らかに
する。
Example C] Examples will be described below to clarify the effects of the present invention.

(実施例1) 磁性薄膜としてTbFeCo、誘電体膜としてSi3N
4、反射膜として八βの各材料を用い、層構成をpc/
5iJn /TbFeCo/5iJn / Afとした
。各膜厚は上記構成順に従って誘電体膜を1400人、
磁性薄膜を250人、誘電体膜を400人、反射膜を1
000人とした。
(Example 1) TbFeCo as magnetic thin film, Si3N as dielectric film
4. Using each of the 8β materials as the reflective film, the layer structure is pc/
5iJn/TbFeCo/5iJn/Af. Each film thickness is 1400 dielectric films according to the above composition order.
250 people for magnetic thin film, 400 people for dielectric film, 1 person for reflective film.
000 people.

記録条件は、記録周波数をIMHz、速度を4m/S、
消去パワーを6.0mW、再生パワーを1.0 mW。
The recording conditions were a recording frequency of IMHz, a speed of 4 m/s,
Erasing power is 6.0 mW, playback power is 1.0 mW.

記録デユーティ比を50%として、二次高調波が最小と
なる点を最適記録パワーにとった。この条件で、最適記
録パワーは6mWであった。なお、Alの物理定数はK
 : 2.5 W/cm−に、 c = 0.211c
at/ g −K、  ρ=2.69g/cm’で、a
=1.05CrA/seeが得られた。
The recording duty ratio was set to 50%, and the point at which the second harmonic was minimized was set as the optimum recording power. Under these conditions, the optimum recording power was 6 mW. In addition, the physical constant of Al is K
: 2.5 W/cm-, c = 0.211c
at/g-K, ρ=2.69g/cm', a
=1.05CrA/see was obtained.

(実施例2) 以下、実施例1と同条件で、反射膜にTi、 Ag。(Example 2) Hereinafter, Ti and Ag were applied to the reflective film under the same conditions as in Example 1.

Pt、 Au、 Cu、 Ni、 Mn+ Bi、Sn
を用い、それぞれ最適記録パワーを求めた。その結果を
表1に示す。
Pt, Au, Cu, Ni, Mn+ Bi, Sn
The optimum recording power was determined using the following. The results are shown in Table 1.

ところで、市販の15m−半導体レーザーを用いた場合
、半導体レーザーの光利用率は通常約50%であるから
、ディスク面上の記録レーザーパワーは最大7.5mW
になる。従って反射膜がAgの場合、最適記録パワーが
7.5mW以上となり測定不能であった。
By the way, when using a commercially available 15m-semiconductor laser, the light utilization rate of the semiconductor laser is usually about 50%, so the recording laser power on the disk surface is a maximum of 7.5mW.
become. Therefore, when the reflective film was made of Ag, the optimum recording power was 7.5 mW or more, making it impossible to measure.

次いで表1の結果をグラフで表わしたら第1図のように
なった。この図より反射膜の温度伝導率aの好ましい範
囲は1.5cJ/sec以下であることが判った。
Next, when the results in Table 1 were expressed in a graph, the result was as shown in FIG. From this figure, it was found that the preferable range of the temperature conductivity a of the reflective film is 1.5 cJ/sec or less.

〔発明の効果〕 以上説明したように、本発明によれば、記録感度の優れ
た光磁気記録媒体を提供できる。
[Effects of the Invention] As explained above, according to the present invention, a magneto-optical recording medium with excellent recording sensitivity can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は反射膜の温度伝導率と記録感度との関係を示し
たグラフである。
FIG. 1 is a graph showing the relationship between the temperature conductivity of the reflective film and the recording sensitivity.

Claims (2)

【特許請求の範囲】[Claims] (1)透明基板と、膜面に垂直な方向に容易軸をもつ磁
性薄膜と、反射膜を構成要素の一部とする光磁気記録媒
体において、上記反射膜の温度伝導率a=K/(c・ρ
)、(ただし、K:熱伝導率、c:比熱、ρ:密度)が
1.5cm^2/sec以下であることを特徴とする光
磁気記録媒体。
(1) In a magneto-optical recording medium that includes a transparent substrate, a magnetic thin film with an easy axis perpendicular to the film surface, and a reflective film as some of its constituent elements, the temperature conductivity of the reflective film is a=K/( c・ρ
), (where K: thermal conductivity, c: specific heat, ρ: density) is 1.5 cm^2/sec or less.
(2)特許請求の範囲第1項において、前記反射膜が、
Cu、Al、Ti、Pt、Au、Ni、Mn、Bi、S
nの少なくとも一種以上から形成されることを特徴とす
る光磁気記録媒体。
(2) In claim 1, the reflective film is
Cu, Al, Ti, Pt, Au, Ni, Mn, Bi, S
A magneto-optical recording medium characterized in that it is formed from at least one kind of n.
JP13717186A 1986-06-12 1986-06-12 Magneto-optical recording medium Pending JPS62293541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13717186A JPS62293541A (en) 1986-06-12 1986-06-12 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13717186A JPS62293541A (en) 1986-06-12 1986-06-12 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPS62293541A true JPS62293541A (en) 1987-12-21

Family

ID=15192477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13717186A Pending JPS62293541A (en) 1986-06-12 1986-06-12 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPS62293541A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63113835A (en) * 1986-10-29 1988-05-18 Kyocera Corp Magneto-optical recording element
JPS6466847A (en) * 1987-09-07 1989-03-13 Mitsubishi Chem Ind Magneto-optical recording medium
JPH01171143A (en) * 1987-12-25 1989-07-06 Sharp Corp Magneto-optical recording medium
JPH01173455A (en) * 1987-12-28 1989-07-10 Mitsubishi Kasei Corp Magneto-optical recording medium
JPH01173454A (en) * 1987-12-28 1989-07-10 Mitsubishi Kasei Corp Magneto-optical recording medium
JPH01173453A (en) * 1987-12-28 1989-07-10 Mitsubishi Kasei Corp Magneto-optical recording medium
EP0368194A2 (en) * 1988-11-07 1990-05-16 Hitachi, Ltd. Magneto-optical system
JPH02152050A (en) * 1988-12-05 1990-06-12 Hitachi Ltd Magneto-optical disk
US5786078A (en) * 1990-10-26 1998-07-28 Teijin Limited Magneto-optical recording medium
US5914198A (en) * 1989-06-05 1999-06-22 Hitachi, Ltd. Magneto-optical recording medium having dielectric layers with different indices of refraction

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63113835A (en) * 1986-10-29 1988-05-18 Kyocera Corp Magneto-optical recording element
JPS6466847A (en) * 1987-09-07 1989-03-13 Mitsubishi Chem Ind Magneto-optical recording medium
JPH01171143A (en) * 1987-12-25 1989-07-06 Sharp Corp Magneto-optical recording medium
JPH01173455A (en) * 1987-12-28 1989-07-10 Mitsubishi Kasei Corp Magneto-optical recording medium
JPH01173454A (en) * 1987-12-28 1989-07-10 Mitsubishi Kasei Corp Magneto-optical recording medium
JPH01173453A (en) * 1987-12-28 1989-07-10 Mitsubishi Kasei Corp Magneto-optical recording medium
EP0368194A2 (en) * 1988-11-07 1990-05-16 Hitachi, Ltd. Magneto-optical system
JPH02152050A (en) * 1988-12-05 1990-06-12 Hitachi Ltd Magneto-optical disk
US5914198A (en) * 1989-06-05 1999-06-22 Hitachi, Ltd. Magneto-optical recording medium having dielectric layers with different indices of refraction
US5786078A (en) * 1990-10-26 1998-07-28 Teijin Limited Magneto-optical recording medium

Similar Documents

Publication Publication Date Title
JP3072812B2 (en) Magneto-optical recording medium and method of reproducing information from the medium
EP0387420B1 (en) Magneto-optical recording medium
JPS62293541A (en) Magneto-optical recording medium
JPS62285254A (en) Magneto-optical recording medium
JPS62289948A (en) Magneto-optical recording medium
JPS62293542A (en) Magneto-optical recording medium
JPS6132242A (en) Optothermomagnetic recording medium
JPH0350344B2 (en)
JPS62293539A (en) Magneto-optical recording medium
JPS62285255A (en) Magneto-optical recording medium
JPS6122454A (en) Photomagnetic recording medium
JPH0756709B2 (en) Magneto-optical storage device
JPS62289946A (en) Magneto-optical recording medium
JPH0583971B2 (en)
JP2510131B2 (en) Magneto-optical storage device
JP2778761B2 (en) Magneto-optical recording medium
JPS62293540A (en) Magneto-optical recording medium
JPS62289947A (en) Magneto-optical recording medium
JPS6151638A (en) Optomagnetic information recording medium
JPS6310358A (en) Magneto-optical recording medium
JPH039544B2 (en)
JPH0636368A (en) Magneto-optical recording medium
JPS62285256A (en) Magneto-optical recording medium
JPH06187681A (en) Magneto-optical recording medium
JPS62114134A (en) Optical information recording medium