JPS6122454A - Photomagnetic recording medium - Google Patents

Photomagnetic recording medium

Info

Publication number
JPS6122454A
JPS6122454A JP14227884A JP14227884A JPS6122454A JP S6122454 A JPS6122454 A JP S6122454A JP 14227884 A JP14227884 A JP 14227884A JP 14227884 A JP14227884 A JP 14227884A JP S6122454 A JPS6122454 A JP S6122454A
Authority
JP
Japan
Prior art keywords
layer
magnetic layer
magnetic
recording medium
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14227884A
Other languages
Japanese (ja)
Other versions
JPH0350343B2 (en
Inventor
Ichiro Saito
一郎 斉藤
Yoichi Osato
陽一 大里
Hidekazu Fujii
英一 藤井
Kozo Arao
荒尾 浩三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14227884A priority Critical patent/JPS6122454A/en
Publication of JPS6122454A publication Critical patent/JPS6122454A/en
Priority to US07/246,970 priority patent/US4999260A/en
Publication of JPH0350343B2 publication Critical patent/JPH0350343B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Abstract

PURPOSE:To attain high-density recording and to obtain excellent storage stability by providing the 1st magnetic layer having magnetic anisotropy vertical to a film face where a transition metal element is scattered to a dielectric on a substrate and the 2nd magnetic layer having a high coercive force and similar magnetic anisotropy on it. CONSTITUTION:The medium consists of a transparent substrate (a) and thin films 1.2 where metal elements of >= one kind of transition metals formed on the substrate (a) or one kind of rare-earth metals are scattered in the dielectric, and the films 1.2 have the 1st magnetic layer 1 having the direction of magnetic anisotropy vertical to the film face and the 2nd magnetic layer 2 having the magnetic anisotropy vertical to the film face having a higher coercive force than that of the layer 1 provided on the layer 1. A part of the light is absorbed into the layer 1 by irradiating laser light from the substrate (a), a part of the light is transmitted and absorbed into the layer 2 while being reached to the layer 2. Thus, the temperature of the layer 2 rises and the inversion of magnetization is caused. Since the coercive force of the layer 1 is weaker than that of the layer 2, the magnetization of the layer 1 is inverted, a bit is recorded and the recorded bit of the layer 1 is stabilized.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、レーザー光を用いて情報の記録・再生・消去
を行なう磁気光学記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a magneto-optical recording medium that records, reproduces, and erases information using laser light.

〔従来技術〕[Prior art]

従来、光磁気記録に用いられる磁気光学記録媒体の材料
としてMnB1系、ガーネット系、希土類−遷移金属ア
モルファス系などが知られている。
Conventionally, MnB1-based materials, garnet-based materials, rare earth-transition metal amorphous materials, and the like have been known as materials for magneto-optical recording media used in magneto-optical recording.

MnB i系は、キュリ一温度が高いため、記録の際に
出力の大きなレーザーを必要とし、また粒界ノイズが多
いため、S/N比の高い再生が実施できないという欠点
があり、ガーネット系でも光の透過率が大きいため、記
録の際に出力−の大きなレーザーが必要となる欠点があ
った。その中で、島土類−遷移金属アモルファス系は、
両者の欠点を補うものとして期待されている。
The MnBi system has a high Curie temperature, so it requires a high-output laser for recording, and it also has the disadvantage that it has a lot of grain boundary noise, making it impossible to reproduce with a high S/N ratio. Since the light transmittance is high, there is a drawback that a high output laser is required for recording. Among them, the island earth-transition metal amorphous system is
It is expected that it will compensate for the shortcomings of both.

このような磁気光学記録媒体の再生方式には、ファラデ
ー効果とカー効果を利用する方法がある。カー効果再生
方式ではカー回転角を大きくし再生信号レベルを向上さ
せるために、磁気記録層上にSiOや5i02などの誘
電体層を形成して磁気記録層面上への多重反射を利用す
る方法などが検討されてきた。また、特開昭55−、6
541号、特開昭58−6542号等に開示されている
ように、磁気記録層を薄膜化し、裏面に金属反射層を形
成することにより、カー効果とファラデー効果を利用し
てカー回転角を増加させる方法も知られている。一方、
GdCo、 GdFeなどの比較的大きなカー回転角を
有する磁性層と、DyFe、 TbFeなどの保磁力の
大きい磁性層とを積層することによりカー回転角を増加
させ、再生信号レベルを向上させる方法も知られている
As a reproduction method for such a magneto-optical recording medium, there is a method that utilizes the Faraday effect and the Kerr effect. In the Kerr effect reproduction method, in order to increase the Kerr rotation angle and improve the reproduction signal level, a dielectric layer such as SiO or 5i02 is formed on the magnetic recording layer and multiple reflections on the surface of the magnetic recording layer are utilized. has been considered. Also, Unexamined Japanese Patent Publication No. 55-6
As disclosed in Japanese Patent Application Laid-Open No. 58-6542, by making the magnetic recording layer thinner and forming a metal reflective layer on the back surface, the Kerr rotation angle can be adjusted using the Kerr effect and Faraday effect. Methods for increasing this are also known. on the other hand,
There is also a method of increasing the Kerr rotation angle and improving the reproduction signal level by laminating a magnetic layer with a relatively large Kerr rotation angle such as GdCo or GdFe and a magnetic layer with a large coercive force such as DyFe or TbFe. It is being

このようにカー回転角を大きくし、再生信号レベルを向
上させる方法が試みられているが、未だ十分なものでは
ない。また記録されるビットの安定性はバイアス磁界の
大きさによって影響を受は易く、安定したビットを記録
するためには最適な/ヘイアス磁界を印加して記録しな
ければならない。
Although attempts have been made to increase the Kerr rotation angle and improve the reproduced signal level, these methods are still not satisfactory. Furthermore, the stability of recorded bits is easily affected by the magnitude of the bias magnetic field, and in order to record stable bits, it is necessary to perform recording by applying an optimum/heyas magnetic field.

また、上述したような磁気記録層は酸素の存在ドで高温
高湿の雰囲気に放置すると容易に酸化される。特に、磁
気記録層を薄膜化した場合には、その程度が著しい。従
って、時間が経つにつれて、媒体の記録感度の低下、記
録再生時のエラーの増加、信号の劣化などの欠点が生じ
やすい。
Further, the magnetic recording layer as described above is easily oxidized when left in a high temperature and high humidity atmosphere in the presence of oxygen. In particular, when the magnetic recording layer is made thinner, the extent of the problem is remarkable. Therefore, as time passes, disadvantages such as a decrease in recording sensitivity of the medium, an increase in errors during recording and reproduction, and signal deterioration tend to occur.

〔発明の開示〕[Disclosure of the invention]

本発明は上述の如き欠点に鑑みなされたものであり、本
発明の目的は、再生信号レベルが高く、しかも安定した
記録ビットを形成することができ、結果的に高密度記録
が可能な磁気光学記録媒体を提供することにある。
The present invention has been made in view of the above-mentioned drawbacks, and an object of the present invention is to provide a magneto-optical method that can provide a high reproduction signal level, form stable recording bits, and, as a result, enable high-density recording. The goal is to provide recording media.

本発明の他の目的は、保存安定性に優れた磁気光学記録
媒体を提供することにある。この目的は次の本発明の磁
気光学記録媒体によって達成することができる。すなわ
ち、本発明の磁気光学記録媒体は、透光性基板と、該基
板上に形成、され遷移金属の1種以上または希土類金属
の1種以上の金属元素を誘電体中に分散させた薄膜から
なり膜面の垂直方向に磁気異方性を有する第1磁性層と
、該第1磁性層上に形成され該第1次磁性層よりも高い
保磁力を有する薄膜からなり膜面の垂直方向に磁気異方
性を有する第2磁性層とを少なくとも有してなる。
Another object of the present invention is to provide a magneto-optical recording medium with excellent storage stability. This object can be achieved by the following magneto-optical recording medium of the present invention. That is, the magneto-optical recording medium of the present invention comprises a transparent substrate and a thin film formed on the substrate in which one or more transition metals or one or more rare earth metals are dispersed in a dielectric material. A first magnetic layer having magnetic anisotropy in the direction perpendicular to the film surface, and a thin film formed on the first magnetic layer and having a higher coercive force than the first magnetic layer. and a second magnetic layer having magnetic anisotropy.

以下、図面を参照にして本発明による磁気光学記録媒体
を説明する。
Hereinafter, a magneto-optical recording medium according to the present invention will be explained with reference to the drawings.

第1図は、本発明の基本的態様を示す模式断面図である
。この図において、aはプラスチ・ツタ又はガラス等か
らなる透光性基板である。lは遷移金属の1種属−ヒの
金属元素、又は、希土類金属め1種以上の金属元素を誘
電体中に分散させた厚み方向に垂直な磁化容易軸を有す
る第1磁性層である。例えば、Fe、 Go、 Ni等
の遷移金属の1種以上の金属元素又はGd、 Tb、 
DY等の希土類金属の1種属1.の金属元素をAIN、
Si3N、 、 MgF2. BiF3. Sin。
FIG. 1 is a schematic sectional view showing a basic aspect of the present invention. In this figure, a is a translucent substrate made of plastic, ivy, glass, or the like. 1 is a first magnetic layer having an axis of easy magnetization perpendicular to the thickness direction in which a metal element of one or more groups of transition metals or rare earth metals is dispersed in a dielectric material. For example, one or more metal elements of transition metals such as Fe, Go, Ni, or Gd, Tb,
One type of rare earth metal such as DY 1. The metal element of AIN,
Si3N, , MgF2. BiF3. Sin.

5i02 、 TiO2、及びTa205からなる群よ
り選ばれた1種以上からなる誘電体中に分散させて構成
される。
5i02, TiO2, and Ta205 dispersed in a dielectric material made of one or more selected from the group consisting of Ta205.

誘電体中に含まれる遷移金属または希土類金属の体積の
割合(体積充填率:q)は、0.5≦q≦0.95が好
ましい。体積充填率qが0.5以下であると、厚み方向
に垂直磁気異方性を有する磁化が安定に存在しにくくな
り、またqが0.85以上であると、酸素、水分等の雰
囲気によって磁性層が酸化され易くなるからである。こ
のような体積充填率の好ましい範囲内に於いて、記録光
に対する第1磁性層の光吸収率が30〜40%程度にな
るように膜厚及び体積充填率等を設定することが好まし
い。
The volume ratio (volume filling factor: q) of the transition metal or rare earth metal contained in the dielectric is preferably 0.5≦q≦0.95. If the volume filling factor q is less than 0.5, it will be difficult for magnetization with perpendicular magnetic anisotropy to exist stably in the thickness direction, and if q is more than 0.85, the magnetization will be affected by the atmosphere such as oxygen and moisture. This is because the magnetic layer becomes easily oxidized. Within this preferable range of volume filling ratio, it is preferable to set the film thickness, volume filling ratio, etc. so that the light absorption rate of the first magnetic layer with respect to recording light is about 30 to 40%.

最適な膜厚は磁性層の材料、充填率により異なるが、通
常250〜1000への範囲に設定される。光吸収率は
、後述するようにこの記録媒体への記録、再生の性能に
大きな影響を及ぼす。
The optimum film thickness varies depending on the material of the magnetic layer and the filling rate, but is usually set in the range of 250 to 1000. As will be described later, the light absorption rate has a large effect on the recording and reproducing performance of this recording medium.

以−り説明したような第1磁性層1の好ましい体積充填
率、膜厚及び光吸収率を考慮して、第1磁性層1を構成
する各原料を多元蒸着源として、−スパッタリング法、
イオンブレーティング法、電子ビーム蒸着法等により基
板の上へ成膜することによ゛って、第1磁性層lを形成
することができる。
Considering the preferable volume filling factor, film thickness and light absorption rate of the first magnetic layer 1 as explained below, each raw material constituting the first magnetic layer 1 is used as a multi-source vapor deposition source, - sputtering method,
The first magnetic layer 1 can be formed by forming a film on the substrate using an ion blasting method, an electron beam evaporation method, or the like.

2は第1磁性層1よりも高い保磁力を有し、かつ厚み方
向に磁気異方性を有する第2磁性層であり、例えば、F
e、 Go、 Ni等の遷移金属及びGd。
2 is a second magnetic layer that has a higher coercive force than the first magnetic layer 1 and has magnetic anisotropy in the thickness direction; for example, F
transition metals such as e, Go, Ni, and Gd.

Tb、 DY等の希土類金属の中から任意に選び出した
一種以上の金属元素からなる金属薄膜、バリウムフェラ
イト薄膜(Baje204)、コ/ヘルド−クロム合金
薄膜(Go−C:r) 、マンガン−ビスマス系合金薄
膜(MnBi、 Mr+C:uBi)等の磁性薄膜を使
用することができる。
Metal thin film made of one or more metal elements arbitrarily selected from rare earth metals such as Tb and DY, barium ferrite thin film (Baje204), co/held chromium alloy thin film (Go-C:r), manganese-bismuth system A magnetic thin film such as an alloy thin film (MnBi, Mr+C:uBi) can be used.

このような磁性薄膜成分を構成す4各原料金属又はフェ
ライトを多元蒸着源として、スパッタリフグ法、イオン
ブレーティング法、電子ビーム蒸着法等の成膜法によっ
て第1磁性層l上へ成膜することによって、第2磁性層
2を形成することができる。第2磁性層2の厚さは、材
質によって異なるが通常500A〜2000A程度が好
ましい。
A film is formed on the first magnetic layer l by a film forming method such as a sputtering method, an ion blasting method, an electron beam evaporation method, etc. using the four raw material metals or ferrites constituting such magnetic thin film components as a multi-source vapor deposition source. The second magnetic layer 2 can be formed by the following steps. The thickness of the second magnetic layer 2 varies depending on the material, but is preferably about 500A to 2000A.

第2図は、本発明の磁気光学記録媒体の別の実施態様を
示す模式断面図である。この記録媒体は、第1図に示し
た磁気光学記録媒体の基板aと第1磁性層lとの間に反
射防止層すを、第2磁性層2」二に保護層3を形成して
構成される0反射防止層すは、第1磁性層表面での反射
率が最小となるような反射防止構造に膜厚を設定した誘
電体からなり磁性層の場合と同様な方法により成膜でき
る。この反射防止層すはレーザー光が入射した時に、第
1磁性層表面からの反射光を減少させることにより、レ
ーザー光を効率良く磁性層に与える機能を果つ。
FIG. 2 is a schematic cross-sectional view showing another embodiment of the magneto-optic recording medium of the present invention. This recording medium is constructed by forming an antireflection layer between the substrate a and the first magnetic layer l of the magneto-optic recording medium shown in FIG. 1, and forming a protective layer 3 on the second magnetic layer 2. The antireflection layer to be used is made of a dielectric material whose film thickness is set to have an antireflection structure that minimizes the reflectance on the surface of the first magnetic layer, and can be formed by the same method as the magnetic layer. This antireflection layer functions to efficiently apply laser light to the magnetic layer by reducing reflected light from the surface of the first magnetic layer when laser light is incident thereon.

保護層3は、有機高分子膜あるいは酸化物、硫化物など
の無機材料や金属材料からなり、磁性層の保存安定性を
向上させる効果がある。この保護層3は、材料が有機物
ならば、各種の塗工法プラズマ重合法等によって成膜で
き、材料が無機物ならば、磁性層の場合と同様な方法に
よって成膜できる。
The protective layer 3 is made of an organic polymer film, an inorganic material such as an oxide or a sulfide, or a metal material, and has the effect of improving the storage stability of the magnetic layer. If the material is organic, this protective layer 3 can be formed by various coating methods such as plasma polymerization, and if the material is inorganic, it can be formed by the same method as for the magnetic layer.

この磁気光学記録媒体の示すように第1磁性層lは必ず
しも基板aに直接、接して成膜される必要はない。
As shown in this magneto-optical recording medium, the first magnetic layer l does not necessarily have to be formed in direct contact with the substrate a.

また、第3図の示すように、第2図で示した態様の磁気
光学記録媒体に接着層4を介して保護板a′を貼り合わ
せてもよい。
Further, as shown in FIG. 3, a protective plate a' may be bonded to the magneto-optical recording medium of the embodiment shown in FIG. 2 via an adhesive layer 4.

更に、磁気光学記録媒体の両面で記録、再生ができるよ
うに両面に磁性層を設けた構成も可能である。
Furthermore, a configuration in which magnetic layers are provided on both sides of the magneto-optical recording medium is also possible so that recording and reproduction can be performed on both sides of the magneto-optical recording medium.

ψ本発明の磁気光学記録媒体の記録及び再生の機構を第
1図に示した記録媒体に於いて説明する。
ψThe recording and reproducing mechanism of the magneto-optical recording medium of the present invention will be explained using the recording medium shown in FIG.

この記録媒体に、基板a側からレーザー光を照射すると
、前述したように第1磁性層の光吸収率は、30〜40
%程度であるので、このレーザー光の残りの部分は、第
1磁性層lを通過し、$2磁性層2へ達して吸収される
。従って、第2磁性層2に於いて、光エネルギーは大部
分熱エネルギーに変換され、第2磁性層の温度が上昇し
、主19フ点に達するとこの第2磁性層の磁化が反転す
る。
When this recording medium is irradiated with a laser beam from the substrate a side, the light absorption rate of the first magnetic layer is 30 to 40, as described above.
%, the remaining portion of this laser light passes through the first magnetic layer 1, reaches the $2 magnetic layer 2, and is absorbed. Therefore, in the second magnetic layer 2, most of the optical energy is converted into thermal energy, the temperature of the second magnetic layer increases, and when the temperature reaches the main point, the magnetization of the second magnetic layer is reversed.

第1磁性層lの保磁力は第2磁性層2の保磁力より小さ
いので、この磁化反転に伴い第1磁性層の磁化も反転し
ビットが記録される。このように第2磁性層2は第1磁
性層lの磁化反転を容易にすると同時に、第1磁性層l
の記録ビットの安定化を可能にする。
Since the coercive force of the first magnetic layer l is smaller than the coercive force of the second magnetic layer 2, the magnetization of the first magnetic layer is also reversed with this magnetization reversal, and a bit is recorded. In this way, the second magnetic layer 2 facilitates the magnetization reversal of the first magnetic layer l, and at the same time
enables stabilization of recording bits.

このようにして記録されたビットの再生は、基板a側よ
りこの記録媒体へレーザー光を照射し、その反射光の偏
光角度を検出することにより行う。
The bits recorded in this manner are reproduced by irradiating the recording medium with laser light from the substrate a side and detecting the polarization angle of the reflected light.

照射されたレーザー光は第1磁性層lで一部は反射され
、一部は透過して第2磁性層2で反射される。この2つ
の反射光の合成されたものが再生の際に検出される。第
1磁性層lで反射されたレーザー光は、この層lのカー
効果を受け、また  〔第1磁性層lを透過し第2磁性
層2で反射されたレーザー光は、第1磁性層1のファラ
デー効果と第2磁性層2のカー効果を受ける。このそれ
ぞれの反射光が合成されたものが再生の際に検出される
ので、みかけのカー回転角が増加し、高い再生信号レベ
ルを得ることができる。
A portion of the irradiated laser beam is reflected by the first magnetic layer 1, and a portion thereof is transmitted and reflected by the second magnetic layer 2. A combination of these two reflected lights is detected during reproduction. The laser light reflected by the first magnetic layer 1 is affected by the Kerr effect of this layer 1, and [the laser light transmitted through the first magnetic layer 1 and reflected by the second magnetic layer 2] and the Kerr effect of the second magnetic layer 2. Since a combination of these respective reflected lights is detected during reproduction, the apparent Kerr rotation angle increases and a high reproduction signal level can be obtained.

また、第2磁性層2のキュリ一点が低く、再生光により
磁化が反転するおそれがあるときには、再生光が第2磁
性層2に達っしないような構成も可能である。この場合
は、第1磁“外層lにカー回転角の大きい材料を用いて
、第1磁性層1からの反射光のみの検出で再生を行えば
よい。
Furthermore, when the Curie point of the second magnetic layer 2 is low and there is a risk that the magnetization will be reversed by the reproducing light, a configuration in which the reproducing light does not reach the second magnetic layer 2 is also possible. In this case, a material with a large Kerr rotation angle may be used for the first magnetic outer layer 1, and reproduction may be performed by detecting only the reflected light from the first magnetic layer 1.

このような第1磁性層と第2磁性層を有する本発明の磁
気光学記録媒体は以下に述べる実施例から明らかなよう
に、記録の際に印加するバイアス磁界の影響を受けるこ
となく、安定した記録ビットが形成でき、保存安定性も
向上する。
As is clear from the examples described below, the magneto-optical recording medium of the present invention having such a first magnetic layer and a second magnetic layer has a stable recording medium without being affected by the bias magnetic field applied during recording. Recording bits can be formed and storage stability is improved.

本発明による磁気光学記録媒体を実施例を挙げて更に詳
細に説明する。
The magneto-optical recording medium according to the present invention will be explained in more detail by giving examples.

実施例1〕 76X 26m+++、厚さ1mmのスライドガラス基
板上に、−酸化ケイ素(Sin)の中にコバルト(Go
)を分散させた第1磁性層を成膜した。この成膜はプラ
ズマ中において、 SiOとGoの二元蒸着源からの゛
イオンブレーティング法によって実施した。  SiO
の中に含まれるGoの体積充填率は、0.60であり、
膜厚は約450八である。この上に、Tb、 Dy、 
Fe薄膜を第2磁性層として成膜した。これは、スパッ
タリング法によって11り厚約1000Aに作製し、保
磁力は約3 KOeであった。この磁気光学記録媒体に
基板側から波1i 833nm、、出力20mWのHe
−Neレーザー光を照射し、厚み方向に垂直に1OKO
eの磁界を印加した状態でカー回転角の測定をした結果
、θに共 1.0°が得られた。
Example 1 Cobalt (Go) was deposited in -silicon oxide (Sin) on a slide glass substrate of 76×26m++
) was formed into a film in which the first magnetic layer was dispersed. This film formation was carried out in plasma by the ion blating method from a dual vapor deposition source of SiO and Go. SiO
The volume filling factor of Go contained in is 0.60,
The film thickness is approximately 450 mm. On top of this, Tb, Dy,
An Fe thin film was formed as the second magnetic layer. This was fabricated by a sputtering method to have a thickness of about 1000 A, and a coercive force of about 3 KOe. A wave 1i of 833 nm was applied to this magneto-optical recording medium from the substrate side, and He with an output of 20 mW was applied.
- Irradiate with Ne laser light and perform 1OKO perpendicular to the thickness direction.
As a result of measuring the Kerr rotation angle with a magnetic field of e applied, both θ were 1.0°.

〔実施例2〕 直径2001111、厚さ1.5■のディスク状ガラス
)板の上に、電子ビーム蒸着法を用いて使用するHe−
Neレーザー波長633nmに対して反射防止構造とな
る約800への膜厚にジルコニア薄膜を形成した。次に
、その上に実施例1と同様に第1磁性層を第2ai性層
を成膜した6更に電子ビーム蒸着法を用いて膜厚的40
0OAの一’SiO保護層を成膜した後、接着剤を用い
てガラス保護板を貼り合わせ磁気光学記録媒体を作製し
た。
[Example 2] On a disk-shaped glass plate with a diameter of 2001111 and a thickness of 1.5 cm, He-
A zirconia thin film was formed to a thickness of approximately 800 nm to provide an antireflection structure for Ne laser wavelength of 633 nm. Next, a first magnetic layer and a second ai layer were formed thereon in the same manner as in Example 1.
After forming a 0OA 1'SiO protective layer, a glass protective plate was attached using an adhesive to produce a magneto-optical recording medium.

この磁気光学記録媒体に、基板側からレーザー光を照射
し、記録を行なった、光源には、出力20mWのHe−
Ne レーザーを用い、磁性層の厚さ方向にバイアス磁
界を印加した。このディスク状磁気光学記録媒体を10
00rpa+で回転ネせながら、磁性層を一様に磁化し
、レーザーをパルス発振して周波数2 MHzの信号な
ビ・ント記録した。このとき印加したバイアス磁界は、
0.!liK[leである。これを、出カフmWのHe
−Neレーザーを用いて再生した結果。
This magneto-optical recording medium was irradiated with a laser beam from the substrate side for recording.The light source was a He-
A bias magnetic field was applied in the thickness direction of the magnetic layer using a Ne laser. This disk-shaped magneto-optical recording medium
While rotating at 00 rpa+, the magnetic layer was uniformly magnetized, and a laser pulse was oscillated to record a signal at a frequency of 2 MHz. The bias magnetic field applied at this time is
0. ! liK[le. Apply this to He of the output cuff mW.
-Results of reproduction using a Ne laser.

記録周波数2 MHzのとき、約300mVの再生信号
が得られ、良好な信号波形であった。また、バイアス磁
界を 0.4〜0.8KOeの範囲で変化させて記録を
行ない、記録ビットの顕微鏡観察を行なった結果、バイ
アス磁界の変化に対しても安定して記録ビットが存在し
ていることが確認された。また、この磁気光学記録媒体
を温度45℃、湿度85%R,H,の雰囲気に放置して
時間経過による保磁力の変化を測定して保存安定性の試
験を行なったところ1000時間経過後もほとんど保磁
力が低下せず、従来の磁気光学記録媒体と比較して保存
安定性が優れていることがわかった。
When the recording frequency was 2 MHz, a reproduced signal of about 300 mV was obtained, and the signal waveform was good. Furthermore, recording was performed while changing the bias magnetic field in the range of 0.4 to 0.8 KOe, and the recorded bits were observed under a microscope. As a result, the recorded bits remained stable despite changes in the bias magnetic field. This was confirmed. In addition, we conducted a storage stability test by leaving this magneto-optical recording medium in an atmosphere with a temperature of 45°C and a humidity of 85% R, H, and measuring the change in coercive force over time. It was found that the coercive force hardly decreased and the storage stability was superior to that of conventional magneto-optical recording media.

また、第1磁性層として、Fe、 Go、旧の1種以上
あるいはGd、 Tb、 Dyの1種以上をAIN、S
i3N、 。
In addition, as the first magnetic layer, one or more of Fe, Go, old or one or more of Gd, Tb, Dy may be used as AIN, S
i3N, .

MgF2 、 BiF3 、 SiO,5i02 、 
TiO2、Ta2O5の1種以上からなる誘電体中に分
散させて構成したものを用い、第2磁性層として前記の
金属薄膜、フェライト薄膜を用い種々の磁気光学記録媒
体を作製し同様な実験をしたところ、再生信号レベルが
高く、また記録ビットの安定性はバイアス磁界の影響を
ほとんど受けず、更に保存安定性が向上することがわか
った。
MgF2, BiF3, SiO,5i02,
Similar experiments were carried out by fabricating various magneto-optical recording media using the above-mentioned metal thin film or ferrite thin film as the second magnetic layer, using one or more of TiO2 and Ta2O5 dispersed in a dielectric material. However, it was found that the reproduced signal level was high, the stability of the recorded bits was hardly affected by the bias magnetic field, and the storage stability was further improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図及び第3図は本発明による磁気光学記録
媒体の実施例を示す模式断面図である。 a・・・基板     ao・・・保護板b・・・反射
防市層  1・・・第1磁性層2・・・第2磁性層  
3・・・保護層4・・・接着層 第  1   図 第  2   図 メジ3図
FIGS. 1, 2, and 3 are schematic cross-sectional views showing embodiments of the magneto-optical recording medium according to the present invention. a...Substrate ao...Protective plate b...Reflective anti-city layer 1...First magnetic layer 2...Second magnetic layer
3...Protective layer 4...Adhesive layer Fig. 1 Fig. 2 Fig. 3

Claims (1)

【特許請求の範囲】[Claims] 透光性基板と、該基板上に形成され遷移金属の1種以上
または希土類金属の1種以上の金属元素を誘電体中に分
散させた薄膜からなり膜面の垂直方向に磁気異方性を有
する第1磁性層と、該第1磁性層上に形成され該第1次
磁性層よりも高い保磁力を有する薄膜からなり膜面の垂
直方向に磁気異方性を有する第2磁性層とを少なくとも
有してなる磁気光学記録媒体。
It consists of a transparent substrate and a thin film formed on the substrate in which one or more transition metals or one or more rare earth metals are dispersed in a dielectric material, and has magnetic anisotropy in the direction perpendicular to the film surface. and a second magnetic layer formed on the first magnetic layer and made of a thin film having a higher coercive force than the first magnetic layer and having magnetic anisotropy in the direction perpendicular to the film surface. A magneto-optical recording medium comprising at least one magneto-optical recording medium.
JP14227884A 1984-05-31 1984-07-11 Photomagnetic recording medium Granted JPS6122454A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14227884A JPS6122454A (en) 1984-07-11 1984-07-11 Photomagnetic recording medium
US07/246,970 US4999260A (en) 1984-05-31 1988-09-21 Magneto-optical recording medium comprising a rare-earth-transition metal dispersed in a dielectric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14227884A JPS6122454A (en) 1984-07-11 1984-07-11 Photomagnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6122454A true JPS6122454A (en) 1986-01-31
JPH0350343B2 JPH0350343B2 (en) 1991-08-01

Family

ID=15311641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14227884A Granted JPS6122454A (en) 1984-05-31 1984-07-11 Photomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6122454A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162234U (en) * 1988-04-26 1989-11-10
US4897320A (en) * 1986-03-20 1990-01-30 Fuji Photo Film Co., Ltd. Magneto-optical recording medium
JPH0685636U (en) * 1993-05-19 1994-12-13 克則 松沢 Barbecue grill
US7371471B2 (en) 2004-03-08 2008-05-13 Nec Tokin Corporation Electromagnetic noise suppressing thin film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897320A (en) * 1986-03-20 1990-01-30 Fuji Photo Film Co., Ltd. Magneto-optical recording medium
JPH01162234U (en) * 1988-04-26 1989-11-10
JPH0685636U (en) * 1993-05-19 1994-12-13 克則 松沢 Barbecue grill
US7371471B2 (en) 2004-03-08 2008-05-13 Nec Tokin Corporation Electromagnetic noise suppressing thin film

Also Published As

Publication number Publication date
JPH0350343B2 (en) 1991-08-01

Similar Documents

Publication Publication Date Title
JP3781823B2 (en) Magneto-optical recording medium and reproducing method thereof
US5783320A (en) Magneto-optical recording medium and process for producing the same
EP0782135A2 (en) Magneto-optical recording medium and method for reproducing therefrom
JP3178025B2 (en) Magneto-optical recording medium and method of manufacturing the same
JPH05174433A (en) Magneto-optical recording medium
JPS6122454A (en) Photomagnetic recording medium
JPH0350344B2 (en)
US4999260A (en) Magneto-optical recording medium comprising a rare-earth-transition metal dispersed in a dielectric
JP3570922B2 (en) Magneto-optical recording medium
JPH0528555A (en) Magneto-optical recording medium
KR100225108B1 (en) Optic-magneto recording medium
JP3570921B2 (en) Information recording method using magneto-optical recording medium
JP3214513B2 (en) Magneto-optical recording medium
JPS62172547A (en) Photomagnetic recording medium
JPH0660452A (en) Magneto-optical recording medium
JP2657243B2 (en) Magneto-optical recording medium
JPH06139633A (en) Magneto-optical recording medium
JPS6120244A (en) Magnetic recording medium
KR910006146B1 (en) 4-layered tb-fe magnetic recording medium
Chen et al. Dynamic Study of Amorphous Tb-Fe Film for Magneto-Optic Memory Applications
JPH0458662B2 (en)
JPH0341644A (en) Magneto-optical recoding medium
JPS62121944A (en) Optical recording medium
JPH0644624A (en) Magneto-optical recording medium
JPH0660458A (en) Single plate optical disk and recording and reproducing method for the same