JPS6120244A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS6120244A
JPS6120244A JP14046884A JP14046884A JPS6120244A JP S6120244 A JPS6120244 A JP S6120244A JP 14046884 A JP14046884 A JP 14046884A JP 14046884 A JP14046884 A JP 14046884A JP S6120244 A JPS6120244 A JP S6120244A
Authority
JP
Japan
Prior art keywords
magnetic recording
recording layer
recording medium
film
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14046884A
Other languages
Japanese (ja)
Inventor
Ichiro Saito
一郎 斉藤
Yoichi Osato
陽一 大里
Kozo Arao
荒尾 浩三
Hidekazu Fujii
英一 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14046884A priority Critical patent/JPS6120244A/en
Publication of JPS6120244A publication Critical patent/JPS6120244A/en
Priority to US07/246,970 priority patent/US4999260A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material

Abstract

PURPOSE:To obtain a magnetooptical recording medium having a larger signal to noise ratio and excellent shelf life by forming the magnetic recording layer of a thin film dispersed with >=1 kind of transition metals and >=1 kind of metallic elements such as rare earth elements into a dielectric material and having the axis of easy magnetization perpendicular to the film plane and forming a reflective film on one side of the magnetic recording layer. CONSTITUTION:The magnetic recording layer is formed by dispersing the metallic elements of >=1 kind of transition metals such as Fe, Co and Ni or the metallic elements of >=1 kind of the rare earth metals such as Gd, Tb and Dy in >=1 kind of the dielectric materials selected from the group consisting of AlN, Si3N4, MgF2, BiF3, SiO, SiO2, TiO2 and Ta2O5. The volumetric packing of the rare earth or transition metals is preferably 50-95% by the volume of the magnetic recording layer. The optimum film thickness is usually 250-1,000Angstrom although said thickness varies with the kinds of the rare earth or transitio metals and the packing. The reflective film is preferably formed by using a material such as Au, Ag, Cu or Al to 300-800Angstrom film thickness and by a method such as an electron beam vapor deposition method.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、レーザー光を用いて情報の記録・再生・消去
を行なう磁気光学記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a magneto-optical recording medium that records, reproduces, and erases information using laser light.

〔従来技術〕[Prior art]

近年、コンピュータ技術の発達に伴い膨大な情報の処理
が必要となっている。その情報の処理を支える要素技術
の1つに高密度容量光メモリーがある。
In recent years, with the development of computer technology, it has become necessary to process enormous amounts of information. One of the elemental technologies that support this information processing is high-density optical memory.

現在、既に実用化したものとしては、記録ディスクにレ
ーザー光を照射してピントを形成させる方法、あるいは
光学的特性を変化させる方法などがある。
Currently, methods that have already been put into practical use include a method of irradiating a recording disk with laser light to form a focus, and a method of changing optical characteristics.

しかしながら、上記の方法では再生専用あるいは追加記
録に留まり、情報を消去し新しい情報を再生記録できる
素子は少ない。
However, the above methods are limited to reproduction-only or additional recording, and there are few devices that can erase information and reproduce and record new information.

本発明は、を記の情報類記録会消去・再配備できる素子
として期待される磁気光学記録媒体に関するものである
The present invention relates to a magneto-optical recording medium that is expected to be an element that can be erased and redeployed for recording information.

磁気光学記録媒体の再生方式には、ファラデー効果を利
用する方法とカー効果を利用する方法とがある。これら
の方法を用いる磁気光学記録媒体は、上記のような利点
を有する一方で再生信号レベルが低いという欠点があり
、特にカー効果再生方式ではカー回転角が小さいため、
信号雑音比(S/N)を大きくする方法が困難である。
There are two methods for reproducing magneto-optical recording media: one using the Faraday effect and the other using the Kerr effect. Although magneto-optical recording media using these methods have the above-mentioned advantages, they also have the disadvantage of low reproduction signal levels, especially in the Kerr effect reproduction method, because the Kerr rotation angle is small.
It is difficult to find a way to increase the signal-to-noise ratio (S/N).

そこで、カー回転角を大きくするために磁性材料の改善
や、記録媒体上にSiOや5i02などの誘電体薄膜を
形成して磁性層面上への多重反射を利用する方法などが
検討されてきた。また、特開昭55−8541号、特開
昭58−6542号に開示されているように、非晶質薄
膜を薄膜化し、裏面に金属反射層を設けることにより、
カー効果とファラデー効果を利用して、カー回転角を増
加させる方法も知られている。あるいは、上記非晶質磁
性膜層と反射層の間に透明誘電体膜厚を設けて、各3層
の材料と膜厚を最適に選ぶことにより、さらに効率良く
カー回転角を増加させることができるという報告もある
(J、Appl、 Phys、 Vol 53  pb
6 P、4485〜4484) 。
Therefore, in order to increase the Kerr rotation angle, studies have been conducted to improve the magnetic material and to form a dielectric thin film such as SiO or 5i02 on the recording medium to utilize multiple reflections on the surface of the magnetic layer. Furthermore, as disclosed in JP-A-55-8541 and JP-A-58-6542, by thinning the amorphous thin film and providing a metal reflective layer on the back surface,
A method of increasing the Kerr rotation angle using the Kerr effect and Faraday effect is also known. Alternatively, the Kerr rotation angle can be increased more efficiently by providing a transparent dielectric film thickness between the amorphous magnetic film layer and the reflective layer and optimally selecting the material and film thickness of each of the three layers. There is also a report that it can be done (J, Appl, Phys, Vol 53 pb
6 P, 4485-4484).

しかし、これらの方法においては、読み出し光を透過さ
せる為に非晶質磁性膜層の膜厚は、250A以下とする
必要があり、その為、酸素の存在下で高温高湿の環境に
放置すると容易に酸化されて、結果的に媒体の記録感度
の低下、記録再生時のエラーの増加、信号の劣化などを
招く。
However, in these methods, the thickness of the amorphous magnetic film layer needs to be 250A or less in order to transmit the readout light, so if it is left in a high temperature and high humidity environment in the presence of oxygen, It is easily oxidized, resulting in a decrease in the recording sensitivity of the medium, an increase in errors during recording and reproduction, and signal deterioration.

〔発明の目的〕 本発明は、上述の如き欠点を改善し、より大きな信号雑
音比(S/N)と優れた保存安定性をもつ磁気光学記録
媒体を提供することを目的とする。
[Object of the Invention] An object of the present invention is to improve the above-mentioned drawbacks and provide a magneto-optical recording medium having a larger signal-to-noise ratio (S/N) and excellent storage stability.

本発明の目的は以下の磁気光学記録媒体によって達成さ
れる。
The objects of the present invention are achieved by the following magneto-optical recording medium.

〔発IJ1の構成〕 すなわち、本発明の磁気光学記録媒体は基板上に少なく
ともこ磁気記録層を有する磁気光学記録媒体において、
前記磁気記録層が誘電体中に遷移金属の一種以上または
希土類金属の一種以上の金属元素を分散させた膜面に垂
直な磁化容易軸を有する薄膜であり、前記磁気記録層の
一方側に反射膜を形成したことを特徴とする。
[Configuration of IJ1] That is, the magneto-optic recording medium of the present invention has at least this magnetic recording layer on a substrate, and includes the following:
The magnetic recording layer is a thin film having an axis of easy magnetization perpendicular to the film surface in which one or more transition metals or one or more rare earth metals are dispersed in a dielectric material, and the magnetic recording layer is a thin film having an axis of easy magnetization perpendicular to the film surface. It is characterized by forming a film.

本発明の磁気光学記録媒体の有する磁気記録層は、Aj
l N、 5i3Ha + MgF2 、 BiF3 
、 SiO,5i02 。
The magnetic recording layer of the magneto-optical recording medium of the present invention has Aj
lN, 5i3Ha + MgF2, BiF3
, SiO,5i02.

T i07 、  Ta205からなる群より選ばれた
1種以上の1誘電体中に、Fe 、 Go 、 Xi等
の遷移金属の一種以上の金属元素またはCd 、 Tb
 、 Dy等の希土類金属の一種以上の金属元素を分散
させたものであり、膜面に垂直な磁化容易軸を有するも
のである。
One or more metal elements of transition metals such as Fe, Go, Xi or Cd, Tb in one or more dielectrics selected from the group consisting of Ti07 and Ta205.
, Dy, etc., and has an easy axis of magnetization perpendicular to the film surface.

希土類または遷移金属の体積充填率は磁気記録層の体積
に対して50〜95%であることが好ましい0体積充填
率qが50%以下であると厚み方向に垂直磁気異方性を
有する磁化が安定に存在しに〈〈なり、またqが95%
以上であると、酸素、水分等の雰囲気によって磁性層が
酸化され易くなるからである。また、磁気記録層の膜厚
は、この記録層を透過し反射膜で反射された光が検出出
来る様に設定される必要がある。最−な膜厚は希土類又
は遷移金属の種類や、充填率によって異なるが、通常は
 250〜100OAで゛ある。
The volume filling factor of the rare earth or transition metal is preferably 50 to 95% with respect to the volume of the magnetic recording layer. If the volume filling factor q is 50% or less, magnetization with perpendicular magnetic anisotropy in the thickness direction It exists stably, and q is 95%.
This is because the magnetic layer is likely to be oxidized by atmospheres such as oxygen and moisture. Further, the thickness of the magnetic recording layer must be set so that light transmitted through the recording layer and reflected by the reflective film can be detected. The maximum film thickness varies depending on the type of rare earth or transition metal and the filling rate, but is usually 250 to 100 OA.

磁気記録層は、上記材料を用い、スパッタリング法、抵
抗加熱蒸着法、電子ビーム蒸着法、イオンブレーティン
グ法、などの方法によって形成される。
The magnetic recording layer is formed using the above materials by a method such as sputtering, resistance heating evaporation, electron beam evaporation, or ion blating.

本発明の磁気光学記録媒体の有する反射膜は、Au、A
g、Cu、A/などの材料を用いて、膜厚300〜80
0人に、電子ビーム蒸着法などの方法で形成されること
が好ましい。
The reflective film of the magneto-optical recording medium of the present invention includes Au, A
Using materials such as g, Cu, and A/, the film thickness is 300 to 80.
It is preferable that the film be formed by a method such as an electron beam evaporation method.

以下、図面を参照にして本発明による磁気光学記録媒体
を説明する。
Hereinafter, a magneto-optical recording medium according to the present invention will be explained with reference to the drawings.

第1図は、本発明の実施態様を示す断面構成図である。FIG. 1 is a cross-sectional configuration diagram showing an embodiment of the present invention.

図において、aはプラスチック又はガラス等からなる透
光性書き込み側基板である。lは、磁気記録層、2は反
射層、3は保護層である。保護層は、有機高分子膜を塗
工等の方法により設けても良いし、酪化物、窒化物、硫
化物などの無機材料あるいは金属材料を蒸着等の方法に
より設けても良い。
In the figure, a is a light-transmitting writing side substrate made of plastic, glass, or the like. 1 is a magnetic recording layer, 2 is a reflective layer, and 3 is a protective layer. The protective layer may be provided by a method such as coating with an organic polymer film, or may be provided by a method such as vapor deposition using an inorganic material such as butyride, nitride, or sulfide, or a metal material.

再生時基板a側からレーザー光を照射すると。When a laser beam is irradiated from the substrate a side during reproduction.

上記磁気記録層1の表面でこのレーザー光は一部反射さ
れ、残部は上記磁気記録層lを透過し、上記反射層2で
反射される。前者の反射光はカー効果を受け、後者の反
射光はファラデー効果を受ける。従って、これらの反射
光が合成された再生のための検出光は、見かけのカー回
転角は増加する。その結果として磁気光学記録媒体にレ
ーザー光を照射して得られる信号雑音比(S/N)は向
上する。
A portion of this laser beam is reflected by the surface of the magnetic recording layer 1, and the remaining portion is transmitted through the magnetic recording layer 1 and reflected by the reflective layer 2. The former reflected light is subjected to the Kerr effect, and the latter reflected light is subjected to the Faraday effect. Therefore, the apparent Kerr rotation angle of the detection light for reproduction, which is a combination of these reflected lights, increases. As a result, the signal-to-noise ratio (S/N) obtained by irradiating the magneto-optical recording medium with laser light is improved.

また、本発明の磁気記録層lと書き込み側基板aの間、
あるいは磁気記録層lと反射層2の間にSiO,5i0
2等の誘電体層を設けることによって、カー回転角を増
加させることができる。
Further, between the magnetic recording layer l of the present invention and the writing side substrate a,
Or SiO, 5i0 between the magnetic recording layer l and the reflective layer 2
By providing a dielectric layer such as No. 2, the Kerr rotation angle can be increased.

また、第2図のように、接着層4を用いて保護用基板a
′を貼り合わせてもよい。
In addition, as shown in FIG. 2, the adhesive layer 4 is used to protect the protective substrate
′ may also be pasted together.

更に、磁気光学記録媒体の両面で記録・再生ができるよ
うに記録媒体の両面上に磁気記録層を設けた構成も可能
である。
Furthermore, a configuration in which magnetic recording layers are provided on both sides of the recording medium is also possible so that recording and reproduction can be performed on both sides of the magneto-optical recording medium.

次に、本発明による磁気光学記録媒体の具体的実施例に
ついて説明する。
Next, specific examples of the magneto-optical recording medium according to the present invention will be described.

〔実施例1〕 76X 2Bmm、厚さl+s+sのスライドガラス基
板上に、−酸化シリコン(Sin)中にコへルトcoを
分散させた磁気記録層を成膜した。これは、プラズマ中
におけるSiOとcoの2元イオンブレーティング法に
よって作成した。 SiOの中に含まれるG。
[Example 1] On a slide glass substrate of 76×2 Bmm and thickness l+s+s, a magnetic recording layer in which coherto co was dispersed in -silicon oxide (Sin) was formed. This was created by a binary ion blating method of SiO and co in plasma. G contained in SiO.

の体積割合(q)は、q = 0.80であり、膜厚は
約450人である。更にその上に電子ビーム蒸着法を用
いて、m厚400AのCu反射層を1&膜し、続いてイ
オンブレーティング法により膜厚4000AのSiO保
護層を形成した。この磁気光学記録媒体にガラス側から
波1i に33nts、出力5mWのHe−Heレーザ
ーを照射し、7[磁石によって外部磁界を変化させ、ヒ
ステリシス曲線を測定したところ、保磁力は約3KOe
であった。
The volume fraction (q) of is q = 0.80, and the film thickness is approximately 450 people. Furthermore, a Cu reflective layer with a thickness of 400 Å was formed thereon using an electron beam evaporation method, and then a SiO protective layer with a thickness of 4000 Å was formed using an ion blasting method. This magneto-optical recording medium was irradiated with a He-He laser with a wave 1i of 33 nts and an output of 5 mW from the glass side, and the external magnetic field was changed using a 7 [magnet], and the hysteresis curve was measured, and the coercive force was approximately 3 KOe.
Met.

〔実施例2〕 直?+ 200mm、厚さ1.5+u+のディスク状ガ
ラス基板のにに、実施例1と同様な方法を用いて5iO
−C:。
[Example 2] Direct? + 5iO was applied to a disc-shaped glass substrate of 200 mm and thickness 1.5+ using the same method as in Example 1.
-C:.

磁気記録層を成膜した。この時のSiO中に含まれるG
oの体積割合はq=o、eであり、膜厚は450人であ
る。この上に、電子ビーム蒸着法によって11!2厚4
20AのCu反射層を成膜し、更にイオンブレーティン
グ法により膜厚4000AのS10保3I層を成膜した
。これに接着剤を用いてガラス保護板を貼り合わせ磁気
光学記録媒体を作成した。
A magnetic recording layer was formed. G contained in SiO at this time
The volume ratio of o is q=o, e, and the film thickness is 450 people. On top of this, 11!2 thickness 4
A 20A Cu reflective layer was formed, and an S10 protective 3I layer with a thickness of 4000A was further formed by ion blating. A glass protective plate was attached to this using an adhesive to create a magneto-optical recording medium.

この磁気光学記録媒体にガラス側より光学ヘッドを用い
て記録・再生を行なった。光源として出力30+sWの
He −Neレーザーを用い、磁気記録層の面に対して
垂直方向にバイアス磁界を印加した。このディスク状磁
気光学記録媒体を1100orpで回転させながら磁気
記録層を一様に磁化し、レーザーをパルス発振して2M
Hzの信号をピット記録した。
Recording and reproduction were performed on this magneto-optical recording medium using an optical head from the glass side. A He-Ne laser with an output of 30+sW was used as a light source, and a bias magnetic field was applied in a direction perpendicular to the surface of the magnetic recording layer. While rotating this disc-shaped magneto-optical recording medium at 1100 orp, the magnetic recording layer is uniformly magnetized, and a laser pulse is oscillated to obtain a 2M
The Hz signal was pit-recorded.

このとき印加したバイアス磁界は1KOeである。再生
には、出力15mWのHe−Neレーザーを用いて行な
ったところ、約100■Vの再生信号が得られた。
The bias magnetic field applied at this time was 1 KOe. When reproduction was carried out using a He--Ne laser with an output of 15 mW, a reproduction signal of about 100 .mu.V was obtained.

〔実施例3〕 直径200■、厚さ1.5■のディスク状ガラス基板の
上に、実施例1と同様な方法を用いて5iO−G。
[Example 3] 5iO-G was deposited on a disk-shaped glass substrate with a diameter of 200 cm and a thickness of 1.5 cm using the same method as in Example 1.

磁気記録層を成膜した。この時のSiO中に含まれるC
Oの体積割合はq = 0.65、膜厚は400人であ
る。次にこの上にSiO誘電体層をイオンブレーティン
グ法によって膜厚400人となるように成膜し、更に電
子ビーム蒸着法により膜厚400AのCu反射層を成膜
した0次に、この上にイオンブレーティング法により膜
厚4000AのSiO保護層を成膜し、これにガラス保
護板を貼り合わせ磁気光学記録媒体を作成した。この記
録媒体を実施例2と同様にして記録、再生を行った。そ
の結果、記録周波数2MHzのとき約150腸Vの再生
信号が得られた。
A magnetic recording layer was formed. C contained in SiO at this time
The volume fraction of O is q = 0.65, and the film thickness is 400. Next, a SiO dielectric layer was deposited on this layer to a thickness of 400 Å using the ion blasting method, and a Cu reflective layer was further deposited to a thickness of 400 Å using the electron beam evaporation method. A SiO protective layer having a thickness of 4,000 Å was formed using the ion blating method, and a glass protective plate was bonded to the SiO protective layer to prepare a magneto-optical recording medium. Recording and reproduction were performed on this recording medium in the same manner as in Example 2. As a result, a reproduced signal of approximately 150 V was obtained at a recording frequency of 2 MHz.

次に、この磁気光学記録媒体を温度45℃、湿度95%
R,H,の雰囲気に放置して、時間経過による保磁力の
変化を測定し、保存安定性の試験を行なった。結果を第
3図に示す。
Next, this magneto-optical recording medium was placed at a temperature of 45°C and a humidity of 95%.
A storage stability test was conducted by leaving the sample in an R, H, atmosphere and measuring the change in coercive force over time. The results are shown in Figure 3.

第3図は、初期の保磁力)leaに対する保磁力)1c
の変化をHc/Hcoで表わしている。
Figure 3 shows the initial coercive force (coercive force) 1c for lea
The change in is expressed as Hc/Hco.

また、従来のGdTbFe非晶買薄膜からなる磁気光学
記録媒体をGdTbFeの組成、膜厚等の条件を変えて
挿々作成し、実施例2と同様にして保存安定性の試験を
行った。結果は、いずれも第3図に示すような曲線が得
られた。
In addition, magneto-optical recording media made of conventional GdTbFe amorphous thin films were prepared by changing conditions such as the composition of GdTbFe and film thickness, and storage stability tests were conducted in the same manner as in Example 2. As a result, curves as shown in FIG. 3 were obtained in all cases.

以ト述べた実施例から明らかなように、従来の非晶質薄
膜からなる磁気光学記録媒体では時間経過により保磁力
の低下が著しい、これに対して、本発明による磁気光学
記録媒体では時間経過による保磁力の低下が非常に少な
く、保存安定性に優れていることがわかる。
As is clear from the examples described above, in the conventional magneto-optical recording medium made of an amorphous thin film, the coercive force decreases significantly over time, whereas in the magneto-optic recording medium according to the present invention, the coercive force decreases significantly over time. It can be seen that there is very little decrease in coercive force caused by oxidation, and that the storage stability is excellent.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明による磁気光学記録媒体の実
施例の模式断面図である。第3図は本発明の実施例及び
比較例の保存安定性試験の結果を示す図である。 a  −−一書き込み側基板 a′ −m−保護用基板
1−m−磁気記録層   ? −m−反射層3−−一保
護層     4−−一接着層第  1   図 第  2  図
1 and 2 are schematic cross-sectional views of an embodiment of a magneto-optical recording medium according to the present invention. FIG. 3 is a diagram showing the results of storage stability tests of Examples and Comparative Examples of the present invention. a--Writing side substrate a'-m-Protective substrate 1-m-Magnetic recording layer? -m-Reflection layer 3--Protective layer 4--Adhesive layer Fig. 1 Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 基板上に少なくとも磁気記録層を有する磁気光学記録媒
体において、前記磁気記録層が誘電体中に遷移金属の一
種以上または希土類金属の一種以上の金属元素を分散さ
せた膜面に垂直な磁化容易軸を有する薄膜であり、前記
磁気記録層の一方の側に反射膜を形成したことを特徴と
する磁気光学記録媒体。
In a magneto-optical recording medium having at least a magnetic recording layer on a substrate, the magnetic recording layer has an axis of easy magnetization perpendicular to the film plane in which one or more transition metals or one or more rare earth metals are dispersed in a dielectric material. 1. A magneto-optical recording medium, characterized in that the magnetic recording layer is a thin film having a reflective film formed on one side of the magnetic recording layer.
JP14046884A 1984-05-31 1984-07-09 Magnetic recording medium Pending JPS6120244A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14046884A JPS6120244A (en) 1984-07-09 1984-07-09 Magnetic recording medium
US07/246,970 US4999260A (en) 1984-05-31 1988-09-21 Magneto-optical recording medium comprising a rare-earth-transition metal dispersed in a dielectric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14046884A JPS6120244A (en) 1984-07-09 1984-07-09 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS6120244A true JPS6120244A (en) 1986-01-29

Family

ID=15269295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14046884A Pending JPS6120244A (en) 1984-05-31 1984-07-09 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6120244A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6371961A (en) * 1986-09-16 1988-04-01 Toshiba Corp Magneto-optical recording medium
US4897320A (en) * 1986-03-20 1990-01-30 Fuji Photo Film Co., Ltd. Magneto-optical recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897320A (en) * 1986-03-20 1990-01-30 Fuji Photo Film Co., Ltd. Magneto-optical recording medium
JPS6371961A (en) * 1986-09-16 1988-04-01 Toshiba Corp Magneto-optical recording medium

Similar Documents

Publication Publication Date Title
Imamura et al. Magneto-optical recording on amorphous films
JPH0684212A (en) Magneto-optical memory element
JPS61196445A (en) Photomagnetic disk
JPS6120244A (en) Magnetic recording medium
JPS61193886A (en) Optical recording medium
US4999260A (en) Magneto-optical recording medium comprising a rare-earth-transition metal dispersed in a dielectric
JPS6122455A (en) Magnetooptic recording medium
JPH0350343B2 (en)
JPS60131659A (en) Photomagnetic recording medium
JPH0350342B2 (en)
JPS61269248A (en) Photomagnetic disk
JPH04255943A (en) Magneto-optical recording medium
JPS60254434A (en) Magnetooptic recording medium
JPS6116047A (en) Magnetooptic recording medium
JPS5877047A (en) Magnetooptic head
JP2817505B2 (en) Single-plate optical disk for magneto-optical recording and its recording / reproducing method
JPS6332748A (en) Information recording medium
KR100225108B1 (en) Optic-magneto recording medium
JP2607476B2 (en) Magneto-optical recording method
JPH0660458A (en) Single plate optical disk and recording and reproducing method for the same
JPH0458662B2 (en)
JPS6139250A (en) Recording medium and its recording and reproducing method
JPS62298044A (en) Magneto-optical disk
JPH0341644A (en) Magneto-optical recoding medium
JPS61131257A (en) Photomagnetic recording medium