JPS61131257A - Photomagnetic recording medium - Google Patents

Photomagnetic recording medium

Info

Publication number
JPS61131257A
JPS61131257A JP25260684A JP25260684A JPS61131257A JP S61131257 A JPS61131257 A JP S61131257A JP 25260684 A JP25260684 A JP 25260684A JP 25260684 A JP25260684 A JP 25260684A JP S61131257 A JPS61131257 A JP S61131257A
Authority
JP
Japan
Prior art keywords
reflective layer
light
substance
layer
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25260684A
Other languages
Japanese (ja)
Inventor
Yoichi Osato
陽一 大里
Ichiro Saito
一郎 斉藤
Kozo Arao
荒尾 浩三
Hidekazu Fujii
英一 藤井
Yoshio Takasu
高須 義雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP25260684A priority Critical patent/JPS61131257A/en
Priority to US06/679,314 priority patent/US4675767A/en
Publication of JPS61131257A publication Critical patent/JPS61131257A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To improve recording and reproducing characteristics and the shelf stability by providing a reflective layer obtained by mixing a substance having low absorption to light of specified wave length and a substance having high reflectance to the light in the specified ratio. CONSTITUTION:A reflective layer 13 is formed with a mixture of a substance having low absorption to the wavelength of reproduced light and a substance having high reflectance to the wavelength. The content of the substance having low absorption is preferably regulated to the range 0.80-0.95. The reflective layer fills simultaneously the reflecting function and the phase modulating function. Accordingly, reproduced light transmitted through a magnetic recording layer 12 and undergoing Faraday rotation is reflected by the reflective layer 13, transmitted through the magnetic recording layer 12 while undergoing Faraday rotation, and detected as a signal having high S/N due to an increase in the polarization angle. Since linearly polarized incident reproduced light is reflected by the reflective layer 13 as circularly polarized light, still higher S/N can be obtained by aligning the light optimally with an analyzer by utilizing a phase plate. Moreover, the reflective layer 13 is hardly oxidized, and the recording and reproducing characteristics and the sheef stability can be improved.

Description

【発明の詳細な説明】 (技術分野) 本発明は、光磁気メモリー、磁気記録、表示素子などに
用いられ、磁気カー効果あるいはファラデー効果などの
磁気光学効果を用いて記録情報を読み出すことのできる
光磁気記録媒体に関する。
Detailed Description of the Invention (Technical Field) The present invention is used in magneto-optical memories, magnetic recording, display elements, etc., and can read recorded information using magneto-optic effects such as the magnetic Kerr effect or the Faraday effect. It relates to magneto-optical recording media.

(従来技術) 従来から、各種記録媒体に記録された情報を光学的に読
み出す光メモリーの研究が盛んに行なわれており、特に
近年レーザ光源や光学素子の発展に伴ない、高密度・大
容量のメモリーとして脚光をあびている。このような記
録媒体の一種として磁気的に蓄積された情報を、磁気光
学効果を用いて読み出す光磁気記録媒体が知られている
。光磁気記録媒体は記録層として膜面に垂直方向に磁化
容易軸を有する磁性膜を有している。また、例えばこの
記録層を一方向に磁化しておき、レーザビームのスポッ
ト照射により一部を加熱することによって、磁化の反転
として情報が記録される。このようにして情報の記録さ
れた媒体は、磁気カー効果やファラデー効果等の磁気光
学効果を利用して情報が光学的に読み出される。又、外
部より印加した磁界内で、前記媒体の一部又は全面を加
熱することによって記録情報を消去することも出来る。
(Prior art) Research into optical memory, which optically reads information recorded on various recording media, has been actively conducted, and in recent years, with the development of laser light sources and optical elements, high-density and large-capacity It is attracting attention as a memory of. As a type of such recording media, a magneto-optical recording medium is known in which magnetically stored information is read out using the magneto-optic effect. A magneto-optical recording medium has a magnetic film having an axis of easy magnetization perpendicular to the film surface as a recording layer. Further, for example, by magnetizing this recording layer in one direction and heating a portion by spot irradiation with a laser beam, information is recorded as a reversal of magnetization. Information is optically read out from the medium on which information is recorded in this manner using magneto-optical effects such as the magnetic Kerr effect and the Faraday effect. It is also possible to erase the recorded information by heating a part or the entire surface of the medium within an externally applied magnetic field.

また磁性膜の材料としては、MnB1の如き多結晶薄膜
から、最近では磁気的に均一な成膜性、適当な書き込み
温度或いは大きな磁気光学効果等の条件を勘案して、G
dTbFe3元合金薄膜に代表される遷移金属(Fe、
Co、Ni等)と希土類金属(TI) 、 Dy 、 
Gd 、 Ho等)との非晶質合金薄膜が検討されてい
る。
In addition, the material for the magnetic film ranges from polycrystalline thin films such as MnB1 to G.
Transition metals (Fe,
Co, Ni, etc.) and rare earth metals (TI), Dy,
Amorphous alloy thin films with Gd, Ho, etc.) are being considered.

一方、上記の如き光磁気記録媒体は、再生信号レベルが
低いという欠点がある。特にカー効果を用いた再生方式
においては、カー回転角が小さいため、信号雑音比(8
/N)を大きくすることが困難であった。そのため従来
は、記録層を構成する磁性材料を改良したり、あるいは
記録媒体上に一酸化ケイ素(Sin)や二酸化ケイ素(
Sin、)の誘電体薄膜を形成して記録層上への多重反
射を利用してカー回転角を大きくする工夫がなされてき
た。又、特開昭58−6541号公報及び特開昭58−
6542号公報に開示されているように、磁気記録層を
充分薄くし、裏面に金属反射層を設けることにより、カ
ー効果とファラデー効果を利用して大きな再生信号を得
る方法も提案されている。このような記録媒体の例を第
2図に示す。第2図において、21は透光性基板、22
は磁気記録層、23は金属反射層、24は保護層である
。また、第3図のように磁気記録層と金属反射層との間
に透明誘電体層を設けて、これら3層の材料と膜厚を最
適に選ぶことにより、更にS/Nの高い再生信号を得る
ことができるという報告もある( J。
On the other hand, the magneto-optical recording medium as described above has a drawback in that the reproduced signal level is low. In particular, in the reproduction method using the Kerr effect, since the Kerr rotation angle is small, the signal-to-noise ratio (8
/N) was difficult to increase. Therefore, conventional methods have been to improve the magnetic material constituting the recording layer, or to add silicon monoxide (Sin) or silicon dioxide (
Efforts have been made to increase the Kerr rotation angle by forming a dielectric thin film of Sin, ) and utilizing multiple reflections onto the recording layer. Also, JP-A-58-6541 and JP-A-58-
As disclosed in Japanese Patent No. 6542, a method has also been proposed in which a magnetic recording layer is made sufficiently thin and a metal reflective layer is provided on the back surface to obtain a large reproduced signal by utilizing the Kerr effect and Faraday effect. An example of such a recording medium is shown in FIG. In FIG. 2, 21 is a transparent substrate, 22
23 is a magnetic recording layer, 23 is a metal reflective layer, and 24 is a protective layer. In addition, as shown in Figure 3, by providing a transparent dielectric layer between the magnetic recording layer and the metal reflective layer, and by optimally selecting the materials and film thicknesses of these three layers, it is possible to reproduce a reproduced signal with an even higher S/N. There are also reports that it is possible to obtain (J.

Appl、 Phys、 VOI −53、A6 p4
485〜4494)。
Appl, Phys, VOI-53, A6 p4
485-4494).

第3図において、31は透光性基板、32は磁気記録層
、33は透明誘電体層、34は金属反射層、35は保護
層を示す。ここで透明誘電体層33は、非晶質磁性薄膜
層32と透光性基板31の界面での反射光と金属反射層
34で反射された後非晶質磁性薄膜層32と透光性基板
31の界面に到達する光とに位相差を与えて媒体の反射
率を低減させ、磁気光学効果による偏光面の回転角を見
かけ上増大させる働きを果たす。
In FIG. 3, 31 is a transparent substrate, 32 is a magnetic recording layer, 33 is a transparent dielectric layer, 34 is a metal reflective layer, and 35 is a protective layer. Here, the transparent dielectric layer 33 separates the light reflected at the interface between the amorphous magnetic thin film layer 32 and the light-transmitting substrate 31 and the light reflected by the metal reflective layer 34 . It gives a phase difference to the light reaching the interface of 31, reduces the reflectance of the medium, and serves to apparently increase the rotation angle of the plane of polarization due to the magneto-optic effect.

しかしながら、上記従来の光磁気記録媒体はいずれも、
反射層が金属薄膜(100〜600人)で形成されてい
たために酸化し易いという欠点があった。反射膜が酸化
されると、記録感度の低下、再生時のエラーの増加及び
信号の劣化を招き、更に、記録層も酸化され易くなると
いう不都合が生じた。また、前述のような透明誘電・ 
 体層で8/N比を向上させる場合、この膜厚を精度良
くしかも均一に制御する必要があり、再現性などの問題
から作成が困難であった。
However, all of the above conventional magneto-optical recording media
Since the reflective layer was formed of a metal thin film (100 to 600 layers), it had the disadvantage of being easily oxidized. When the reflective film is oxidized, it causes a decrease in recording sensitivity, an increase in errors during reproduction, and signal deterioration, and furthermore, there are disadvantages in that the recording layer is also easily oxidized. In addition, transparent dielectrics and
In order to improve the 8/N ratio in the body layer, it is necessary to control the film thickness accurately and uniformly, which has been difficult to produce due to problems such as reproducibility.

(発明の概要) 本発明の目的は、S/Nの高い再生信号が得られ、かつ
、保存安定性に優れた光磁気記録媒体を提供することに
ある。
(Summary of the Invention) An object of the present invention is to provide a magneto-optical recording medium from which a reproduced signal with a high S/N ratio can be obtained and which has excellent storage stability.

本発明の他の目的は、S/Nの高い再生信号が得られ、
かつ、作成の容易な光磁気記録媒体を提供することにあ
る。
Another object of the present invention is to obtain a reproduced signal with a high S/N ratio,
Another object of the present invention is to provide a magneto-optical recording medium that is easy to produce.

本発明の上記目的は、膜面に垂直方向に磁化容易軸を持
つ磁性膜から成る記録層と、前゛記記上 録層に抽寥;;設けられ、所定波長の光に対し△ て、吸収の小さな物質と反射の大きな物質との混合物か
ら成る反射層とから光磁気記録媒体を構成することによ
って達成される。
The above-mentioned object of the present invention is to provide a recording layer made of a magnetic film having an axis of easy magnetization perpendicular to the film surface; This is achieved by constructing the magneto-optical recording medium from a reflective layer made of a mixture of a material with low absorption and a material with high reflection.

(実施例) 本発明の光磁気記録媒体の一実施例の構成を第1図に示
す。第1図において、11は透光性基板、12は磁気記
録層、13は反射層、14は保護層である。透光性基板
11は例えばガラス或いはプラスチックから形成される
。磁気記録層12は、膜面に垂直方向に磁化容易軸を有
する磁性膜から形成される。このような磁性膜としては
、カー回転角が大きいGdTbFe。
(Example) The structure of an example of the magneto-optical recording medium of the present invention is shown in FIG. In FIG. 1, 11 is a transparent substrate, 12 is a magnetic recording layer, 13 is a reflective layer, and 14 is a protective layer. The transparent substrate 11 is made of glass or plastic, for example. The magnetic recording layer 12 is formed from a magnetic film having an axis of easy magnetization perpendicular to the film surface. Such a magnetic film is made of GdTbFe, which has a large Kerr rotation angle.

Tb Dy Fe 、 Gd Dy Fe 、、 Gd
 丁b Fe Co等の希土類−遷移金属非晶質合金を
用いるのが好ましい。
Tb Dy Fe, Gd Dy Fe,, Gd
Preferably, rare earth-transition metal amorphous alloys such as FeCo are used.

磁気記録層12に磁気的に蓄積された情報は、透光性基
板11を介して再生光を照射することによって磁気光学
効果を用いて読み出される。
The information magnetically stored in the magnetic recording layer 12 is read out using the magneto-optic effect by irradiating reproduction light through the transparent substrate 11.

即ち、再生光は前記情報に従ってその偏光面が回転され
た変調光となり、このような偏光面の回転を検光子等で
光量変化に変換して検出することによって情報を再生す
る。
That is, the reproduction light becomes modulated light whose plane of polarization is rotated according to the information, and information is reproduced by converting the rotation of the plane of polarization into a change in light amount using an analyzer or the like and detecting it.

反射J?J13は、前記再生光の波長に対して、吸収の
小さな物質と反射の大きな物質との混合物によって形成
される。反射層13はこの構成によって、反射機能及び
位相変調機能を同時に果す。従って、前記磁気記録層1
2を透過してファラデー回転を受けた再生光は反射層1
3で反射されて再びファラデー回転を受けながら磁気記
録層を透僅し、偏光面回転角の増加によって87Nの高
い信号として検出される。また、反射層13は直線偏光
を直線偏光で反射する金属膜とは異なり、前述のような
混合物から成る為に、直線偏光で入射する再生光をだ円
偏光で反射するので、位相板を利用して検光子と最適位
置合せすることにより、再に高いS/N比を得ることが
可能である。
Reflection J? J13 is formed of a mixture of a material with low absorption and a material with high reflection with respect to the wavelength of the reproduction light. With this configuration, the reflective layer 13 simultaneously performs a reflective function and a phase modulation function. Therefore, the magnetic recording layer 1
2 and undergoes Faraday rotation, the reproduced light passes through the reflective layer 1.
3, the light passes through the magnetic recording layer while undergoing Faraday rotation again, and is detected as a high signal of 87N due to an increase in the rotation angle of the plane of polarization. Furthermore, unlike a metal film that reflects linearly polarized light, the reflective layer 13 is made of a mixture as described above, so it reflects the input reproduced light as linearly polarized light as elliptical polarized light, so a phase plate is used. By doing so and optimally aligning it with the analyzer, it is possible to obtain a high S/N ratio again.

前記反射層13を形成する、吸収の小さな物質としては
、レーザ等、通常の再生光の波長では、金属或いは半金
属の酸化物、フッ化物、硫化物、ヨウ化物、有機高分子
などが適している。
Suitable materials for forming the reflective layer 13 that have low absorption include metal or semimetal oxides, fluorides, sulfides, iodides, and organic polymers at the wavelength of normal reproduction light such as a laser. There is.

また、単体として、再生光をほとんど透過するものであ
ればどのような物質でも良いが、実質的には再生光の波
長域で屈折率の虚数部が0.01以下であることが望ま
しい。反射層13の再生光に対して反射の大きな物質と
しては、再生光の波長域で、単体での反射率が80%以
上の物質が望ましい。具体的にはCu+ A g + 
A u T A e等の金属が適している。このような
物質で形成された反射層13は、例えば前述のような%
% 電体中に金属が分散された描込となっている為に、
従来の金属反射層に比べて酸化しに<<、保存安定性に
優れている。
Moreover, as a single substance, any material may be used as long as it transmits most of the reproduction light, but it is preferable that the imaginary part of the refractive index is 0.01 or less in the wavelength range of the reproduction light. As the material of the reflective layer 13 that has a large reflection of the reproduced light, it is desirable to use a substance that alone has a reflectance of 80% or more in the wavelength range of the reproduced light. Specifically, Cu+ A g +
Metals such as AuTAe are suitable. The reflective layer 13 made of such a material may be made of, for example, % as described above.
% Because the drawing is such that the metal is dispersed in the electric body,
Compared to conventional metal reflective layers, it is resistant to oxidation and has excellent storage stability.

反射層13における吸収が小さい物質(Mu)と反射が
大きい物質(Mr)との組成比は、再生光の波長或いは
用いる物質によっても異なるが、通常、反射が大きな物
質が全体に対して組成比で0.80〜0.95の範囲に
あることが望ましい(反射層がMlx〜fui−xから
成るとき、0.80<x < 0.95 )。0.80
以下だと十分な反射率が得られに<:<、0.95を越
えると、保存性に問題が生じる。反射層13の膜厚は、
構成物質或いは上記組成によって異なるが、通常700
〜3000λが適している。また、このような反射層1
3を設けたときの磁気記録層12の膜厚は、十分な光量
が透過するように100〜1000λに形成されること
が望ましい。
The composition ratio of the substance with low absorption (Mu) and the substance with high reflection (Mr) in the reflective layer 13 varies depending on the wavelength of the reproduction light or the substance used, but usually the substance with high reflection has a composition ratio of the substance with high reflection to the whole. is preferably in the range of 0.80 to 0.95 (0.80<x<0.95 when the reflective layer consists of Mlx to fui-x). 0.80
If it is less than 0.95, a sufficient reflectance cannot be obtained; if it exceeds 0.95, a problem arises in storage stability. The thickness of the reflective layer 13 is
It varies depending on the constituent materials or the above composition, but usually 700
~3000λ is suitable. Moreover, such a reflective layer 1
It is desirable that the film thickness of the magnetic recording layer 12 when the magnetic recording layer 3 is provided is 100 to 1000 λ so that a sufficient amount of light can be transmitted.

反射層13の製膜方法には種々のものが考えられるが、
前述のように、誘電体と金属との混合物で形成する場合
には、これらをスパッタリング、電子ビーム蒸着、抵抗
加熱蒸着等によって同時蒸着する方法が適している。こ
こで、反射層13で反射される前記再生光の位相差は、
はとんど反射層13を構成する混合物の組成で決まる。
Various methods can be considered for forming the reflective layer 13;
As mentioned above, in the case of forming a mixture of a dielectric and a metal, it is suitable to simultaneously deposit them by sputtering, electron beam evaporation, resistance heating evaporation, or the like. Here, the phase difference of the reproduction light reflected by the reflective layer 13 is:
is mostly determined by the composition of the mixture constituting the reflective layer 13.

このような組成は非常に高精度の制御が可能であるので
、従来のように透明誘電体層の膜厚を制御する場合に比
べ、容易に所望の位相差を与える光磁気記録媒体が作成
出来る。
Since such a composition can be controlled with very high precision, it is easier to create a magneto-optical recording medium that provides the desired phase difference than when controlling the thickness of the transparent dielectric layer as in the past. .

第1図において、保誰層14は、反射層13をキズ、ゴ
ミ等或いは湿気、酸素などの侵入から保護するものであ
るが、反射層の材料によっては必ずしも必要ではない。
In FIG. 1, the protective layer 14 protects the reflective layer 13 from scratches, dust, moisture, oxygen, etc., but it is not always necessary depending on the material of the reflective layer.

保訛層14は、有機高分子膜を塗工によって形成しても
良いし、酸化物(SiO、5in2等)、窒化物(Si
、N、等)、硫化物のような無機材料或いは金属材料を
蒸着により設けても良い。
The accent protection layer 14 may be formed by coating an organic polymer film, or may be formed using an oxide (SiO, 5in2, etc.), nitride (Si
, N, etc.), an inorganic material such as sulfide, or a metallic material may be provided by vapor deposition.

本発明の光磁気記録媒体においては、必要に応じて補助
層が設けられる。例えば、第1図の透光性基板11と磁
気記録層120間に補助層として反射防止層や熱伝導率
の小さい有機高分子等による断熱1ψを設けることも可
能である。
In the magneto-optical recording medium of the present invention, an auxiliary layer is provided as necessary. For example, it is also possible to provide a heat insulating layer 1ψ between the transparent substrate 11 and the magnetic recording layer 120 in FIG. 1 as an auxiliary layer, such as an antireflection layer or an organic polymer with low thermal conductivity.

また、これ以外にインデックスマークやトラフを内側に
して貼り合せる等の方法により、両面記録が可能な媒体
も実現できる。
In addition, a medium capable of double-sided recording can also be realized by a method such as bonding with the index mark or trough on the inside.

以下、比較例及び実施例を挙げて本発明を具体的に説明
する。
Hereinafter, the present invention will be specifically explained with reference to comparative examples and examples.

以下の工程により、光磁気記録媒体を作製した。直径1
20mm、厚さ1.5 m mの平滑なガラス基板を清
浄し、この片面にスピンナー塗布機で硬化型シリコーン
樹脂(SR−2410しジン、トーレ・シリコーン社製
)を乾燥膜厚0.5μとなるように塗工した。乾燥条件
は150°C12時間であった。シリコーン樹脂は磁気
記録層にビーム照射されて発生する熱の散逸を防止する
ためのものである。
A magneto-optical recording medium was manufactured through the following steps. Diameter 1
A smooth glass substrate of 20 mm and 1.5 mm thickness was cleaned, and a curable silicone resin (SR-2410, manufactured by Toray Silicone Co., Ltd.) was coated on one side with a spinner coater to a dry film thickness of 0.5 μm. I painted it to look like this. The drying conditions were 150°C for 12 hours. The silicone resin is used to prevent the dissipation of heat generated when the magnetic recording layer is irradiated with a beam.

次に上記シリコーン樹脂層の表面に反射防止層として一
酸化ケイ素(Sin、純度99.9%)を電子ビーム蒸
着により反射率が最小となる所定の厚さに形成した。こ
の厚さは、現在使用されている半導体レーザ(Ga A
s A、e )の波長820n rnを一酸化ケイ素の
屈折率の4倍の値で割った値で、約0.1μmの厚さで
ある。次に磁気記録層としてFe0.76  GdO,
12Tb0.12 ノ組成の非晶質薄膜をスパッタリン
グ装置により0.02μmに形成した。更に保護層とし
て一酸化ケイ素(SiO純度99.9%)を電子ビーム
蒸着により0.3μmの厚さに形成した。この光磁気記
録媒体にガラス面側より光学ヘッドを用いてピット記録
及び再生を行った。記録用光学ヘッドは出力20mWの
半導体レーザ(820n m )を光源とし、記録層表
面に〜1.2μmφの微小スポットとして照射される構
成とした。又、記録層の面に垂直方向の磁界を印加でき
るように電磁石を配した。円板状の光磁気記録媒体を回
転駆動して記録層を一様に磁化し、次いでレーザをパル
ス発振して5MHzの信号をピット記録した。
Next, silicon monoxide (Sin, purity 99.9%) was formed as an antireflection layer on the surface of the silicone resin layer by electron beam evaporation to a predetermined thickness that minimized the reflectance. This thickness is different from the currently used semiconductor laser (GaA
The thickness is approximately 0.1 μm, which is the wavelength of 820 nm rn of s A,e ) divided by four times the refractive index of silicon monoxide. Next, as a magnetic recording layer, Fe0.76 GdO,
An amorphous thin film having a composition of 12Tb0.12 was formed to a thickness of 0.02 μm using a sputtering device. Further, as a protective layer, silicon monoxide (SiO purity 99.9%) was formed to a thickness of 0.3 μm by electron beam evaporation. Pit recording and reproduction were performed on this magneto-optical recording medium using an optical head from the glass surface side. The recording optical head used a semiconductor laser (820 nm) with an output of 20 mW as a light source, and was configured to irradiate the surface of the recording layer as a minute spot of ~1.2 μmφ. Further, an electromagnet was arranged so as to be able to apply a magnetic field perpendicular to the surface of the recording layer. A disk-shaped magneto-optical recording medium was rotated to uniformly magnetize the recording layer, and then a laser was pulsed to record a 5 MHz signal in pits.

読み出し再生は10mWの半導体レーザを光源とし、記
録時と同様に記録層を照射して反射光を偏光子を介して
検出した。再生信号のC/N値(信号の中心周波数帯域
でのS/N値)は24dBであった。
For reading and reproducing, a 10 mW semiconductor laser was used as a light source, and the recording layer was irradiated in the same manner as during recording, and reflected light was detected via a polarizer. The C/N value (S/N value in the center frequency band of the signal) of the reproduced signal was 24 dB.

試料1と同様にしてFeo、76Gdo、t2Tbo、
tzから成る記録層まで形成し、更にこの上に各々第1
表に示すような金属反射層を設けた。また、金属反射層
の上には厚さ0.3μmの一酸化ケイ素の保護層を設け
た。試料1と同様に記録、再生を行ない、第1表に示す
ような再生信号のC/N値を得た。 ) 試料6〜21(本発明) 試料1と同様にしてFeo7e  Gdo12Tbo、
tzから成る記録層まで形成し、更にこの上に第1表に
示すような吸収の小さな物質(Mu )と反射の大きな
物質(Ml)とをスパッタリングによって共蒸着し、反
射層を形成した。組成比は反射層がMlx Ml−xか
ら成るときのXで示した。
Feo, 76Gdo, t2Tbo,
up to the recording layer consisting of
A metal reflective layer as shown in the table was provided. Further, a protective layer of silicon monoxide having a thickness of 0.3 μm was provided on the metal reflective layer. Recording and reproduction were performed in the same manner as Sample 1, and the C/N values of the reproduced signals as shown in Table 1 were obtained. ) Samples 6 to 21 (invention) Feo7e Gdo12Tbo,
A recording layer consisting of tz was formed, and a reflective layer was further formed by co-evaporating a substance with low absorption (Mu) and a substance with high reflection (Ml) by sputtering as shown in Table 1. The composition ratio is indicated by X when the reflective layer is composed of Mlx Ml-x.

この反射層上には、厚さ0.3μmの一酸化ケイ素の保
護層を設けた。
A protective layer of silicon monoxide with a thickness of 0.3 μm was provided on this reflective layer.

次に、これらの試料の記録再生特性(再生C/N値)を
測定した。実験条件は試料1と同様に、記録のレーザ出
力は媒体面上で7 m W 。
Next, the recording and reproducing characteristics (reproducing C/N value) of these samples were measured. The experimental conditions were the same as Sample 1, and the laser output for recording was 7 mW on the medium surface.

記録信号は50%デユーティ、5MHzのパルス信号で
あり、再生のレーザ出力は媒体面上で2mW、C/N値
はバンド巾30 KHzで評価した。
The recording signal was a 5 MHz pulse signal with a duty of 50%, the laser output for reproduction was 2 mW on the medium surface, and the C/N value was evaluated with a band width of 30 KHz.

C/N値は記録ピットの大きざ(即ち、記録感度)と媒
体の磁気光学効果の大きさとの両方の効果を示すものと
考えられる。これらC/Hの測定値は第1表にまとめて
示した。
The C/N value is considered to indicate the effects of both the size of the recording pit (ie, recording sensitivity) and the magnitude of the magneto-optic effect of the medium. These measured C/H values are summarized in Table 1.

放置試験 試料1〜21を、温度45℃、相対湿度95%の環境下
で2箇月間の放置試験を行ない、試験後の媒体を前述と
同一の条件で記録再生を行ない、再生信号のC/N値を
測定した。この結果を第1表の最後の欄に示した。
Storage test samples 1 to 21 were subjected to a storage test for 2 months in an environment with a temperature of 45°C and a relative humidity of 95%, and the media after the test were recorded and reproduced under the same conditions as above, and the C/ The N value was measured. The results are shown in the last column of Table 1.

第1表よりわかるように、本発明の光磁気記録媒体は、
反射層を有さない或いは金属反射層を有する従来の媒体
に比べ、より優れた記録再生特性及び保存安定性を示す
As can be seen from Table 1, the magneto-optical recording medium of the present invention is
It exhibits better recording/reproducing characteristics and storage stability than conventional media without a reflective layer or with a metal reflective layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光磁気記録媒体の一実施例の構成を示
す略断面図、第2図は従来の光磁気記録媒体の構成例を
示す略断面図、第3図は従来の光磁気記録媒体の他の構
成例を示す略断面図である。 11・・・・・・透光性基板、  12・・・・・・磁
気記録層、13・・・・・・反射層、    14・・
・・・・保護層。
FIG. 1 is a schematic sectional view showing the structure of an embodiment of the magneto-optical recording medium of the present invention, FIG. 2 is a schematic sectional view showing an example of the structure of a conventional magneto-optical recording medium, and FIG. 3 is a schematic sectional view showing the structure of a conventional magneto-optical recording medium. FIG. 3 is a schematic cross-sectional view showing another example of the configuration of a recording medium. 11... Transparent substrate, 12... Magnetic recording layer, 13... Reflective layer, 14...
...protective layer.

Claims (1)

【特許請求の範囲】[Claims] (1)膜面に垂直方向に磁化容易軸を持つ磁性膜から成
る記録層と、前記記録層上に設 けられた反射層とを有する光磁気記録媒体において、前
記反射層が所定波長の光に対して吸収の小さな物質と反
射の大きな物質との混合物から成り、前記反射の大きな
物質が混合物全体に対して組成比で0.80乃至0.9
5の範囲に存在することを特徴とする光磁気記録媒体。
(1) In a magneto-optical recording medium having a recording layer made of a magnetic film having an axis of easy magnetization perpendicular to the film surface and a reflective layer provided on the recording layer, the reflective layer is exposed to light of a predetermined wavelength. In contrast, it consists of a mixture of a substance with low absorption and a substance with high reflection, and the composition ratio of the substance with high reflection to the entire mixture is 0.80 to 0.9.
5. A magneto-optical recording medium characterized by being present in the range of 5.
JP25260684A 1983-12-12 1984-11-29 Photomagnetic recording medium Pending JPS61131257A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP25260684A JPS61131257A (en) 1984-11-29 1984-11-29 Photomagnetic recording medium
US06/679,314 US4675767A (en) 1983-12-12 1984-12-07 Opto-magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25260684A JPS61131257A (en) 1984-11-29 1984-11-29 Photomagnetic recording medium

Publications (1)

Publication Number Publication Date
JPS61131257A true JPS61131257A (en) 1986-06-18

Family

ID=17239704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25260684A Pending JPS61131257A (en) 1983-12-12 1984-11-29 Photomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS61131257A (en)

Similar Documents

Publication Publication Date Title
KR930001616B1 (en) Amorphous magneto-optical recording medium
US5654058A (en) Magneto-optical disk
US4664977A (en) Opto-magnetic recording medium
JPH0684212A (en) Magneto-optical memory element
US4675767A (en) Opto-magnetic recording medium
JP2000306271A (en) Optical recording medium and its production
JPS6148148A (en) Thermooptical magnetic recording medium
JP2001216686A (en) Optical recording medium
JPS61196445A (en) Photomagnetic disk
US4777082A (en) Optical magnetic recording medium
GB2158281A (en) Optical recording medium
US6017620A (en) Magneto-optical recording medium
JPS5830656B2 (en) magneto-optical recording medium
JPS61131257A (en) Photomagnetic recording medium
JPH0350344B2 (en)
KR890004262B1 (en) Optical magnetic disk
JPH04353641A (en) Optomagnetic recording single plate optical disk
JPS6332748A (en) Information recording medium
JPH04335231A (en) Single plate optical disk for magneto-optical recording
JPS61196444A (en) Photomagnetic disk
JPS6122454A (en) Photomagnetic recording medium
EP0305666A1 (en) Amorphous magneto optical recording medium
JPS5877047A (en) Magnetooptic head
JPS60125948A (en) Thermomagnetic recording medium
JPS6120244A (en) Magnetic recording medium