JPS6371961A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPS6371961A
JPS6371961A JP21751086A JP21751086A JPS6371961A JP S6371961 A JPS6371961 A JP S6371961A JP 21751086 A JP21751086 A JP 21751086A JP 21751086 A JP21751086 A JP 21751086A JP S6371961 A JPS6371961 A JP S6371961A
Authority
JP
Japan
Prior art keywords
dispersion medium
magnetic particles
magneto
optical recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21751086A
Other languages
Japanese (ja)
Inventor
Yoshinori Kuwae
桑江 良昇
Takao Sawa
孝雄 沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21751086A priority Critical patent/JPS6371961A/en
Publication of JPS6371961A publication Critical patent/JPS6371961A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable improvement in oxidation resistance, increase in the rotating angle at the time of reproduction and increase in area by disposing respective fine magnetic particles into a dispersion medium in such a manner that the direction of the magnetization thereof face perpendicularly the film surface of the dispersion medium. CONSTITUTION:This recording medium consists of plural pieces of the fine magnetic particles having magnetic anisotropy and the film-like dispersion medium. The respective fine magnetic particles are so disposed in the dispersion medium that the direction of the magnetization of the fine magnetic particles faces perpendicularly the film surface of the dispersion medium. For example, the fine magnetic particles 12 consisting of cobalt ferrite CoFe2O4 which has the magnetization 11 of the crystal magnetic anisotropy and has 1,000Angstrom average grain size are dispersed randomly at 4% volume ratio into the dispersion medium 13 consisting of a liquid polyimide type photosetting resin and the external magnetic fields 14 are impressed thereto perpendicularly to the film surface of the dispersion medium 13 to uniform the direction of the magnetization 11 of the fine magnetic particles 12, then in this stage UV light 15 is projected thereto. The magneto-optical recording medium 17 which consists of the photoset film-like dispersion medium 16 and the fine magnetic particles 12 magnetized perpendicularly to the film surface of the medium 16 and has 30cm diameter and 5,000Angstrom film thickness is thereby obtd.

Description

【発明の詳細な説明】 F発明の目的コ (産業上の利用分野) 本発明は、消去可能な光磁気記録媒体に関する。[Detailed description of the invention] FObjective of the invention (Industrial application field) The present invention relates to an erasable magneto-optical recording medium.

(従来の技術) 光記録媒体は、大容量記録ができることから、コンバク
1−ディスク、ビデオディスク或いはコンピュータ用外
部メモリ等として実用、開発が進んでいる。光記録媒体
のうち占き換え型は、記録、再生及び消去ができること
から消去可能(イレーザブル)な光記録媒体と称されて
いる。光磁気記録媒体は光記録媒体のうちの一つで、垂
直磁化膜から構成されており、再生の際に磁気光学効果
を利用する。こうした光磁気記録媒体の記録の原理を第
2図(a)〜(C)を、再生の原理を第3図を、夫々参
照して以下に説明する。
(Prior Art) Optical recording media are capable of large-capacity recording and are being put into practical use and developed as compact discs, video discs, external memories for computers, and the like. Among optical recording media, resetting type optical recording media are called erasable optical recording media because they can be recorded, reproduced, and erased. A magneto-optical recording medium is one type of optical recording medium, is composed of a perpendicularly magnetized film, and utilizes the magneto-optic effect during reproduction. The recording principle of such a magneto-optical recording medium will be explained below with reference to FIGS. 2(a) to 2(C), and the reproduction principle will be explained with reference to FIG. 3, respectively.

まず、第2図(a)に示す磁化2の方向が揃った光磁気
記録媒体1を用意し、同図1)に示すように記録部分で
ある磁化させたい方向に直流の弱い外部磁場3をかけな
がら、光(主としてレーザー光)4を照射して熱を加え
ると保磁力が落ち、磁化2が反転して外部la場3の方
向に向く。その結果、同図(C)に示すように光磁気記
録媒体1に記録点5が形成される。再生を行なうには、
第3図に示すように直線偏光6を光磁気記録媒体1に照
射すると、その反射光は磁気光学効果により偏光面がθ
にだけ回転する。θには、磁性体の磁化の強さに比例し
、かつ磁化の向きが反対になると、反対の方へ回転する
。従って、光磁気記録媒体1の記録点5からの反射光と
記録点5以外の領域での反射光とでは2θにだけ差が生
じるので、検光子を通して検出される。上述の磁気光学
効果はカー効果と呼ばれ、θにはカー回転角と称される
。同様な現象を透過光でみた場合はファラデー効果と呼
ばれ、その時の回転角θfをファラデー回転角という。
First, prepare a magneto-optical recording medium 1 in which the direction of magnetization 2 is aligned as shown in FIG. When heat is applied by irradiating light (mainly laser light) 4 while applying heat, the coercive force decreases, and the magnetization 2 is reversed and directed in the direction of the external LA field 3. As a result, recording points 5 are formed on the magneto-optical recording medium 1 as shown in FIG. To play,
As shown in FIG. 3, when the linearly polarized light 6 is irradiated onto the magneto-optical recording medium 1, the reflected light has a polarization plane of θ due to the magneto-optic effect.
It rotates only. θ is proportional to the strength of magnetization of the magnetic material, and when the direction of magnetization is reversed, it rotates in the opposite direction. Therefore, since the reflected light from the recording point 5 of the magneto-optical recording medium 1 and the reflected light from areas other than the recording point 5 differ only in 2θ, they are detected through an analyzer. The above-mentioned magneto-optical effect is called the Kerr effect, and θ is called the Kerr rotation angle. When a similar phenomenon is observed with transmitted light, it is called the Faraday effect, and the rotation angle θf at that time is called the Faraday rotation angle.

ところで、光磁気記録媒体は垂直磁化膜から構成される
ことは既に述べたが、その材料としては、従来より希土
類−遷移金属のアモルファス合金が用いられている。希
土類としては、主にTb、QdやDV、i!!移金属と
しては主にFe−FCOlが使用されている。
By the way, although it has already been mentioned that the magneto-optical recording medium is composed of a perpendicularly magnetized film, an amorphous alloy of a rare earth-transition metal has been conventionally used as the material thereof. The rare earths mainly include Tb, Qd, DV, i! ! Fe-FCOl is mainly used as the transfer metal.

しかしながら、上)ホした従来の光磁気記録媒体は酸化
され易かったり、回転角θにやθfが小さかったりする
という問題がある。また、従来の光磁気記録媒体は、通
常スパッタリングにより製造されるため、大面積化や組
成の制御が難しいという問題があった。
However, the conventional magneto-optical recording medium mentioned above has problems in that it is easily oxidized and the rotation angle θ and θf are small. Further, since conventional magneto-optical recording media are usually manufactured by sputtering, there are problems in that it is difficult to increase the area and control the composition.

(発明が解決しようとする問題点) 本発明は、上記従来の問題点を解決するためになされた
ものであり、耐酸化性に優れ、かつ再生時の回転角が大
きく、更に大面積化が可能で組成的にも安定した光磁気
記録媒体を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned conventional problems, and has excellent oxidation resistance, a large rotation angle during regeneration, and a large surface area. The purpose is to provide a magneto-optical recording medium that is possible and compositionally stable.

[発明の構成コ (問題点を解決するための手段と作用)本発明は、磁気
異方性を有する?I数個のta磁性微粒子膜状の分散媒
からなり、各磁性微粒子が該分散媒中にそれら磁性微粒
子の磁化の方向を該分散媒の膜表面に対して垂直に向く
ように配置されていることを特徴とする光磁気記録媒体
である。
[Configuration of the Invention (Means and Actions for Solving Problems) Does the present invention have magnetic anisotropy? It consists of a dispersion medium in the form of a film of several magnetic fine particles, and each magnetic fine particle is arranged in the dispersion medium so that the direction of magnetization of the magnetic fine particles is perpendicular to the surface of the film of the dispersion medium. This is a magneto-optical recording medium characterized by the following.

上記磁性微粒子が有する磁気異方性には、形状磁気異方
性又は結晶磁気異方性が含まれる。かかる磁性微粒子と
しては、各種の単体金属、合金、無機化合物が挙げられ
、特に限定されない。但し、磁気異方性、保磁力および
磁気光学効果が大きく、耐酸化性が浸れていることが必
要である。また、記録可能温度は高いほど、磁気光学効
果の温度特性が良好であり望ましいが、記録可能78度
があまり高すぎると、記録時に大きなエネルギーを必要
とするので、実用的には200℃前後にある方が好まし
い。また、磁性微粒子の大きさは再生効率等の観点から
、平均粒径4000大以下が望ましい。
The magnetic anisotropy possessed by the magnetic fine particles includes shape magnetic anisotropy and crystal magnetic anisotropy. Such magnetic fine particles include various single metals, alloys, and inorganic compounds, and are not particularly limited. However, it is necessary that the magnetic anisotropy, coercive force, and magneto-optical effect be large, and that the oxidation resistance be excellent. Also, the higher the recordable temperature, the better the temperature characteristics of the magneto-optical effect, which is desirable, but if the recordable temperature of 78 degrees is too high, a large amount of energy will be required during recording, so it is practically recommended to set it at around 200 degrees Celsius. It is preferable to have one. Further, the size of the magnetic fine particles is desirably 4000 or less in average particle size from the viewpoint of reproduction efficiency and the like.

このようなことから、磁性微粒子としてはコバルトフェ
ライトやコバルトフェライトの鉄を他元素(例えばマン
ガン、クロム、アルミニウム等)で部分置換したものを
用いることが望ましい。
For this reason, it is desirable to use cobalt ferrite or cobalt ferrite in which iron is partially substituted with other elements (for example, manganese, chromium, aluminum, etc.) as magnetic fine particles.

上記分散媒としては、各種のセラミックス、ガラス、ポ
リマーが挙げられ、特に限定されない。
Examples of the dispersion medium include various ceramics, glasses, and polymers, and are not particularly limited.

但し、光磁気記録媒体製造時に磁性微粒子の分散性が良
好なこと、分散した磁性微粒子が使用期間中にあまり動
かないこと、分散媒がレーザー光で劣化しないこと、更
に光透過性の良好なことが要求される。このようなこと
から、分散媒としてはポリイミド系光硬化樹脂等の樹脂
を用いることが望ましい。
However, the dispersibility of the magnetic fine particles must be good during the production of the magneto-optical recording medium, the dispersed magnetic fine particles must not move much during use, the dispersion medium must not be degraded by laser light, and the optical transparency must be good. is required. For this reason, it is desirable to use a resin such as a polyimide photocurable resin as the dispersion medium.

(作用) 本発明の光磁気記録媒体は、磁性微粒子と膜状の分散媒
から構成されるので、光透過性が浸れており、ファラデ
ー効果を利用した再生が可能である。また、磁性微粒子
に必要な磁性としては結晶磁気異方性の他に、形状磁気
異方性でも良いため、材料選択の制限が少なく、多くの
磁性微粒子の適用が可能である。その結果、耐酸化性の
優れた磁性微粒子が使え、長寿命化が達成できる。更に
、θにやθfの大きい光磁気記録媒体も広節な磁性微粒
子の中から適切な磁性微粒子を適宜選択することで実現
できる。更に、本発明の光磁気記録媒体は塗布手段によ
っても製造が可能であるため、組成の均質化、大型化が
容易となり、量産性も良好である。
(Function) Since the magneto-optical recording medium of the present invention is composed of magnetic fine particles and a film-like dispersion medium, it has high optical transparency and can be reproduced using the Faraday effect. Further, the magnetism required for the magnetic fine particles may be shape magnetic anisotropy in addition to crystal magnetic anisotropy, so there are few restrictions on material selection, and many magnetic fine particles can be applied. As a result, magnetic fine particles with excellent oxidation resistance can be used, and a longer life can be achieved. Furthermore, a magneto-optical recording medium with large θ and θf can be realized by appropriately selecting appropriate magnetic particles from a wide range of magnetic particles. Furthermore, since the magneto-optical recording medium of the present invention can be manufactured by coating means, it is easy to make the composition homogeneous and to increase the size, and the mass productivity is also good.

(実施例) 以下、本発明の実施例を第1図(a)〜(C)を参照し
て詳細に説明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to FIGS. 1(a) to (C).

まず、第1図(a)に示すように結晶磁気異方性の磁化
11を有する平均粒径1000人のコバルトフェライト
Co Fe 204からなる磁性微粒子1企を液状のポ
リイミド系光硬化樹脂からなる分散fi13にランダム
に4%の体積比で分散させた。
First, as shown in FIG. 1(a), one set of magnetic fine particles made of cobalt ferrite Co Fe 204 with an average particle diameter of 1000 and having magnetization 11 of magnetocrystalline anisotropy is dispersed in a liquid polyimide-based photocurable resin. It was randomly dispersed in fi13 at a volume ratio of 4%.

つづいて、同図(b)に示すように外部磁場14を分散
媒13の膜表面と垂直に印加して磁性微粒子12の磁化
11の方向を1萌えながら紫外光15を照射した。これ
により同図(C)に示すように光硬化した膜状分散媒1
6と、該分散媒16の膜表面に対して垂直に磁化した磁
性微粒子12とからなる直径30α、膜厚5000人の
光磁気記録媒体17が得られた。
Subsequently, as shown in FIG. 4B, an external magnetic field 14 was applied perpendicularly to the film surface of the dispersion medium 13, and ultraviolet light 15 was irradiated while changing the direction of the magnetization 11 of the magnetic fine particles 12. As a result, the film-like dispersion medium 1 is photocured as shown in FIG.
A magneto-optical recording medium 17 having a diameter of 30α and a film thickness of 5,000 was obtained, which consisted of a magnetic particle 12 magnetized perpendicularly to the film surface of the dispersion medium 16.

得られた光磁気記録媒体のファラデー回転角θfを現在
一般に用いられている波長800nmの半導体レーザー
を使って調べたところ、約1.0度であった。この値は
、カー効果を利用して再生を行なっている従来のTb 
Fe合金からなる光磁気記録媒体のカー回転角θkが0
.3度であるのと比べると大きい。また、本実施例の光
…気記録媒体は光透過性が波長800 r+mおいて2
5%であり、性能指数が良好であるため、再生時のCZ
N比が60CIBと大きい値を示した。更に、磁性微粒
子12は酸化物であると共に分散媒16によって保護さ
れているため、耐酸化性も極めて優れていた。
The Faraday rotation angle θf of the obtained magneto-optical recording medium was examined using a currently commonly used semiconductor laser with a wavelength of 800 nm, and was found to be approximately 1.0 degrees. This value is different from the conventional Tb that performs regeneration using the Kerr effect.
The Kerr rotation angle θk of the magneto-optical recording medium made of Fe alloy is 0.
.. It is large compared to 3 degrees. Furthermore, the optical recording medium of this example has a light transmittance of 2 at a wavelength of 800 r+m.
5%, and has a good figure of merit, so CZ during playback
The N ratio showed a large value of 60 CIB. Furthermore, since the magnetic fine particles 12 were oxides and were protected by the dispersion medium 16, their oxidation resistance was also extremely excellent.

なお、上記実施例では分散媒としてポリイミド系光硬化
樹脂を用いたが、該樹脂の代わりに透光性セラミックを
用いてもよい。
In the above embodiment, a polyimide photocurable resin was used as the dispersion medium, but a translucent ceramic may be used instead of the resin.

[発明の効果] 以上詳述した如く、本発明によれば耐酸化性に優れ、か
つ再生時の回転角が大きく、更に大面積化が可能で分度
性にも優れる等の顕著な効果を有する光磁気記録媒体を
提供できる。
[Effects of the Invention] As detailed above, the present invention has remarkable effects such as excellent oxidation resistance, a large rotation angle during regeneration, the possibility of increasing the area, and excellent profilability. It is possible to provide a magneto-optical recording medium having the following properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(C)は本発明の実施例における光磁気
記録媒体の製造方法を示す概略図、第2図(a)〜(C
)は光磁気記録媒体の記録原理を示す概略図、第3図は
光磁気記録媒体の再生原理を示す概略図である。 1.17・・・光磁気記録媒体、2.11・・・磁化、
3.14・・・外部磁場、4・・・光、5・・・記録点
、6・・・直$2偏光、12・・・磁性微粒子、13・
・・分散媒、15・・・紫外光、16・・・膜状分散媒
。 出願人代理人 弁理士 鈴江武彦 第1図 第2図
FIGS. 1(a) to (C) are schematic diagrams showing a method for manufacturing a magneto-optical recording medium in an embodiment of the present invention, and FIGS. 2(a) to (C)
) is a schematic diagram showing the recording principle of a magneto-optical recording medium, and FIG. 3 is a schematic diagram showing the reproduction principle of a magneto-optical recording medium. 1.17... Magneto-optical recording medium, 2.11... Magnetization,
3.14...External magnetic field, 4...Light, 5...Recording point, 6...Direct $2 polarized light, 12...Magnetic fine particles, 13.
... Dispersion medium, 15 ... Ultraviolet light, 16 ... Film-like dispersion medium. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 磁気異方性を有する複数個の磁性微粒子と膜状の分散媒
からなり、各磁性微粒子が該分散媒中にそれら磁気性微
粒子の磁化の方向を該分散媒の膜表面に対して垂直に向
くように配置されていることを特徴とする光磁気記録媒
体。
Consisting of a plurality of magnetic fine particles having magnetic anisotropy and a film-like dispersion medium, each magnetic fine particle is placed in the dispersion medium so that the direction of magnetization of the magnetic fine particles is perpendicular to the film surface of the dispersion medium. A magneto-optical recording medium characterized by being arranged as follows.
JP21751086A 1986-09-16 1986-09-16 Magneto-optical recording medium Pending JPS6371961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21751086A JPS6371961A (en) 1986-09-16 1986-09-16 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21751086A JPS6371961A (en) 1986-09-16 1986-09-16 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPS6371961A true JPS6371961A (en) 1988-04-01

Family

ID=16705361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21751086A Pending JPS6371961A (en) 1986-09-16 1986-09-16 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPS6371961A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040543A (en) * 1983-08-15 1985-03-02 Ulvac Corp Photomagnetic recording medium
JPS60254433A (en) * 1984-05-31 1985-12-16 Canon Inc Magnetooptic recording medium
JPS6120244A (en) * 1984-07-09 1986-01-29 Canon Inc Magnetic recording medium
JPS621149A (en) * 1985-06-27 1987-01-07 Toshiba Corp Photomagnetic recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040543A (en) * 1983-08-15 1985-03-02 Ulvac Corp Photomagnetic recording medium
JPS60254433A (en) * 1984-05-31 1985-12-16 Canon Inc Magnetooptic recording medium
JPS6120244A (en) * 1984-07-09 1986-01-29 Canon Inc Magnetic recording medium
JPS621149A (en) * 1985-06-27 1987-01-07 Toshiba Corp Photomagnetic recording medium

Similar Documents

Publication Publication Date Title
Mansuripur The physical principles of magneto-optical recording
JPS6371961A (en) Magneto-optical recording medium
US5359579A (en) Magneto-optical recording method and medium for recording three-value information
JPS6383934A (en) Magneto-optical recording medium
JPS63179435A (en) Thin film magnetic recording medium
JPH03296202A (en) Magnetic film
JPH0316049A (en) Magneto-optical recording medium
JPH03152743A (en) Magneto-optical recording medium
JP2815663B2 (en) Magneto-optical recording medium and magneto-optical information recording method
JP3010684B2 (en) Optical recording medium
KR100306975B1 (en) Magnetic material containing metastable alloy and its manufacturing method
JPS58222455A (en) Photoelectromagnetic recording medium
AT220854B (en) Method for reading data magnetically recorded on a recording medium
JPH0570205B2 (en)
JPS61273762A (en) Photomagnetic disk
JPH07282477A (en) Optical recording medium and its production
JPH03189929A (en) Magnetic card and recording and reproducing method thereof
JPS61273761A (en) Photomagnetic disk
JPH03181045A (en) Optical disk device
JPS6345128A (en) Magneto-optical recording medium
JPS6139250A (en) Recording medium and its recording and reproducing method
JPH02210637A (en) Magneto-optical recording medium
JPS5996713A (en) Magnetic recording medium
JPH06162582A (en) Magneto-optical recording medium
JPH04159640A (en) Magneto-optical recording medium