JPH07282477A - Optical recording medium and its production - Google Patents

Optical recording medium and its production

Info

Publication number
JPH07282477A
JPH07282477A JP8918594A JP8918594A JPH07282477A JP H07282477 A JPH07282477 A JP H07282477A JP 8918594 A JP8918594 A JP 8918594A JP 8918594 A JP8918594 A JP 8918594A JP H07282477 A JPH07282477 A JP H07282477A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
optical recording
fine particles
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8918594A
Other languages
Japanese (ja)
Inventor
Shinichi Tachibana
信一 立花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP8918594A priority Critical patent/JPH07282477A/en
Publication of JPH07282477A publication Critical patent/JPH07282477A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve perpendicular magnetic anisotropy, to increase the Faraday rotating angle and to improve recording and reproducing characteristics by impressing a magnetic field perpendicularly to a film plane and orienting magnetic particulates in a magnetic field direction. CONSTITUTION:This optical recording medium is constituted by forming a magnetic recording thin film 2 on a transparent substrate 1 and providing the surface thereof with a reflection layer 3 consisting of gold, etc. In such a case, the magnetic recording thin film 2 is formed by dispersing the magnetic particulates having a magneto-optical effect into a nonmagnetic binder. The external magnetic field is impressed perpendicularly to the film plane to disperse the magnetic particulates into the nomnagnetic binder at the time of forming such magnetic particulates as a coating film. The external magnetic field is impressed perpendicularly to the film plane to orient the magnetic particulates in the direction perpendicular to the film plane at the time of forming such particulates as the coating film, by which the perpendicular magnetic anisotropy is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気カー効果やファラ
デー効果等の磁気光学特性を利用して情報信号を記録再
生する光記録媒体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical recording medium for recording / reproducing information signals by utilizing magneto-optical characteristics such as magnetic Kerr effect and Faraday effect, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、磁気光学記録媒体としては、Mn
Bi、MnCuBiなどの多結晶薄膜、GdCo,Gd
Fe,TbFe、DyFe,GdTbFe,TbDyF
eなどの非晶質薄膜、GIGなどの単結晶薄膜などが知
られている。これら薄膜の中で、大面積の薄膜を室温近
傍の温度で形成する成膜性、信号を小さな光熱エネルギ
ーで書き込むための書き込み効率、書き込まれた信号を
S/N比良く読み出すための読み出し効率などを勘案す
ると、最近では前記非晶質薄膜が磁気光学記録媒体とし
て優れていると考えられている。
2. Description of the Related Art Conventionally, Mn has been used as a magneto-optical recording medium.
Bi, MnCuBi, and other polycrystalline thin films, GdCo, Gd
Fe, TbFe, DyFe, GdTbFe, TbDyF
Amorphous thin films such as e and single crystal thin films such as GIG are known. Among these thin films, film-forming properties for forming large-area thin films at temperatures near room temperature, writing efficiency for writing signals with small photothermal energy, reading efficiency for reading written signals with a good S / N ratio, etc. Considering the above, recently, the amorphous thin film is considered to be excellent as a magneto-optical recording medium.

【0003】前記の磁気光学記録媒体は、基板上に記録
薄膜及び無機保護膜などを積層して作成するが、真空蒸
着、スパタリングなどのプロセスで作成するために、製
造装置の大型化が必要であったり、また膜の積層数が多
いなどにより生産性が悪くなる等の問題がある。そこ
で、従来、磁性粒子を非磁性バインダー中に分散させ分
散液を塗布して磁性記録層とする塗布型光磁気記録媒体
が検討されている。
The above-mentioned magneto-optical recording medium is prepared by laminating a recording thin film and an inorganic protective film on a substrate. However, since the magneto-optical recording medium is prepared by a process such as vacuum deposition and sputtering, it is necessary to enlarge the manufacturing apparatus. However, there is a problem that productivity is deteriorated due to a large number of laminated films. Therefore, conventionally, a coating type magneto-optical recording medium in which magnetic particles are dispersed in a non-magnetic binder and a dispersion liquid is applied to form a magnetic recording layer has been studied.

【0004】一方、光磁気記録の高密度化の手段として
短波長レーザを使用することが検討されている。しか
し、重希土類−3d遷移金属非晶質合金薄膜は、波長が
短くなるに従ってカー回転角が小さくなるため、短波長
レーザにより再生した場合、再生出力が低下する。この
ため、新たな短波長用光磁気記録材料を用いることが必
要になっている。
On the other hand, the use of a short wavelength laser as a means for increasing the density of magneto-optical recording has been studied. However, since the Kerr rotation angle of the heavy rare earth-3d transition metal amorphous alloy thin film becomes smaller as the wavelength becomes shorter, the reproduction output decreases when reproduced by a short wavelength laser. Therefore, it is necessary to use a new magneto-optical recording material for short wavelength.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、磁性微
粒子を非磁性バインダー中に分散させた磁性記録層を用
いる塗布型光磁気記録媒体には、光学的に均一であるこ
と(ノイズの低減)、垂直磁化膜であること、ファラデ
ー回転角が大きく光磁気記録が可能であることなどの特
性が要求されている。
However, the coating type magneto-optical recording medium using the magnetic recording layer in which the magnetic fine particles are dispersed in the non-magnetic binder is optically uniform (reduction of noise) and Characteristics such as being a magnetized film, having a large Faraday rotation angle and being capable of magneto-optical recording are required.

【0006】本発明は、この様な塗布型光磁気記録媒体
を改良し、必要とされている特性を満足するために研究
をした結果完成されたものであり、垂直磁気異方性の向
上、またファラデー回転角を大きくすることにより、記
録再生特性を向上させた光記録媒体を提供することを目
的とするものである。
The present invention has been completed as a result of research for improving such a coating type magneto-optical recording medium and satisfying the required characteristics, and improving the perpendicular magnetic anisotropy. It is another object of the present invention to provide an optical recording medium having improved recording / reproducing characteristics by increasing the Faraday rotation angle.

【0007】また、本発明は、垂直磁気異方性の向上、
ファラデー回転角を大きくすることにより、記録再生特
性を向上させた光記録媒体を生産性良く製造することを
目的とするものである。
The present invention also improves the perpendicular magnetic anisotropy,
By increasing the Faraday rotation angle, it is an object to manufacture an optical recording medium having improved recording / reproducing characteristics with high productivity.

【0008】[0008]

【課題を解決するための手段】即ち、本発明は、磁気光
学効果を有する磁性微粒子を非磁性バインダー中に分散
してなる記録磁性薄膜を有する光記録媒体において、膜
面に垂直に磁界を印加して磁性微粒子を磁界方向に配向
させてなることを特徴とする光記録媒体である。
That is, according to the present invention, in an optical recording medium having a recording magnetic thin film in which magnetic fine particles having a magneto-optical effect are dispersed in a non-magnetic binder, a magnetic field is applied perpendicularly to the film surface. Then, the optical recording medium is characterized in that the magnetic fine particles are oriented in the magnetic field direction.

【0009】また、本発明は、磁気光学効果を有する磁
性微粒子を非磁性バインダー中に分散した分散液を塗布
して記録磁性薄膜を形成する光記録媒体の製造方法にお
いて、膜面に垂直に磁界を印加して磁性微粒子を磁界方
向に配向させることを特徴とする光記録媒体の製造方法
である。
Further, the present invention is a method of manufacturing an optical recording medium in which magnetic fine particles having a magneto-optical effect are dispersed in a non-magnetic binder to form a recording magnetic thin film. Is applied to orient the magnetic fine particles in the magnetic field direction, which is a method for manufacturing an optical recording medium.

【0010】以下、本発明を詳細に説明する。図1は本
発明の光記録媒体の一例を示す説明図である。同図にお
いて、本発明の光記録媒体は、透明基板1上に、記録磁
性薄膜2を形成し、その上に金などの反射層3を設けて
なり、記録磁性薄膜2は磁気光学効果を有する磁性微粒
子を磁性微粒子を非磁性バインダー中に分散させ、これ
を塗膜化する際に、外部磁界を膜面に垂直に印加し、磁
性微粒子を膜面に垂直方向に配向させ、垂直磁気異方性
を向上させてなるものである。
The present invention will be described in detail below. FIG. 1 is an explanatory diagram showing an example of the optical recording medium of the present invention. In the figure, the optical recording medium of the present invention comprises a transparent magnetic film 2 formed on a transparent substrate 1 and a reflective layer 3 made of gold or the like on the transparent magnetic film 2. The magnetic recording thin film 2 has a magneto-optical effect. Magnetic fine particles are dispersed in a non-magnetic binder, and an external magnetic field is applied perpendicularly to the film surface to form a coating film. It is made by improving the sex.

【0011】本発明において用いられる磁性微粒子とし
ては、Co、Baフェライト、Bi置換ガーネットなど
が挙げられる。その平均粒径は500Å以下であり、好
ましくは50〜500Å、特に好ましくは20Å〜20
0Åである。また、磁性微粒子の非磁性バインダーへの
配合量は、体積分率で10〜40%、好ましくは15〜
30%の範囲が望ましい。
Examples of magnetic fine particles used in the present invention include Co, Ba ferrite, and Bi-substituted garnet. The average particle size is 500 Å or less, preferably 50 to 500 Å, particularly preferably 20 Å to 20
It is 0Å. The amount of the magnetic fine particles mixed with the non-magnetic binder is 10 to 40%, preferably 15 to 40% by volume.
A range of 30% is desirable.

【0012】本発明において用いられる非磁性バインダ
ーとしては、ポリメタクリレート、ポリカーボネート、
ポリスチレン等の高分子材料、およびポリエチレンテレ
フタレートの側鎖にフェニル基を重合した液晶高分子な
どの異方性溶融高分子材料が挙げられる。これらの高分
子材料をトルエン、イソプロパノール、メチルセルソル
ブ等の有機溶媒に溶解し、上記の磁性微粒子を分散し、
スピンナー等で基板上に塗布し、乾燥し薄膜化して記録
磁性薄膜を形成する。
The non-magnetic binder used in the present invention includes polymethacrylate, polycarbonate,
Examples thereof include polymer materials such as polystyrene, and anisotropic melt polymer materials such as liquid crystal polymers obtained by polymerizing a phenyl group on the side chain of polyethylene terephthalate. These polymeric materials are dissolved in an organic solvent such as toluene, isopropanol, and methyl cellosolve to disperse the above magnetic fine particles,
A recording magnetic thin film is formed by coating the substrate with a spinner or the like, drying and thinning it.

【0013】薄膜の制御は、スピンナーの回転数、回転
時間等の塗布条件により行う。記録磁性薄膜の厚さは、
0.01μm〜5μm、好ましくは0.5μm〜2μm
が望ましい。また、乾燥行程で、膜面に垂直方向に外部
磁界を印加し、該磁性微粒子を磁界方向に配向させる。
外部磁界としては、1kOe〜10kOe、特に好まし
くは3kOe〜7kOeの範囲が好ましい。
The thin film is controlled by the coating conditions such as the spinner rotation speed and rotation time. The thickness of the recording magnetic thin film is
0.01 μm to 5 μm, preferably 0.5 μm to 2 μm
Is desirable. In the drying process, an external magnetic field is applied in the direction perpendicular to the film surface to orient the magnetic fine particles in the magnetic field direction.
The external magnetic field is preferably in the range of 1 kOe to 10 kOe, particularly preferably 3 kOe to 7 kOe.

【0014】また、場合によっては、該磁性微粒子の非
磁性バインダー中の分散性を向上させるために、該粒子
表面のカップリッグ処理、マイクロカプセル化処理、お
よび分散剤の添加などを行ってもよい。
In some cases, in order to improve the dispersibility of the magnetic fine particles in the non-magnetic binder, the surface of the particles may be subjected to a coupling treatment, a microencapsulation treatment, and a dispersant may be added.

【0015】磁性微粒子を非磁性バインダーに分散させ
た記録磁性薄膜においては、ランダムな距離の分布を持
つ磁性微粒子では、その磁気特性は、微粒子のもつ保磁
力および磁気異方性、それに磁性微粒子間の双極子相互
作用(磁気的相互作用)が加わり決定される。
In a recording magnetic thin film in which magnetic fine particles are dispersed in a non-magnetic binder, the magnetic characteristics of the magnetic fine particles having a random distance distribution are as follows. The dipole interaction (magnetic interaction) of is determined.

【0016】特に、非磁性バインダーとして、高分子を
用いた場合、高分子中では磁性微粒子間の磁気的相互作
用は無視できない。磁性微粒子の高分子中での分散状態
を変化させることで、磁性微粒子間の相互作用を小さく
することが可能であり、この場合、反転磁界を小さくす
ることができる。ここで、磁性微粒子の高分子中での分
散状態を変えるために、外部磁界を磁性微粒子のC軸方
向(記録磁性薄膜面の垂直方向)に印加し、配向させる
という手段がとられる。これにより、粒子の凝集状態が
変化し、異常分散が発生し、垂直磁気異方性が向上する
とともに、磁気光学効果(ファラデー効果)も大きくな
る。
In particular, when a polymer is used as the non-magnetic binder, the magnetic interaction between the magnetic fine particles in the polymer cannot be ignored. By changing the dispersion state of the magnetic fine particles in the polymer, it is possible to reduce the interaction between the magnetic fine particles, and in this case, the reversal magnetic field can be reduced. Here, in order to change the dispersion state of the magnetic fine particles in the polymer, a means of applying an external magnetic field in the C-axis direction (perpendicular to the recording magnetic thin film surface) of the magnetic fine particles to orient it is adopted. As a result, the agglomeration state of the particles changes, abnormal dispersion occurs, the perpendicular magnetic anisotropy improves, and the magneto-optical effect (Faraday effect) also increases.

【0017】また、この場合、用いる高分子材料の分子
量が20〜50万でかつ、分子量分布が1.0〜2.0
の範囲でシャープであると、より磁性微粒子のC軸配向
性が向上する。
In this case, the polymer material used has a molecular weight of 200,000 to 500,000 and a molecular weight distribution of 1.0 to 2.0.
If it is sharp in the range, the C-axis orientation of the magnetic fine particles is further improved.

【0018】また、非磁性バインダーとして、異方性溶
融高分子材料、即ち応力方向の流動性が大きくなるよう
な、例えば液晶高分子を用いれば、より磁性微粒子のC
軸配向性が向上する。
When an anisotropic molten polymer material, that is, for example, a liquid crystal polymer having a large fluidity in the stress direction, is used as the non-magnetic binder, C of the magnetic fine particles is further improved.
Axial orientation is improved.

【0019】また、磁性微粒子の非磁性バインダー中へ
の配合量を増加するにつれて、磁性薄膜のファラデー回
転角は減少するが、保磁力は増大する。そこで磁性微粒
子の非磁性バインダー中への配合量は、体積分率で15
〜30%の範囲が好ましい。また、ここで用いられる磁
性微粒子の大きさは、再生時の媒体ノイズが発生しない
という点から50〜500Åの範囲が好ましい。
Further, the Faraday rotation angle of the magnetic thin film decreases but the coercive force increases as the amount of the magnetic fine particles mixed in the non-magnetic binder increases. Therefore, the compounding amount of the magnetic fine particles in the non-magnetic binder is 15% by volume.
The range of up to 30% is preferred. Further, the size of the magnetic fine particles used here is preferably in the range of 50 to 500 Å from the viewpoint that medium noise is not generated during reproduction.

【0020】また、磁性薄膜の表面粗さは、記録再生時
のレーザ光の散乱による損失が少ないという点から、1
00〜500Åの範囲が好ましい。
The surface roughness of the magnetic thin film is 1 because the loss due to the scattering of the laser light during recording and reproduction is small.
The range of 00 to 500Å is preferable.

【0021】[0021]

【実施例】以下に実施例を挙げて本発明を具体的に説明
する。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0022】実施例1 非磁性バンイダーとしてポリメタクリレート(PMM
A)のトルエン溶液に、コバルトカルボニル微粒子〔C
2 (CO)8 〕を体積分率で18%配合し、攪拌しな
がら120℃、8時間分散させた。このコバルト微粒子
分散溶液をポリオレフィン基板上に塗布した後、膜面に
対し垂直に外部磁界Hd=4kOeを印加しながら室温
で乾燥させ、磁性記録薄膜とし、さらにこの膜上に反射
膜として、Auを40nmの厚さに付け光記録媒体を作
成した。
Example 1 Polymethacrylate (PMM) was used as a non-magnetic binder.
Cobalt carbonyl fine particles [C
o 2 (CO) 8 ] was mixed at a volume fraction of 18%, and dispersed at 120 ° C. for 8 hours while stirring. After applying this cobalt fine particle dispersion solution on a polyolefin substrate, it is dried at room temperature while applying an external magnetic field Hd = 4 kOe perpendicularly to the film surface to form a magnetic recording thin film. An optical recording medium was prepared by attaching it to a thickness of 40 nm.

【0023】なお、以下の表1に示す材料構成で、実施
例1と同じようにして実施例2〜6および比較例1〜7
の光記録媒体を作成した。以下の表1に、実施例および
比較例で作製した光記録媒体の材料構成を示す。
In addition, with the material constitution shown in Table 1 below, in the same manner as in Example 1, Examples 2 to 6 and Comparative Examples 1 to 7
The optical recording medium of Table 1 below shows the material configurations of the optical recording media produced in the examples and comparative examples.

【0024】[0024]

【表1】 [Table 1]

【0025】(注) (1)コバルトカルボニル微粒子:〔Co2 (CO)
8 〕 (2)Co置換Baフェライト微粒子:組成 BaFe
10.2Co0.9 Ti0.919、アスペクト比3.5 (3)PMMAはポリメタクリレート、PSはポリスチ
レンを示す。 (4)液晶ポリマー:ザイダール、ユニチカ(株)社製 (5)表面粗さはタリサーフ:表面粗さ計により測定。
(Note) (1) Cobalt carbonyl fine particles: [Co 2 (CO)
8 ] (2) Co-substituted Ba ferrite fine particles: composition BaFe
10.2 Co 0.9 Ti 0.9 O 19 and aspect ratio 3.5 (3) PMMA is polymethacrylate and PS is polystyrene. (4) Liquid crystal polymer: Zydar, manufactured by Unitika Ltd. (5) Surface roughness is measured with Talysurf: surface roughness meter.

【0026】実施例および比較例で作成した光記録媒体
の磁化曲線を、磁界を膜面に垂直に印加して測定した。
そして、それぞれの角型比および保磁力を求めた。な
お、測定は、室温(23℃)で、VSM:振動試料型磁
力計により行った。
The magnetization curves of the optical recording media prepared in Examples and Comparative Examples were measured by applying a magnetic field perpendicular to the film surface.
Then, each squareness ratio and coercive force were obtained. The measurement was carried out at room temperature (23 ° C.) using a VSM: vibrating sample magnetometer.

【0027】比較例では、角型比がそれぞれ0.2以下
と小さく、保磁力も0.25kOe以下と小さかった。
これに対して、実施例では角型比がそれぞれ0.85以
上、保磁力も0.8〜1.0kOeと大きかった。これ
より、実施例の方が、垂直磁気異方性が大きくなってい
ることがわかる。なお、測定は振動試料型磁力計(VS
M)によって行なった。
In the comparative example, the squareness ratio was as small as 0.2 or less, and the coercive force was also as small as 0.25 kOe or less.
On the other hand, in the example, the squareness ratio was 0.85 or more, and the coercive force was 0.8 to 1.0 kOe. From this, it is understood that the example has a larger perpendicular magnetic anisotropy. The measurement is a vibrating sample magnetometer (VS
M).

【0028】次に、実施例1〜6及び比較例1〜7で作
成した光記録媒体のファラデー回転角(θF )deg/
μmを波長域830nmで測定した。その結果を表2に
示す。その結果より、実施例ではθF は0.28〜0.
29で、比較例のθF =0.18〜0.19に比べ、5
0%程度のθF の増大がみられた。
Next, the Faraday rotation angle (θ F ) deg / of the optical recording media prepared in Examples 1-6 and Comparative Examples 1-7.
μm was measured in the wavelength range of 830 nm. The results are shown in Table 2. From the result, in the embodiment, θ F is 0.28 to 0.
29, compared with θ F = 0.18 to 0.19 of the comparative example, 5
An increase in θ F of about 0% was observed.

【0029】[0029]

【表2】 [Table 2]

【0030】(注) (1)ファラデー回転角(θF )の測定は、磁気旋光分
光計(MOE−7:日本分光(株)製)を用いた。
(Note) (1) The Faraday rotation angle (θ F ) was measured using a magnetic rotation spectrometer (MOE-7: manufactured by JASCO Corporation).

【0031】次に、実施例1〜6及び比較例1〜7で作
成した光記録媒体を用いて、半導体レーザ830nm
(波長)で、記録レーザパワー10mW、線速3m/s
ec、印加磁界500 Oeで記録テストを行ったとこ
ろ、マーク長3.8μmの安定した記録ビットを得るこ
とができた。また、各実施例及び比較例の光記録媒体を
用いて、上記条件で記録したマークの再生信号を、再生
パワー2.0mWで、C/N比で測定評価した。その結
果を表3に示す。
Next, using the optical recording media prepared in Examples 1 to 6 and Comparative Examples 1 to 7, a semiconductor laser of 830 nm was used.
(Wavelength), recording laser power 10 mW, linear velocity 3 m / s
When a recording test was performed with ec and an applied magnetic field of 500 Oe, stable recording bits with a mark length of 3.8 μm could be obtained. In addition, using the optical recording media of Examples and Comparative Examples, the reproduction signal of the mark recorded under the above conditions was measured and evaluated with a reproduction power of 2.0 mW and a C / N ratio. The results are shown in Table 3.

【0032】なお、記録再生特性の評価は、光磁気記録
再生評価装置(LM52A:シバソク(株)製)を用い
て行なった。表3の結果より、各実施例の光記録媒体
は、比較例の光記録媒体に比べて、C/N比が大きく、
優れた特性を有することがわかる。
The recording / reproducing characteristics were evaluated using a magneto-optical recording / reproducing evaluation device (LM52A: manufactured by Shibasoku Co., Ltd.). From the results of Table 3, the optical recording medium of each example has a larger C / N ratio than the optical recording medium of the comparative example.
It can be seen that it has excellent characteristics.

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【発明の効果】以上説明した様に、本発明の光記録媒体
は、従来の塗布型記録媒体に比べ、垂直磁気異方性が大
きく優れた磁気特性を有すると共に磁気光学効果も大き
く、記録再生特性が優れている効果を有する。また、本
発明の光記録媒体の製造方法は、従来の光記録媒体に比
べ、生産性に優れて上記の特性を有する塗布型記録媒体
を作製可能である。
As described above, the optical recording medium of the present invention has a large perpendicular magnetic anisotropy and excellent magnetic characteristics as compared with the conventional coating type recording medium, and has a large magneto-optical effect. It has the effect of excellent characteristics. Further, the method for producing an optical recording medium of the present invention can produce a coating type recording medium having excellent productivity and the above-mentioned characteristics as compared with the conventional optical recording medium.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光記録媒体の一例を示す説明図であ
る。
FIG. 1 is an explanatory diagram showing an example of an optical recording medium of the present invention.

【符号の説明】[Explanation of symbols]

1 透明基板 2 磁性記録薄膜 3 反射層 1 transparent substrate 2 magnetic recording thin film 3 reflective layer

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 磁気光学効果を有する磁性微粒子を非磁
性バインダー中に分散してなる記録磁性薄膜を有する光
記録媒体において、膜面に垂直に磁界を印加して磁性微
粒子を磁界方向に配向させてなることを特徴とする光記
録媒体。
1. In an optical recording medium having a recording magnetic thin film in which magnetic fine particles having a magneto-optical effect are dispersed in a non-magnetic binder, a magnetic field is applied perpendicularly to the film surface to orient the magnetic fine particles in the magnetic field direction. An optical recording medium characterized by the following.
【請求項2】 前記非磁性バインダーとして分子量が2
0万〜50万、分子量分布が1.0〜2.0の高分子材
料を用いる請求項1記載の光記録媒体。
2. The non-magnetic binder has a molecular weight of 2
The optical recording medium according to claim 1, wherein a high molecular material having a molecular weight distribution of from 1.0 to 500,000 and a molecular weight distribution of from 1.0 to 2.0 is used.
【請求項3】 前記非磁性バインダーとして異方性溶融
高分子材料を用いる請求項1記載の光記録媒体。
3. The optical recording medium according to claim 1, wherein an anisotropic molten polymer material is used as the non-magnetic binder.
【請求項4】 前記異方性溶融高分子が液晶高分子であ
る請求項3記載の光記録媒体。
4. The optical recording medium according to claim 3, wherein the anisotropic molten polymer is a liquid crystal polymer.
【請求項5】 前記磁性微粒子の平均粒径が50〜50
0Åの範囲である請求項1記載の光記録媒体。
5. The magnetic fine particles have an average particle size of 50 to 50.
The optical recording medium according to claim 1, wherein the optical recording medium has a range of 0Å.
【請求項6】 前記磁微粒子の非磁性バインダー中への
配合量が体積分率で15〜30%の範囲である請求項1
記載の光記録媒体。
6. The volume fraction of the magnetic fine particles in the non-magnetic binder is in the range of 15 to 30%.
The optical recording medium described.
【請求項7】 前記記録磁性薄膜層の平均表面粗さが1
00〜500Åである請求項1記載の光記録媒体。
7. The average surface roughness of the recording magnetic thin film layer is 1
The optical recording medium according to claim 1, wherein the optical recording medium has a thickness of 00 to 500Å.
【請求項8】 磁気光学効果を有する磁性微粒子を非磁
性バインダー中に分散した分散液を塗布して記録磁性薄
膜を形成する光記録媒体の製造方法において、膜面に垂
直に磁界を印加して磁性微粒子を磁界方向に配向させる
ことを特徴とする光記録媒体の製造方法。
8. A method for producing an optical recording medium in which a magnetic fine particle having a magneto-optical effect is dispersed in a non-magnetic binder to form a recording magnetic thin film, and a magnetic field is applied perpendicularly to the film surface. A method for manufacturing an optical recording medium, which comprises orienting magnetic fine particles in a magnetic field direction.
JP8918594A 1994-04-05 1994-04-05 Optical recording medium and its production Pending JPH07282477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8918594A JPH07282477A (en) 1994-04-05 1994-04-05 Optical recording medium and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8918594A JPH07282477A (en) 1994-04-05 1994-04-05 Optical recording medium and its production

Publications (1)

Publication Number Publication Date
JPH07282477A true JPH07282477A (en) 1995-10-27

Family

ID=13963685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8918594A Pending JPH07282477A (en) 1994-04-05 1994-04-05 Optical recording medium and its production

Country Status (1)

Country Link
JP (1) JPH07282477A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025465A1 (en) * 2013-08-23 2015-02-26 ソニー株式会社 Ferrimagnetic particle powder and manufacturing method therefor, and magnetic recording medium and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025465A1 (en) * 2013-08-23 2015-02-26 ソニー株式会社 Ferrimagnetic particle powder and manufacturing method therefor, and magnetic recording medium and manufacturing method therefor
JPWO2015025465A1 (en) * 2013-08-23 2017-03-02 ソニー株式会社 Ferrimagnetic particle powder and manufacturing method thereof, and magnetic recording medium and manufacturing method thereof
US9805754B2 (en) 2013-08-23 2017-10-31 Sony Corporation Ferrimagnetic particle powder and manufacturing method therefor, and magnetic recording medium and manufacturing method therefor
US10783914B2 (en) 2013-08-23 2020-09-22 Sony Corporation Ferrimagnetic particle powder and method of manufacturing ferrimagnetic particle powder, as well as magnetic recording medium and method of manufacturing magnetic recording medium

Similar Documents

Publication Publication Date Title
US6893746B1 (en) Magnetic recording medium with high thermal stability, method for producing the same, and magnetic recording apparatus
US4163823A (en) Magnetic recording elements and process of preparation
US5663935A (en) Magneto-optical recording medium having two magnetic layers of exchange-coupled at ferromagnetic phase
US6146740A (en) Magnetic recording medium and method of fabricating the same
US5993937A (en) Magneto-optic recording medium and method of fabricating the same
US4992336A (en) Magneto-optical recording medium
Shimokawa et al. Nanocrystalline garnet disks for magneto-optical recording media
JPH07282477A (en) Optical recording medium and its production
US5100741A (en) Magneto-optic recording systems
JPS621149A (en) Photomagnetic recording medium
US5529854A (en) Magneto-optic recording systems
JP2647958B2 (en) Magneto-optical recording medium
JPH03152743A (en) Magneto-optical recording medium
JP2651749B2 (en) Magnetic recording media
JPH06124498A (en) Magneto-optical recording and playback method
JPH0619829B2 (en) Magnetic recording medium
JPS63148447A (en) Thermomagneto-optical recording medium
JPH0467684B2 (en)
JPS6383934A (en) Magneto-optical recording medium
JPS63164049A (en) Magneto-optical recording medium and its production
Hartmann et al. MAGNETO-OPTIC RETM ALLOYS: THE STEPS OF INDUSTRIALIZATION
JPS58114329A (en) Magnetic recording medium
JPH04143947A (en) Magneto-optical recording medium
JPH02281442A (en) Thermomagnetic recording medium
JPS6371961A (en) Magneto-optical recording medium