JPH0619829B2 - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0619829B2
JPH0619829B2 JP59021129A JP2112984A JPH0619829B2 JP H0619829 B2 JPH0619829 B2 JP H0619829B2 JP 59021129 A JP59021129 A JP 59021129A JP 2112984 A JP2112984 A JP 2112984A JP H0619829 B2 JPH0619829 B2 JP H0619829B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic powder
powder
particle size
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59021129A
Other languages
Japanese (ja)
Other versions
JPS60164925A (en
Inventor
幹雄 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP59021129A priority Critical patent/JPH0619829B2/en
Publication of JPS60164925A publication Critical patent/JPS60164925A/en
Publication of JPH0619829B2 publication Critical patent/JPH0619829B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔技術分野および目的〕 この発明は磁性粉末として六方晶系で一軸異方性を有す
る磁性粉末を用いた磁気記録媒体に関し、高密度磁気記
録に適した磁気記録媒体を提供することを目的とする。
TECHNICAL FIELD AND OBJECT The present invention relates to a magnetic recording medium using magnetic powder having hexagonal uniaxial anisotropy as magnetic powder, and a magnetic recording medium suitable for high density magnetic recording. The purpose is to provide.

〔背景技術〕[Background technology]

一般に、磁気記録媒体はγ−Fe、Co含有γ−
Fe、CrOなどの針状磁性粉末を水平な磁性
層の長手方向に配向させるなどして磁気特性を向上させ
ることが行われており、さらに記録密度を向上させて高
密度記録に適したものにするため、粒子径の極めて小さ
い磁性粉末を使用することが行われている。
Generally, a magnetic recording medium has γ-Fe 2 O 3 and Co-containing γ-.
Magnetic properties have been improved by orienting needle-shaped magnetic powders such as Fe 2 O 3 and CrO 2 in the longitudinal direction of a horizontal magnetic layer, and further improved recording density to achieve high-density recording. In order to be suitable, it has been practiced to use magnetic powders with a very small particle size.

ところが、この種の針状磁性粉末は磁気異方性が、形状
磁気異方性に基づくため、この針状磁性粉末に外部磁界
が加わると、磁性粉末がバインダー中で形状磁気異方性
の方向と外部磁界の方向が平行になるように回転して、
針状磁性粉末の針状方向と、外部磁界すなわち配向磁界
の方向とが平行になるように配向するが、使用する磁性
粉末の粒子径が小さくなると、磁性粉末同士の間隔が狭
くなり、また磁性粉末同士が凝集しやすくなって、針状
磁性粉末のもつ形状磁気異方性エネルギーが小さくなっ
てしまうため、外部磁界との相互作用も小さくなり、磁
界方向に配向されにくくなって磁性粉末のバインダー中
での配向性が悪くなり、角型が小さくなるという欠点が
ある。
However, since the magnetic anisotropy of this kind of needle-shaped magnetic powder is based on the shape magnetic anisotropy, when an external magnetic field is applied to this needle-shaped magnetic powder, the magnetic powder is oriented in the binder in the direction of the shape magnetic anisotropy. Rotate so that the direction of the external magnetic field is parallel to
The needle-like magnetic powder is oriented so that the needle-like direction and the direction of the external magnetic field, that is, the orientation magnetic field are parallel to each other. However, when the particle diameter of the magnetic powder used becomes smaller, the gap between the magnetic powders becomes narrower and Since the powder particles are easily aggregated and the shape magnetic anisotropy energy of the acicular magnetic powder is reduced, the interaction with the external magnetic field is also reduced, and it is difficult to orient in the magnetic field direction. There is a drawback that the orientation in the inside becomes worse and the squareness becomes smaller.

〔発明の概要〕[Outline of Invention]

この発明はかかる観点から種々検討を行った結果、磁気
異方性が結晶磁気異方性に基づく、六方晶系で一軸異方
性を有する粒子径が0.03〜0.10μの磁性粉末を使用すれ
ば、この種の磁性粉末が、形状磁気異方性に基づく磁性
粉末に比較して、粒子間相互作用が極めて小さく、粒子
径が小さくなっても高い配向性を示すという利点をもっ
ており、かつ粒子径が極めて小さいため、磁性層の長手
方向に配向しても磁性層の表面平滑性を充分に平滑にす
ることができて、高密度記録に適した磁気記録媒体が得
られることを見いだしてなされたもので、六方晶系で一
軸異方性を有する粒子径が0.03〜0.10μの磁性粉末を磁
性層中に含有させ、磁性層の長手方向の角型を 0.6以上
にしたことを特徴とするものである。
As a result of various studies from this point of view, the present invention is based on magnetocrystalline anisotropy, and if a magnetic powder having a hexagonal uniaxial anisotropy particle size of 0.03 to 0.10 μ is used. , This type of magnetic powder has the advantage that the interaction between particles is extremely small and high orientation is exhibited even if the particle size is small, as compared with the magnetic powder based on the shape magnetic anisotropy, and It was found that a magnetic recording medium suitable for high-density recording can be obtained because the surface smoothness of the magnetic layer can be made sufficiently smooth even if it is oriented in the longitudinal direction of the magnetic layer. Characterized in that a hexagonal uniaxially anisotropic magnetic powder having a particle size of 0.03 to 0.10μ is contained in the magnetic layer, and the squareness of the magnetic layer in the longitudinal direction is 0.6 or more. Is.

また、この種のこの六方晶系の磁性粉末粒子は、元々そ
の薄板状形状を利用して薄板面が磁性面に平行になるよ
うに垂直磁場配向するか、あるいは機械的配向すること
が行われ、磁気記録媒体の垂直磁化成分を利用すること
により短波長域での出力を向上させる試みがなされてき
たものであるが、このような垂直配向した磁気記録媒体
では、短波長域で高出力が得られるものの長波長域で出
力が低いという大きな問題があり、さらに、現在全ての
磁気記録媒体に用いられている長手記録と再生出力波形
が異なり、互換性が得られないという致命的な問題があ
った。そこで、このような問題点を解消するため、この
発明は従来のこのような考えかたと発想を全く変えて、
薄板状粒子を磁気記録媒体の長手方向が磁化容易方向に
なるように配向させたものであり、この長手方向によっ
て、短波長域の出力を維持しながら長波長域の出力を大
幅に向上できるという従来予想もできなかった事実を見
いだしてなされたものである。
In addition, this type of hexagonal magnetic powder particles is originally subjected to vertical magnetic field orientation so that the thin plate surface is parallel to the magnetic surface or mechanical orientation by utilizing its thin plate shape. Attempts have been made to improve the output in the short wavelength region by utilizing the perpendicular magnetization component of the magnetic recording medium. In such a vertically aligned magnetic recording medium, a high output in the short wavelength region is obtained. However, there is a big problem that the output is low in the long wavelength region, but there is a fatal problem that compatibility is not obtained because the reproduction output waveform is different from the longitudinal recording currently used for all magnetic recording media. there were. Therefore, in order to solve such a problem, the present invention completely changes the way of thinking from the conventional way of thinking like this,
It is said that thin plate-shaped particles are oriented so that the longitudinal direction of the magnetic recording medium is the easy magnetization direction, and this longitudinal direction can significantly improve the output in the long wavelength range while maintaining the output in the short wavelength range. It was made by discovering a fact that could not have been predicted in the past.

このように広い周波数域で出力が大幅に向上する理由は
明らかではないが、六方晶系の磁性粉末粒子が強い一軸
異方性をもっているため、磁気記録再生時の磁化遷移
領域が狭くなること、長手配向すると従来の針状磁性
粉末を用いたものよりも長手方向に高い角型が得られる
こと、粒子が微細なために針状磁性粉末を長手配向し
たときよりもさらに磁性層の表面平滑性が向上するため
であることなどが考えられる。
It is not clear why the output is significantly improved in such a wide frequency range, but the hexagonal magnetic powder particles have strong uniaxial anisotropy, so that the magnetization transition region during magnetic recording and reproduction is narrowed. Longitudinal orientation gives a higher rectangular shape in the longitudinal direction than that using conventional acicular magnetic powder, and because the particles are finer, the surface of the magnetic layer is even more than when acicular magnetic powder is longitudinally oriented. It is considered that this is because the smoothness is improved.

このようにして、この発明は薄板状の六方晶系粒子を垂
直配向するという従来の考え方とは全く発想を転換して
長手配向することにより、高い角型と優れた表面平滑性
を達成し、優れた高密度記録特性を達成したものであ
る。
In this way, the present invention achieves high squareness and excellent surface smoothness by completely changing the idea from the conventional idea of vertically orienting thin plate-shaped hexagonal grains and by orienting longitudinally. It has achieved excellent high-density recording characteristics.

この発明において使用される六方晶系で一軸異方性を有
する磁性粉末は、六方晶の結晶構造を有する磁性粉末
で、たとえば、Mn−Bi合金磁性粉末、バリウムフェ
ライト磁性粉末、金属コバルト磁性粉末などが好適なも
のとして使用される。このような六方晶の結晶構造を有
するこの種の磁性粉末は、一般に薄板状で、磁化容易方
向は薄板面に対して垂直方向であり、大きな結晶磁気異
方性を有する。このため粒子間相互作用が極めて小さ
く、粒子径が小さくなっても高い配向性を示し、これを
磁性層中でその磁化容易軸が長手方向となるように配向
させれば、良好に配向されて長手方向の角型が向上し、
高密度記録に適した磁気記録媒体が得られる。
The magnetic powder having a hexagonal uniaxial anisotropy used in the present invention is a magnetic powder having a hexagonal crystal structure, such as Mn-Bi alloy magnetic powder, barium ferrite magnetic powder and metallic cobalt magnetic powder. Is used as the preferred one. This kind of magnetic powder having such a hexagonal crystal structure is generally in the shape of a thin plate, the easy magnetization direction is perpendicular to the thin plate surface, and has a large crystal magnetic anisotropy. For this reason, the interaction between particles is extremely small, and even if the particle diameter becomes small, high orientation is exhibited, and if this is oriented in the magnetic layer so that its easy axis of magnetization is in the longitudinal direction, good orientation is achieved. Improved rectangular shape in the longitudinal direction,
A magnetic recording medium suitable for high density recording can be obtained.

しかし、薄板状で、磁化容易方向は薄板面に対して垂直
方向にあるため、この種の磁性粉末を、水平な磁性層の
長手方向に配向すると薄板が磁性層面に立ち、磁性粉末
の粒子径が小さくないと磁性層の表面平滑性が劣化し、
良好な高密度記録が行えない。従って、粒子径が0.10μ
以下のものを使用するのが好ましく、粒子径が小さくな
るほど磁性層の表面平滑性は良好になる。ところが、粒
子径が0.03μより小さいものでは塗料中での分散が困難
になり、その結果、角型が低下するため、粒子径が0.03
〜0.10μの範囲内のものを使用するのが好ましく、この
種の磁性粉末では粒子径が極めて小さいものでも針状磁
性粉末のように磁性粉末同士か凝集するということもな
いため、同じ微粒子の針状磁性粉末を使用する場合より
も磁性層の表面平滑性はかえって向上する。
However, since it is a thin plate and the easy magnetization direction is perpendicular to the thin plate surface, if this kind of magnetic powder is oriented in the longitudinal direction of the horizontal magnetic layer, the thin plate stands on the magnetic layer surface and the particle diameter of the magnetic powder becomes If is not small, the surface smoothness of the magnetic layer will deteriorate,
Good high density recording cannot be performed. Therefore, the particle size is 0.10μ
The following are preferably used, and the smaller the particle size, the better the surface smoothness of the magnetic layer. However, if the particle size is smaller than 0.03μ, it becomes difficult to disperse it in the paint, and as a result, the squareness is reduced, so the particle size is 0.03μm.
It is preferable to use a magnetic powder having a particle size within the range of 0.10 μ to 0.10 μ, and even if the magnetic powder of this kind has a very small particle diameter, it does not agglomerate between magnetic powders like needle-shaped magnetic powders. The surface smoothness of the magnetic layer is improved rather than the case where the acicular magnetic powder is used.

また、この種の六方晶系で一軸異方性を有する磁性粉末
は、一般に、高い結晶磁気異方性を有するため保磁力が
極めて高く、またこの結晶磁気異方性に基づく磁気異方
性は、一般に、温度変化が大きいため保磁力の温度依存
性が大きく、通常の磁気記録媒体用として使用しにくい
きらいがある。従って、この発明で使用する六方晶系で
一軸異方性を有する磁性粉末は、適当な金属イオンを導
入したりして、保磁力と保磁力の温度依存性を適度に調
整したものを使用するのが好ましく、保磁力が500か
ら1500エルステッドの範囲内にあり、保磁力の温度
依存性は、温度が20℃と100℃における保磁力の変
化率〔Hc(100℃)−Hc(20℃)〕/Hc(2
0℃)にして±10%以内にあるものを使用するのが好
ましい。
In addition, this type of hexagonal magnetic powder having uniaxial anisotropy generally has a high coercive force because of its high crystal magnetic anisotropy, and the magnetic anisotropy based on this crystal magnetic anisotropy is Generally, since the temperature change is large, the coercive force has a large temperature dependence, and it is difficult to use it for ordinary magnetic recording media. Therefore, as the magnetic powder having hexagonal uniaxial anisotropy used in the present invention, a magnetic powder having suitable coercive force and temperature dependence of coercive force adjusted by introducing appropriate metal ions is used. The coercive force is preferably in the range of 500 to 1500 Oersted, and the temperature dependence of the coercive force is the rate of change of the coercive force at temperatures of 20 ° C and 100 ° C [Hc (100 ° C) -Hc (20 ° C). ] / Hc (2
It is preferable to use those whose temperature is 0 ° C.) and within ± 10%.

このような六方晶系で一軸異方性を有する磁性粉末は、
これを使用して調製した磁性塗料を塗布し、乾燥して磁
性層を形成するに当たって、水平な磁性層の長手方向の
角型が 0.6以上になるように配向するのが好ましく、長
手方向の角型が 0.6より小さくては良好な高密度記録が
行えない。
Such a hexagonal magnetic powder having uniaxial anisotropy is
When the magnetic coating prepared using this is applied and dried to form the magnetic layer, it is preferable that the horizontal magnetic layer is oriented so that the squareness in the longitudinal direction is 0.6 or more. If the mold is smaller than 0.6, good high density recording cannot be performed.

このようにこの発明で使用される粒子径が0.03〜0.10μ
の六方晶系で一軸異方性を有する磁性粉末は、大きな結
晶磁気異方性を有するため、粒子間相互作用が極めて小
さく、粒子径が小さくなっても高い配向性を示し、ま
た、粒子径が極めて小さいためこれを磁性層中でその磁
化容易軸が長手方向となるように配向させても、磁性層
の表面平滑性が劣化することなく、かえって向上され
る。従ってこの種の磁性粉末を磁性層中に含有させ、磁
化容易軸が長手方向となるように配向させて長手方向の
角型が 0.6以上となるようにすれば、表面平滑性が良好
で高密度記録に適した磁気記録媒体が得られる。
Thus, the particle size used in the present invention is 0.03-0.10μ.
The hexagonal magnetic powder having uniaxial anisotropy has a large crystal magnetic anisotropy, so that the interaction between particles is extremely small, and even if the particle size becomes small, high orientation is exhibited. Is extremely small, so that even if it is oriented in the magnetic layer so that its easy axis of magnetization is in the longitudinal direction, the surface smoothness of the magnetic layer is not deteriorated, but rather improved. Therefore, if this kind of magnetic powder is contained in the magnetic layer and the axis of easy magnetization is oriented in the longitudinal direction so that the squareness in the longitudinal direction is 0.6 or more, good surface smoothness and high density are achieved. A magnetic recording medium suitable for recording can be obtained.

この発明の磁気記録媒体を製造するには常法に準じて行
えばよく、たとえば、前記の六方晶系で一軸異方性を有
する粒子径が0.03〜0.10μの磁性粉末を、結合剤樹脂、
有機溶剤等ととに混合分散して磁性塗料を調製し、これ
をポリエステルフイルムなどの基体上にロールコーター
など任意の塗布手段によって塗布し、次いで、磁性層の
長手方向に磁場配向処理を行って磁性層の長手方向の角
型が 0.6以上となるように前記磁性粉末を配向させ、乾
燥すればよい。
To produce the magnetic recording medium of the present invention may be carried out according to a conventional method, for example, a magnetic powder having a particle size of 0.03 to 0.10μ having uniaxial anisotropy in the hexagonal system, a binder resin,
A magnetic coating material is prepared by mixing and dispersing it with an organic solvent or the like, and this is coated on a substrate such as polyester film by any coating means such as a roll coater, and then subjected to magnetic field orientation treatment in the longitudinal direction of the magnetic layer. The magnetic powder may be oriented so that the squareness of the magnetic layer in the longitudinal direction is 0.6 or more, and dried.

ここに用いる結合剤樹脂としては、塩化ビニル−酢酸ビ
ニル系共重合体、ポリビニルブチラール樹脂、繊維素系
樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、イソ
シアネート化合物など従来汎用されている結合剤樹脂が
広く用いられる。
As the binder resin used here, widely used binder resins such as vinyl chloride-vinyl acetate copolymer, polyvinyl butyral resin, fibrin resin, polyurethane resin, polyester resin, and isocyanate compound are widely used. To be

また、有機溶剤としては、トルエン、メチルイソブチル
ケトン、メチルエチルケトン、シクロヘキサノン、テト
ラヒドロフラン、酢酸エチルなど従来から汎用されてい
る有機溶剤が、単独または二種以上混合して使用され
る。
As the organic solvent, conventionally used organic solvents such as toluene, methyl isobutyl ketone, methyl ethyl ketone, cyclohexanone, tetrahydrofuran and ethyl acetate may be used alone or in combination of two or more.

なお、磁性塗料中には、通常使用されている各種添加
剤、たとえば、分散剤、潤滑剤、研磨剤、帯電防止剤な
どを任意に添加使用してもよい。
In addition, various additives that are usually used, such as a dispersant, a lubricant, an abrasive, and an antistatic agent, may be optionally added to the magnetic paint.

〔実施例〕〔Example〕

次に、この発明の実施例について説明する。 Next, an embodiment of the present invention will be described.

実施例1 塩化第二鉄1モル、塩化バリウム1/8モル、塩化コバ
ルト1/10モルを1の水に溶解し、この混合溶液
を、5モルのカセイソーダを溶解した1のカセイソー
ダ水溶液に加えて撹拌した。次いでこの懸濁液を1日放
置した後、沈澱物をオートクレーブ中に入れ、300℃
で4時間加熱反応させた。反応生成物を水洗、脱水、乾
燥したのち、空気中800℃で2時間加熱処理し、バリ
ウムフェライト磁性粉末を得た。得られたバリウムフェ
ライト磁性粉末は、六角板状で、粒子径は、0.08μ、保
磁力は1220エルステッド、飽和磁化量は、54.5 emu
/g、角型は0.44であった。
Example 1 1 mol of ferric chloride, 1/8 mol of barium chloride and 1/10 mol of cobalt chloride were dissolved in 1 of water, and this mixed solution was added to 1 caustic soda aqueous solution in which 5 mol of caustic soda was dissolved. It was stirred. The suspension is then left for 1 day and the precipitate is placed in an autoclave at 300 ° C.
It was made to react by heating for 4 hours. The reaction product was washed with water, dehydrated and dried, and then heat-treated in air at 800 ° C. for 2 hours to obtain barium ferrite magnetic powder. The obtained barium ferrite magnetic powder has a hexagonal plate shape, the particle size is 0.08 μ, the coercive force is 1220 Oersted, and the saturation magnetization is 54.5 emu.
/ G, the square type was 0.44.

このようにして得られた六方晶系バリウムフェライト磁
性粉末を使用し、 バリウムフェライト磁性粉末 800重量部 VAGH(米国U.C.C 社製、塩化 110 〃 ビニル−酢酸ビニル−ビニルア ルコール共重合体) パンデックスT−5250(大日 70 〃 本インキ化学工業社製、ウレタンエラストマー) コロネートL(日本ポリウレタン 20 〃 工業社製、三官能性低分子量 イソシアネート化合物) ステアリン酸−n−ブチル 8 〃 メチルイソブチルケトン 504 〃 トルエン 504 〃 の組成からなる組成物をボールミル中で48時間混合分
散して、磁性塗料を調製した。この磁性塗料を厚さ12
μのポリエステベースフイルム上に塗布し、ポリエステ
ルベースフイルムの走行方向に磁場を印加してバリウム
フェライト粒子に配向処理を施し、乾燥厚が4μの磁性
層を形成した。次いで、この磁性層の表面処理を行った
のち、所定の巾に裁断して、磁気テープをつくった。
Using the hexagonal barium ferrite magnetic powder thus obtained, 800 parts by weight of barium ferrite magnetic powder VAGH (manufactured by UCC, USA, 110 cc vinyl chloride-vinyl acetate-vinyl alcohol copolymer) Pandex T- 5250 (Dainichi 70〃 Hon Ink Chemical Co., Ltd., urethane elastomer) Coronate L (Nippon Polyurethane 20〃 Kogyo Co., trifunctional low molecular weight isocyanate compound) Stearic acid-n-butyl 8〃 Methyl isobutyl ketone 504〃 Toluene 504 A magnetic coating material was prepared by mixing and dispersing the composition having the above composition in a ball mill for 48 hours. Apply this magnetic paint to a thickness of 12
It was coated on a polyester base film having a thickness of .mu. Then, the magnetic layer was surface-treated and then cut into a predetermined width to prepare a magnetic tape.

実施例2 実施例1におけるバリウムフェライト磁性粉末の合成に
おいて、塩化第二鉄の添加量を1モルで一定にし、塩化
バリウムの添加量を1/4モルから1/12モルまで種
々に変更し、塩化コバルトの添加量を1/4モルから1
/20モルまで種々に変更した以外は実施例1と同様に
して粒子径が0.02μから0.2 μまでのものを合成し、こ
れらの粒子径の異なるバリウムフェライト磁性粉末を使
用して多数の磁気テープをつくった。
Example 2 In the synthesis of the barium ferrite magnetic powder in Example 1, the addition amount of ferric chloride was kept constant at 1 mol, and the addition amount of barium chloride was variously changed from 1/4 mol to 1/12 mol, Addition amount of cobalt chloride from 1/4 mol to 1
Particle diameters of 0.02μ to 0.2μ were synthesized in the same manner as in Example 1 except that the content was variously changed to / 20 mol, and a large number of magnetic tapes were prepared using these barium ferrite magnetic powders having different particle diameters. Made.

比較例1 実施例1における磁性塗料の組成において、バリウムフ
ェライト磁性粉末に代えて粒子径が0.02μから0.2 μま
でで、軸比が3から10の、粒子径が種々に異なるγ−
Fe粉末を使用した以外は実施例1と同様にして
多数の磁気テープをつくった。
Comparative Example 1 In the composition of the magnetic coating material of Example 1, the barium ferrite magnetic powder was replaced with a particle size of 0.02 μ to 0.2 μ, an axial ratio of 3 to 10, and various particle sizes of γ−.
A large number of magnetic tapes were produced in the same manner as in Example 1 except that Fe 2 O 3 powder was used.

比較例2 実施例1において、ポリエステルベースフィルムの走行
方向に磁場を印加して配向処理する代わりに、ポリエス
テルベースフィルムに対して垂直方向に磁場を印加して
配向処理した以外は、実施例1と同様にして磁気テープ
をつくった。
Comparative Example 2 The same as Example 1 except that a magnetic field was applied in the direction perpendicular to the polyester base film instead of applying the magnetic field in the running direction of the polyester base film to perform the alignment treatment in Example 1. I made a magnetic tape in the same way.

実施例1,2および比較例1で得られた磁気テープにつ
いて、テープ長手方向の角型および表面粗度を測定し
た。表面粗度は、東京精機社製、触針式表面粗度計を用
いてカットオフ0.08mmで中心線平均粗度を測定した。ま
た、実施例1および比較例1,2で得られた磁気テープ
について、ギャップ長さ 0.2μのセンダストヘッドを用
いて再生出力の周波数依存性を調べた。
For the magnetic tapes obtained in Examples 1 and 2 and Comparative Example 1, the squareness and surface roughness in the tape longitudinal direction were measured. As for the surface roughness, the center line average roughness was measured at a cutoff of 0.08 mm using a stylus type surface roughness meter manufactured by Tokyo Seiki Co., Ltd. Further, with respect to the magnetic tapes obtained in Example 1 and Comparative Examples 1 and 2, the frequency dependence of reproduction output was examined by using a sendust head having a gap length of 0.2 μm.

第1図はこのようにして測定した中心線平均粗度と使用
した磁性粉末の粒子径との関係を示したもので、グラフ
Aは実施例1および2で得られた磁気テープを示し、グ
ラフBは比較例1で得られた磁気テープを示す。
FIG. 1 shows the relationship between the center line average roughness measured in this way and the particle size of the magnetic powder used. Graph A shows the magnetic tapes obtained in Examples 1 and 2. B shows the magnetic tape obtained in Comparative Example 1.

また第2図は、前記のようにして測定した長手方向の角
型と使用した磁性粉末の粒子径との関係を示したもの
で、グラフAは実施例1および2で得られた磁気テープ
を示し、グラフBは比較例1で得られた磁気テープを示
す。
FIG. 2 shows the relationship between the rectangular shape in the longitudinal direction measured as described above and the particle size of the magnetic powder used. Graph A shows the magnetic tapes obtained in Examples 1 and 2. The graph B shows the magnetic tape obtained in Comparative Example 1.

さらに第3図は、実施例1および比較例1,2の磁気テ
ープの出力の波長依存性を示したもので、グラフAは実
施例1で得られた磁気テープを示し、グラフBは比較例
1で得られた磁気テープを示す。またグラフCは比較例
2で得られた磁気テープを示す。
Further, FIG. 3 shows the wavelength dependence of the output of the magnetic tapes of Example 1 and Comparative Examples 1 and 2, Graph A shows the magnetic tape obtained in Example 1, and Graph B shows the comparative example. The magnetic tape obtained in 1 is shown. Graph C shows the magnetic tape obtained in Comparative Example 2.

〔発明の効果〕〔The invention's effect〕

第1図および第2図から明らかなように、粒子径が0.03
〜0.10μのバリウムフェライド磁性粉末を使用して得ら
れた磁気テープは、針状のγ−Fe粉末を使用し
て得られた磁気エープに比し、長手方向の角型がはるか
に高く、表面粗度もほぼ同等から粒子径が小さくなるに
つれてより小さくなっている。また第3図から明らかな
ように、実施例1で得られた磁気テープは、比較例1お
よび2で得られた磁気テープに比し、低域から高域まで
広い周波数域にわたって高出力が得られており、このこ
とからこの発明によれば、長手方向の角型が高く、かつ
表面平滑性に優れた磁性層が形成され、低域から高域ま
で広い周波数域にわたって高出力が得られる高密度記録
に適した磁気記録媒体が得られることがわかる。
As is clear from FIGS. 1 and 2, the particle size is 0.03
The magnetic tape obtained by using ~ 0.10μ barium ferride magnetic powder is far more rectangular in the longitudinal direction than the magnetic tape obtained by using needle-shaped γ-Fe 2 O 3 powder. The surface roughness is almost the same, and it becomes smaller as the particle size becomes smaller. Further, as is clear from FIG. 3, the magnetic tape obtained in Example 1 has a high output over a wide frequency range from low to high, as compared with the magnetic tapes obtained in Comparative Examples 1 and 2. Therefore, according to the present invention, a magnetic layer having a high longitudinal rectangularity and excellent surface smoothness is formed, and a high output is obtained over a wide frequency range from a low range to a high range. It can be seen that a magnetic recording medium suitable for density recording can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明で得られた磁気テープの中心線平均粗
度と使用した磁性粉末の粒子径との関係図、第2図はこ
の発明で得られた磁気テープの長手方向の角型と使用し
た磁性粉末の粒子径との関係図、第3図はこの発明で得
られた磁気テープの再生出力の周波数依存性を示す図で
ある。
FIG. 1 is a diagram showing the relationship between the center line average roughness of the magnetic tape obtained by the present invention and the particle diameter of the magnetic powder used, and FIG. 2 is a longitudinal rectangular shape of the magnetic tape obtained by the present invention. FIG. 3 is a diagram showing the relationship with the particle size of the magnetic powder used, and FIG. 3 is a diagram showing the frequency dependence of the reproduction output of the magnetic tape obtained by the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】六方晶系で一軸異方性を有する粒子径が0.
03〜0.10μの磁性粉末を磁性層中に含有させ、磁性層の
長手方向の角型を0.6 以上としたことを特徴とする磁気
記録媒体。
1. A particle size of hexagonal system having uniaxial anisotropy is 0.
A magnetic recording medium, characterized in that a magnetic powder having a particle size of 03 to 0.10 μ is contained in the magnetic layer, and the squareness of the magnetic layer in the longitudinal direction is 0.6 or more.
JP59021129A 1984-02-07 1984-02-07 Magnetic recording medium Expired - Lifetime JPH0619829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59021129A JPH0619829B2 (en) 1984-02-07 1984-02-07 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59021129A JPH0619829B2 (en) 1984-02-07 1984-02-07 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS60164925A JPS60164925A (en) 1985-08-28
JPH0619829B2 true JPH0619829B2 (en) 1994-03-16

Family

ID=12046274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59021129A Expired - Lifetime JPH0619829B2 (en) 1984-02-07 1984-02-07 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0619829B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2862534B2 (en) * 1986-03-24 1999-03-03 株式会社 東芝 Magnetic recording media
US5525404A (en) * 1994-02-15 1996-06-11 Matsushita Electric Industrial Co., Ltd. Tape-shaped magnetic medium comprising hexagonal ferrite particles having a crystal structure which includes magnetoplumbite and spinel crystal structures
JP3536938B2 (en) 1994-10-14 2004-06-14 富士写真フイルム株式会社 Magnetic recording media

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586526A (en) * 1981-07-02 1983-01-14 Toshiba Corp Magnetic recording medium
JPS586525A (en) * 1981-07-02 1983-01-14 Toshiba Corp Magnetic recording medium
JPS5812130A (en) * 1981-07-13 1983-01-24 Toshiba Corp High-density magnetic recording medium and its production
DE3132677A1 (en) * 1981-08-19 1983-03-17 Basf Ag, 6700 Ludwigshafen Process for preparing finely particulate hexagonal ferrites and their use for the manufacture of magnetic recording media
JPH065575B2 (en) * 1982-06-17 1994-01-19 富士写真フイルム株式会社 Method of manufacturing magnetic recording medium
JPS60119625A (en) * 1983-12-01 1985-06-27 Fuji Photo Film Co Ltd Magnetic recording medium

Also Published As

Publication number Publication date
JPS60164925A (en) 1985-08-28

Similar Documents

Publication Publication Date Title
US7510790B2 (en) Magnetic powder, method for producing the same and magnetic recording medium comprising the same
US4246316A (en) Magnetic recording medium
JP2644322B2 (en) Magnetic recording media
US4513054A (en) Magnetic recording medium
US4666773A (en) Magnetic recording medium
JPH09134522A (en) Magnetic recording medium
JPH0719363B2 (en) Magnetic recording medium
JPH03701B2 (en)
JPH0619829B2 (en) Magnetic recording medium
JPH0618062B2 (en) Magnetic recording medium and manufacturing method thereof
JPS6292128A (en) Magnetic recording medium
JPH0252415B2 (en)
JP2620256B2 (en) Magnetic recording media
JP2659957B2 (en) Magnetic powder, manufacturing method thereof, and magnetic recording medium using the magnetic powder
JP2802518B2 (en) Magnetic recording media
JPS59129933A (en) Magnetic recording medium
JPH0252414B2 (en)
JP2583070B2 (en) Magnetic recording media
JPH0785297B2 (en) Magnetic recording medium
JPS59129935A (en) Magnetic recording medium
JP3012190B2 (en) Magnetic recording media
JPS6238531A (en) Magnetic recording medium
JPS59124023A (en) Magnetic recording medium
JP4268628B2 (en) Magnetic recording medium and magnetic recording cartridge
JPH11110735A (en) Manufacture of magnetic recording medium and magnetic recording medium