JPS6238531A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS6238531A
JPS6238531A JP60177821A JP17782185A JPS6238531A JP S6238531 A JPS6238531 A JP S6238531A JP 60177821 A JP60177821 A JP 60177821A JP 17782185 A JP17782185 A JP 17782185A JP S6238531 A JPS6238531 A JP S6238531A
Authority
JP
Japan
Prior art keywords
ferrite powder
magnetic
hexagonal ferrite
magnetic recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60177821A
Other languages
Japanese (ja)
Other versions
JPH0715744B2 (en
Inventor
Mikio Kishimoto
幹雄 岸本
Shinichi Kitahata
北畑 慎一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP60177821A priority Critical patent/JPH0715744B2/en
Publication of JPS6238531A publication Critical patent/JPS6238531A/en
Publication of JPH0715744B2 publication Critical patent/JPH0715744B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To decrease noise by incorporating specific hexagonal ferrite powder into a magnetic layer. CONSTITUTION:The hexagonal ferrite powder having 70-120m<2>/g specific surface area by a BET method, 0.01-0.2mum average particle size, >=30emu/g satd. magnetization quantity and 500-1,500 oersted coercive force is used. The hexagonal ferrite powder is prepd. by adding an aq. caustic soda soln. to an aq. metallic salt soln. of barium and iron to prepare the precipitate of the fine hydroxide of such metallic salts, bringing the co-precipitate into heating reaction in an autoclave to form the fine planar crystal and heating the crystal in air. The magnetic recording medium is formed by mixing and dispersing such hexagonal ferrite powder together with a binder resin, org. solvent, etc. to prepare a magnetic coating compd., coating the compd. by an optional coating means on a substrate and drying the coating. The S/N is thereby improved and the magnetic recording medium which is small in noise and is suitable for high density recording is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は磁気記録媒体に関し、さらに詳しくは、磁性
粉末として六方晶フェライト粉末を用いた磁気記録媒体
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic recording medium, and more particularly to a magnetic recording medium using hexagonal ferrite powder as magnetic powder.

〔従来の技術〕[Conventional technology]

一般に、磁気記録媒体は、磁性層中の針状磁性粉末を磁
性層の長手方向に配向させるなどして磁気特性を向上さ
せているが、このような長手方向の磁化成分を利用した
ものでは、磁気記録密度が高くなるほど磁性層内の反磁
界が増加するため、磁気記録の高密度化に限界がある。
In general, magnetic recording media improve magnetic properties by orienting acicular magnetic powder in the magnetic layer in the longitudinal direction of the magnetic layer, but in the case of magnetic recording media that utilize such longitudinal magnetization components, As the magnetic recording density increases, the demagnetizing field within the magnetic layer increases, so there is a limit to how high the magnetic recording density can be achieved.

一方、磁性層面に垂直な方向の磁化成分を利用する垂直
磁気記録方式は、記録密度が高くなるほど反磁界が減少
するため、高密度記録に通した記録方式として知られ、
この垂直磁気記録に最も通した磁性粉末として、板状で
、かつ板面に垂直な方向に磁化容易軸を有する六方晶フ
ェライト粉末が使用されている。
On the other hand, the perpendicular magnetic recording method, which uses magnetization components perpendicular to the magnetic layer surface, is known as a recording method suitable for high-density recording because the demagnetizing field decreases as the recording density increases.
As the magnetic powder most suitable for perpendicular magnetic recording, hexagonal ferrite powder is used which is plate-shaped and has an axis of easy magnetization perpendicular to the plate surface.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、この種の六方晶フェライト粉末は、粒子が板
状であるため、たとえば、従来から使用されている針状
磁性粉末と比較すると、BET法による比表面積が同じ
であっても、この種の板状粉−個の体積が針状粉−個の
体積の2倍以上となるように、粒子−個の体積が大きく
、その結果、この種の六方晶フェライト粉末を使用して
得られる磁気記録媒体は、ノイズが高くなるという問題
点を有している。
However, since the particles of this type of hexagonal ferrite powder are plate-shaped, for example, when compared with conventionally used needle-shaped magnetic powder, even if the specific surface area is the same according to the BET method, this type of hexagonal ferrite powder has a plate-like shape. The volume of the particles is large, such that the volume of the plate-shaped powder is more than twice the volume of the needle-shaped powder, and as a result, the magnetic recording obtained using this type of hexagonal ferrite powder The medium has the problem of high noise.

〔問題点を解決するための手段〕[Means for solving problems]

この本発明は、かかる現状に鑑み、種々検討を重ねた結
果なされたもので、BET法による比表面積が70〜1
20m/g、平均粒子径がo、ol〜0.2μm、飽和
磁化量が30 emu/ g以上、保磁力が500〜1
500エルステッドの六方晶フェライト粉末を使用する
ことによって、ノイズを充分に小さくし、高いS/Nで
、高密度記録が良好に行えるようにしたものである。
The present invention has been made as a result of various studies in view of the current situation, and has a specific surface area of 70 to 1 by the BET method.
20m/g, average particle diameter of o, ol~0.2μm, saturation magnetization of 30 emu/g or more, coercive force of 500~1
By using 500 Oe hexagonal ferrite powder, noise is sufficiently reduced, and high S/N and high density recording can be performed satisfactorily.

この発明において、使用される磁性粉末は、BET法に
よる比表面積が70〜120rrf/g、平均粒子径が
0.01〜0.2μm、飽和磁化量が30emu/g以
上、保磁力が500〜150oエルステンドの六方晶フ
ェライト粉末であることが好ましく、BET法による比
表面積が101T?/g以上のものを使用しなければ、
充分にS/Nの高い磁気記録媒体が得られない。しかし
BET法による比表面積が120m/gより大きいもの
は飽和磁化量が低下しやすくなり、この種の六方晶フェ
ライト粉末を使用して得られる磁気記録媒体の出力が低
下するため、通常は120rrr/g以下、より好まし
くは、100m/g以下の六方晶フェライト粉末が使用
される。このような六方晶フェライト粉末は、通常板状
をしているため、粒子径(粒子直径)が同じであっても
、板状粉末の厚さが異なると、体積が大きく異なる。従
って、六方晶フェライト粉末の体積を知る手段としては
BET法による比表面積が適しており、平均粒子径はそ
れほど問題にならないが、通常、0.02〜0.2μm
の範囲内のものが好ましく使用される。また、飽和磁化
量および保磁力は、高密度記録が良好に行えるように、
飽和磁化量が30 emu/ g以上、保磁力が500
〜1500エルステッドの範囲内にあるものを使用する
のが好ましく、飽和磁化量が3゜emu/gより低く、
保磁力が500エルステッドより低くては充分な高密度
記録を行うことができず、また保磁力が1500エルス
テッドより高くなると通常の磁気ヘッドで記録すること
が困難になる。
In this invention, the magnetic powder used has a specific surface area of 70 to 120 rrf/g by the BET method, an average particle diameter of 0.01 to 0.2 μm, a saturation magnetization of 30 emu/g or more, and a coercive force of 500 to 150 o. It is preferable to use Elstend's hexagonal ferrite powder, which has a specific surface area of 101T? according to the BET method. If you do not use more than /g,
A magnetic recording medium with a sufficiently high S/N ratio cannot be obtained. However, if the specific surface area determined by the BET method is larger than 120 m/g, the saturation magnetization tends to decrease, and the output of the magnetic recording medium obtained using this type of hexagonal ferrite powder decreases. A hexagonal ferrite powder having a particle size of 100 m/g or less, more preferably 100 m/g or less, is used. Such hexagonal ferrite powder usually has a plate shape, so even if the particle size (particle diameter) is the same, if the thickness of the plate-shaped powder differs, the volume will differ greatly. Therefore, the specific surface area determined by the BET method is suitable as a means of determining the volume of hexagonal ferrite powder, and the average particle size does not matter much, but it is usually 0.02 to 0.2 μm.
Those within the range of are preferably used. In addition, the saturation magnetization and coercive force are adjusted to ensure good high-density recording.
Saturation magnetization is 30 emu/g or more, coercive force is 500
It is preferable to use a magnet in the range of ~1500 oersteds, and a saturation magnetization lower than 3 emu/g.
If the coercive force is lower than 500 Oe, sufficient high-density recording cannot be performed, and if the coercive force is higher than 1500 Oe, it becomes difficult to record with a normal magnetic head.

このような六方晶フェライト粉末は、バリウム、鉄など
の金属塩水溶液にカセイソーダ水溶液を加えて、これら
の金属塩の微細な水酸化物の沈澱を作り、次ぎにこの共
沈物をオートクレーブ中で加熱反応させて、微細な板状
の結晶を形成させ、さらにこの板状結晶を、空気中加熱
してつくられ、目的とする特性をもった微細なバリウム
フェライト粒子結晶が得られる。
Such hexagonal ferrite powder is produced by adding an aqueous solution of caustic soda to an aqueous solution of metal salts such as barium or iron to form fine hydroxide precipitates of these metal salts, and then heating this coprecipitate in an autoclave. The reaction is caused to form fine plate-like crystals, which are further heated in air to obtain fine barium ferrite particle crystals having the desired properties.

このように、BET法による比表面積が70〜b 和磁化量が30 emu/ g以上、保磁力が5oo〜
1500エルステッドの六方晶フェライト粉末は、体積
が極めて小さく微細で、飽和磁化量および保磁力が高密
度記録用磁気記録媒体の磁性粉末として、好適な範囲内
にあり、従って、この種の六方晶フェライト粉末を使用
して得られる磁気記録媒体は、ノイズが高くなることも
なく、高密度記録が良好に行える。
In this way, the specific surface area by BET method is 70~b, the sum magnetization is 30 emu/g or more, and the coercive force is 5oo~
1500 Oe hexagonal ferrite powder has an extremely small volume and is fine, and its saturation magnetization and coercive force are within suitable ranges as magnetic powder for high-density recording magnetic recording media. A magnetic recording medium obtained using powder can perform high-density recording without increasing noise.

この発明の磁気記録媒体を製造するには常法に準じて行
えばよく、たとえば、前記のBET法による比表面積が
70〜120 d/g、平均粒子径が0.01〜0.2
μm、飽和磁化量が30 emu/ g以上、保磁力が
500〜1500エルステッドの六方晶フェライト粉末
を、結合剤樹脂、有機溶剤等とともに混合分散して磁性
塗料を調製し、これをポリエステルフィルムなどの基体
上に、ロールコータ−など任意の塗布手段によって塗布
し、乾燥すればよい。
The magnetic recording medium of the present invention may be manufactured according to a conventional method, for example, the specific surface area determined by the BET method described above is 70 to 120 d/g, and the average particle diameter is 0.01 to 0.2.
μm, a saturation magnetization of 30 emu/g or more, and a coercive force of 500 to 1500 Oe, hexagonal ferrite powder is mixed and dispersed with a binder resin, an organic solvent, etc. to prepare a magnetic paint, and this is applied to polyester films, etc. It may be applied onto the substrate using any coating means such as a roll coater and dried.

ここに用いる結合剤樹脂としては、塩化ビニル−酢酸ビ
ニル系共重合体、ポリビニルブチラール樹脂、繊維素系
樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、イソ
シアネート化合物など従来汎用されている結合剤樹脂が
広く用いられる。
As the binder resin used here, conventionally widely used binder resins such as vinyl chloride-vinyl acetate copolymer, polyvinyl butyral resin, cellulose resin, polyurethane resin, polyester resin, and isocyanate compound are widely used. It will be done.

また、有機溶剤としては、トルエン、メチルイソブチル
ケトン、メチルエチルケトン、シクロヘキサノン、テト
ラヒドロフラン、酢酸エチルなど従来から汎用されてい
る有機溶剤が、単独または二種以上混合して使用される
Further, as the organic solvent, conventionally widely used organic solvents such as toluene, methyl isobutyl ketone, methyl ethyl ketone, cyclohexanone, tetrahydrofuran, and ethyl acetate are used alone or in a mixture of two or more.

なお、磁性塗料中には、通常使用されている各種添加剤
、たとえば、分散剤、潤滑剤、研磨剤、帯電防止剤など
を任意に添加使用してもよい。
Note that various commonly used additives such as dispersants, lubricants, abrasives, antistatic agents, etc. may be optionally added to the magnetic paint.

〔実施例〕〔Example〕

次に、この発明の実施例について説明する。 Next, embodiments of the invention will be described.

実施例1 〈六方晶Baフェライト粉末の生成〉 塩化第二鉄(FeC63)1モル、塩化バリウム(Ba
CJ2 )1z8モル、塩化コバルト(Coc7!2)
1z20モル、および塩化チタン(TICf+)1z2
0モルを1zの水に熔解した。
Example 1 <Production of hexagonal Ba ferrite powder> 1 mol of ferric chloride (FeC63), barium chloride (Ba
CJ2) 1z8 mol, cobalt chloride (Coc7!2)
1z20 mol, and titanium chloride (TICf+) 1z2
0 mol was dissolved in 1z water.

次に、この混合溶液に、6モルのカセイソーダを1βの
水に熔解したカセイソーダ水溶液を加えて盟拌した。次
いで、この懸濁液を1日熟成した後、沈澱物をオートク
レーブ中に入れ、300℃で4時間加熱反応させてBa
フェライト粒子を得た。得られたBaフェライト粒子を
水洗、乾燥した後、さらに空気中、700℃で3時間加
熱処理して粉末を得た。得られた粉末はX線解析から、
マグネットブランバイト型の六方晶Baフェライトであ
ることが確認された。このようにして得られた六方晶B
aフェライト粉末のBET法による比表面積は72m/
gで、平均粒子径は0.08μm、飽和磁化量は51 
emu/ g 、保磁力は830エルステッドであった
Next, a caustic soda aqueous solution prepared by dissolving 6 mol of caustic soda in 1β water was added to this mixed solution and stirred. Next, after aging this suspension for one day, the precipitate was placed in an autoclave and reacted by heating at 300°C for 4 hours to obtain Ba.
Ferrite particles were obtained. The obtained Ba ferrite particles were washed with water, dried, and then heat-treated in air at 700° C. for 3 hours to obtain a powder. The obtained powder was analyzed by X-ray analysis.
It was confirmed that it was magnetic brambite type hexagonal Ba ferrite. Hexagonal crystal B obtained in this way
The specific surface area of a ferrite powder according to the BET method is 72 m/
g, the average particle diameter is 0.08 μm, and the saturation magnetization is 51
emu/g, and the coercive force was 830 Oe.

〈磁気記録媒体の作製〉 前記のようにして得られた六方晶Baフェライト粉末を
使用し、 六方晶Baフェライト粉末    800重量部VAG
F((米国U、C,C社製、塩化 110〃ビニル−酢
酸ビニル−ビニルア ルコール共重合体) パンデソクスT−5250(大口  7o〃本インキ化
学工業社製、ウレタ ンエラストマー) コロネートし (日本ポリウレタン  20〃ン工業社
製、三官能性低分子量 イソシアネート化合物) ステアリン酸−n−ブチル     8 〃メチルイソ
ブチルケトン     500〃トルエン      
      500〃の組成からなる組成物をボールミ
ル中で48時間混合分散して、磁性塗料を調整した。こ
の磁性塗料を厚さ65μmのポリエステルフィルム上に
塗布し、対向した異極磁場中を走行させて、垂直配向処
理を施し、乾燥して乾燥厚が3μmの磁性層を形成した
。次いで形成された磁性層の表面処理を行った後、直径
3インチの円盤状に打抜き、磁気ディスクをつくった。
<Preparation of magnetic recording medium> Using the hexagonal Ba ferrite powder obtained as described above, 800 parts by weight of hexagonal Ba ferrite powder VAG
F ((manufactured by U, C, C, USA, chloride 110 vinyl-vinyl acetate-vinyl alcohol copolymer) Pandesox T-5250 (Oguchi 7o manufactured by Hon-Ink Kagaku Kogyo Co., Ltd., urethane elastomer) Coronate (Japan Polyurethane 20 〃N-Kogyo Co., Ltd., trifunctional low molecular weight isocyanate compound) n-butyl stearate 8 〃Methyl isobutyl ketone 500〃Toluene
A magnetic coating material was prepared by mixing and dispersing a composition having a composition of 500% in a ball mill for 48 hours. This magnetic paint was applied onto a polyester film having a thickness of 65 μm, and was run through opposing magnetic fields with different polarities to perform a vertical alignment treatment, and then dried to form a magnetic layer having a dry thickness of 3 μm. Next, the formed magnetic layer was subjected to surface treatment, and then punched into a disk shape of 3 inches in diameter to produce a magnetic disk.

実施例2 実施例1におけるBaフェライト粉末の生成において、
塩化コバルトおよび塩化チタンの使用量をそれぞれ、1
z20モルから1z10モルに変更し、かつ空気中での
加熱処理を700℃、3時間から800℃、2時間に変
更した以外は、実施例1と同様にしてBET法による比
表面積が94m / g %平均粒子径が0.05μm
、飽和磁化量が43 emu/g 、保磁力が650エ
ルステッドの六方晶Baフェライト粉末を生成し、磁気
ディスクをつくった。
Example 2 In the production of Ba ferrite powder in Example 1,
The amount of cobalt chloride and titanium chloride used is 1
The specific surface area by the BET method was 94 m / g in the same manner as in Example 1, except that 20 mol of z was changed to 10 mol of 1z, and the heat treatment in air was changed from 700 ° C. for 3 hours to 800 ° C. for 2 hours. % average particle size is 0.05μm
, hexagonal Ba ferrite powder with a saturation magnetization of 43 emu/g and a coercive force of 650 Oe was produced, and a magnetic disk was manufactured.

実施例3 実施例2におけるBaフェライト粉末の生成において、
空気中での加熱処理を800℃、2時間から650℃、
3時間に変更した以外は、実施例2と同様にしてBET
法による比表面積が110n?/g、平均粒子径が0.
05μm、飽和磁化量が32emu/g 、保磁力が5
90エルステッドの六方晶Baフェライト粉末を生成し
、磁気ディスクをつくった。
Example 3 In the production of Ba ferrite powder in Example 2,
Heat treatment in air at 800℃, 2 hours to 650℃,
BET in the same manner as in Example 2 except that the time was changed to 3 hours.
The specific surface area by law is 110n? /g, average particle size is 0.
05 μm, saturation magnetization 32 emu/g, coercive force 5
A 90 Oe hexagonal Ba ferrite powder was produced and a magnetic disk was made.

比較例1 実施例1におけるBaフェライト粉末の生成において、
塩化バリウムの添加量を1z8モルから1z10モルに
、塩化コバルトおよび塩化チタンの添加量をそれぞれ1
720モルから1z30モルに、変更した以外は、実施
例1と同様にしてBET法による比表面積が64rd/
g、平均粒子径が0.1μm、飽和磁化量が53 em
u/g 、保磁力が1020エルステッドの大方晶Ba
フェライト粉末を生成し、磁気ディスクをつくった。
Comparative Example 1 In the production of Ba ferrite powder in Example 1,
The amount of barium chloride added was increased from 1z8 mol to 1z10 mol, and the amounts of cobalt chloride and titanium chloride were increased to 1 each.
The specific surface area by the BET method was 64rd/
g, average particle diameter is 0.1 μm, saturation magnetization is 53 em
u/g, orthogonal Ba with a coercive force of 1020 oersteds
We produced ferrite powder and made magnetic disks.

比較例2 実施例1におけるBaフェライト粉末の生成において、
塩化バリウムの添加量を1z8モルから1z10モルに
、塩化コバルトおよび塩化チタンの添加量をそれぞれ1
z20モルから1730モルに、溶解する水の量を11
から21に、また1lの水に6モルのカセイソーダを溶
解した水溶液に代えて、21の水に15モルのカセイソ
ーダを熔解した水溶液を用い、さらに空気中での加熱処
理を700℃、3時間から800℃、3時間に変更した
以外は、実施例1と同様にしてBET法による比表面積
が38m/g、平均粒子径が0.2μm、飽和磁化量が
58 emu/g 、保磁力が1160エルステッドの
六方晶Baフェライト粉末を生成し、磁気ディスクをつ
くった。
Comparative Example 2 In the production of Ba ferrite powder in Example 1,
The amount of barium chloride added was increased from 1z8 mol to 1z10 mol, and the amounts of cobalt chloride and titanium chloride were increased to 1 each.
z from 20 moles to 1730 moles, the amount of water dissolved is 11
to 21, and instead of the aqueous solution of 6 mol of caustic soda dissolved in 1 liter of water, an aqueous solution of 15 mol of caustic soda dissolved in water from 21 was used, and further heat treatment was performed in air at 700°C for 3 hours. The procedure was the same as in Example 1 except that the temperature was changed to 800°C for 3 hours, and the specific surface area measured by the BET method was 38 m/g, the average particle diameter was 0.2 μm, the saturation magnetization was 58 emu/g, and the coercive force was 1160 Oe. Hexagonal Ba ferrite powder was produced and a magnetic disk was manufactured.

各実施例および比較例で得られた磁気ディスクについて
、40KBPIの信号を飽和記録したときの再生出力(
S)と、DC消去後のノイズレベル(N)とを測定した
。測定値は、比較例1の磁気ディスクの再生出力とノイ
ズレベルの値をOdBとして、相対値で示した。
For the magnetic disks obtained in each example and comparative example, the playback output (
S) and the noise level (N) after DC cancellation were measured. The measured values are expressed as relative values, with the reproduction output and noise level of the magnetic disk of Comparative Example 1 expressed as OdB.

下表はその結果である。The table below shows the results.

〔発明の効果〕〔Effect of the invention〕

上表から明らかなように、実施例工ないし3で得られた
磁気ディスクは、比較例1および2で得られた磁気ディ
スクに比べて、ノイズレベルが大幅に小さく、また、再
生出力は、BETを70m′/g以上と微粒子化しても
、BETがLoom/g以下ではほとんど変化はなく、
BETが100d/g以上になるとやや再生出力の低下
が認められるものの、再生出力の低下以上にノイズレベ
ルの減少が大きいため、S/Nは明らかに向上しており
、このことからこの発明によって得られる磁気記録媒体
は、ノイズが充分に小さくて高密度記録に通しているこ
とがわかる。
As is clear from the above table, the noise level of the magnetic disks obtained in Examples 1 to 3 is significantly lower than that of the magnetic disks obtained in Comparative Examples 1 and 2, and the playback output is lower than that of BET. Even if it is made into fine particles of 70m'/g or more, there is almost no change when the BET is less than Loom/g,
When the BET exceeds 100d/g, there is a slight decrease in the playback output, but the noise level decreases more than the decrease in the playback output, so the S/N clearly improves. It can be seen that the magnetic recording media produced by this study have sufficiently low noise and are suitable for high-density recording.

Claims (1)

【特許請求の範囲】[Claims] 1、BET法による比表面積が70〜120m^2/g
、平均粒子径が0.01〜0.2μm、飽和磁化量が3
0emu/g以上、保磁力が500〜1500エルステ
ッドの六方晶フェライト粉末を、磁性層中に含有させた
ことを特徴とする磁気記録媒体
1. Specific surface area by BET method is 70 to 120 m^2/g
, the average particle diameter is 0.01 to 0.2 μm, and the saturation magnetization is 3
A magnetic recording medium characterized in that a magnetic layer contains hexagonal ferrite powder having a coercive force of 0 emu/g or more and a coercive force of 500 to 1,500 oersteds.
JP60177821A 1985-08-13 1985-08-13 Magnetic recording medium Expired - Lifetime JPH0715744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60177821A JPH0715744B2 (en) 1985-08-13 1985-08-13 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60177821A JPH0715744B2 (en) 1985-08-13 1985-08-13 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6238531A true JPS6238531A (en) 1987-02-19
JPH0715744B2 JPH0715744B2 (en) 1995-02-22

Family

ID=16037687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60177821A Expired - Lifetime JPH0715744B2 (en) 1985-08-13 1985-08-13 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0715744B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035456A (en) * 2007-08-02 2009-02-19 Kanto Denka Kogyo Co Ltd FLAKY Ba FERRITE FINE PARTICLES AND METHOD FOR PRODUCING THE SAME
JP2012012253A (en) * 2010-06-30 2012-01-19 Toda Kogyo Corp Method for producing hexagonal ferrite particulate powder, hexagonal ferrite particulate powder, and magnetic recording medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817539A (en) * 1981-07-21 1983-02-01 Sony Corp Magnetic recording medium
JPS59175707A (en) * 1983-03-26 1984-10-04 Toda Kogyo Corp Flat ba-ferrite fine particle for magnetic recording and manufacture thereof
JPS6069822A (en) * 1983-08-19 1985-04-20 Toshiba Corp Magnetic recording medium
JPH077499A (en) * 1992-12-30 1995-01-10 Alcatel Nv Method and equipment for recovery of data in burst-mode communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817539A (en) * 1981-07-21 1983-02-01 Sony Corp Magnetic recording medium
JPS59175707A (en) * 1983-03-26 1984-10-04 Toda Kogyo Corp Flat ba-ferrite fine particle for magnetic recording and manufacture thereof
JPS6069822A (en) * 1983-08-19 1985-04-20 Toshiba Corp Magnetic recording medium
JPH077499A (en) * 1992-12-30 1995-01-10 Alcatel Nv Method and equipment for recovery of data in burst-mode communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035456A (en) * 2007-08-02 2009-02-19 Kanto Denka Kogyo Co Ltd FLAKY Ba FERRITE FINE PARTICLES AND METHOD FOR PRODUCING THE SAME
JP2012012253A (en) * 2010-06-30 2012-01-19 Toda Kogyo Corp Method for producing hexagonal ferrite particulate powder, hexagonal ferrite particulate powder, and magnetic recording medium

Also Published As

Publication number Publication date
JPH0715744B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
US4770933A (en) Magnetic recording medium
GB2313832A (en) Surface modification of magnetic particle pigments
JPH01300419A (en) Magnetic recording medium
JPS61133020A (en) Magnetic recording medium
JPH0544163B2 (en)
JPS6238531A (en) Magnetic recording medium
JP2659957B2 (en) Magnetic powder, manufacturing method thereof, and magnetic recording medium using the magnetic powder
JP2620256B2 (en) Magnetic recording media
JPH0252415B2 (en)
JPH0619829B2 (en) Magnetic recording medium
JPH0252414B2 (en)
JPS62195725A (en) Magnetic recording medium
JP2583070B2 (en) Magnetic recording media
JPS6238532A (en) Magnetic recording medium
JPS62154228A (en) Magnetic recording medium
JP2761916B2 (en) Magnetic recording / reproducing method
JP4268628B2 (en) Magnetic recording medium and magnetic recording cartridge
JPS59124023A (en) Magnetic recording medium
JPS62195727A (en) Magnetic recording medium
JPS59129935A (en) Magnetic recording medium
JPS59127224A (en) Magnetic recording medium
JPS62195726A (en) Magnetic recording medium
JPS60115024A (en) Magnetic recording medium and its production
JPH079693B2 (en) Magnetic recording medium
JPH0715745B2 (en) Magnetic recording medium

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term