JPS59124023A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS59124023A
JPS59124023A JP23034282A JP23034282A JPS59124023A JP S59124023 A JPS59124023 A JP S59124023A JP 23034282 A JP23034282 A JP 23034282A JP 23034282 A JP23034282 A JP 23034282A JP S59124023 A JPS59124023 A JP S59124023A
Authority
JP
Japan
Prior art keywords
powder
magnetic
magnetic powder
anisotropy
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23034282A
Other languages
Japanese (ja)
Inventor
Mikio Kishimoto
幹雄 岸本
Fumio Togawa
文夫 戸川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP23034282A priority Critical patent/JPS59124023A/en
Publication of JPS59124023A publication Critical patent/JPS59124023A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/852Orientation in a magnetic field

Abstract

PURPOSE:To produce high output in a wide zone by forming a magnetic layer contg. magnetic powder with uniaxial anisotropy and magnetic powder with isotropic anisotropy by which the powder is not oriented but is magnetized in any direction and having specified squareness in each of the vertical and horizontal directions and a specified orientation ratio. CONSTITUTION:Magnetic powder with uniaxial anisotropy such as gamma-Fe2O3 or Co powder is mixed with magnetic powder with isotropic anisotropy such as spheroidal or needlelike powder of iron oxide contg. solubilized Co. The former powder is easily oriented by applying a magnetic field, and by applying the magnetic field in the horizontal direction, the powder is oriented in the horizontal direction to produce high output in a low frequency zone. The latter powder is hardly oriented even by applying a magnetic field in any direction, but the powder is easily magnetized in any direction, so it contributes to the increase of output especially in a high frequency zone. A magnetic layer contg. said mixture and having 500-2,000 Oe coercive force, >=0.3 squareness in the vertical direction, >=0.6 squareness in the horizontal direction and 0.3-<1.0 squareness ratio, that is, orientation ratio is formed. Thus, high output is produced in both of low and high frequency zones.

Description

【発明の詳細な説明】 この発明は磁気記録媒体に関し、その目的とするところ
は低周波および高周波帯域における出力が高くて広帯域
の記録波長における記録および高密度記録がともに良好
に行なえる磁気記録媒体を提供することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic recording medium, and its object is to provide a magnetic recording medium that has high output in low frequency and high frequency bands and can perform both recording over a wide range of recording wavelengths and high density recording. Our goal is to provide the following.

一般に、磁気テープなどの磁気記録媒体は、磁性層中の
針状磁性粉末を長手方向に配向させるなどして磁気特性
を向上させているが、このように針状磁性粉末を長手方
向に配向させたものは、低周波帯域で高い出力が得られ
る反面高密度記録に限界があり、記録波長1.0μ以下
の記録は極めて難かしい。
Generally, the magnetic properties of magnetic recording media such as magnetic tapes are improved by orienting the acicular magnetic powder in the magnetic layer in the longitudinal direction. Although they can provide high output in a low frequency band, they have a limit to high-density recording, and recording at a recording wavelength of 1.0 μm or less is extremely difficult.

このため、近年、高密度記録に適した磁気記録媒体とし
て、等方性の異方性を有する磁性粉末を使用してその垂
直成分を利用したもの、あるいは−軸異方性を有する磁
性粉末を磁性層内で無配向にしてその垂直成分を利用し
たものが提案されているが、等方性の異方性を有する磁
性粉末を使用したものでは高周波帯域で高い出力が得ら
れる反面低周波帯域で高い出力が得られず、また−軸異
方性を有する磁性粉末を磁性層中で無配向にしたもので
は全ての方向における角型が低くなって高い出力が得ら
れないなどの難点がある。
For this reason, in recent years, as magnetic recording media suitable for high-density recording, magnetic powders with isotropic anisotropy are used to utilize their perpendicular components, or magnetic powders with -axis anisotropy are used. A method has been proposed in which the magnetic layer is non-oriented and uses its perpendicular component, but a method using magnetic powder with isotropic anisotropy provides high output in the high frequency band, but on the other hand, it produces a high output in the low frequency band. In addition, if magnetic powder with -axis anisotropy is not oriented in the magnetic layer, the squareness in all directions becomes low and high output cannot be obtained. .

この発明者らはかかる現状に鑑み種々検討を行なった結
果、−軸異方性を有する磁性粉末と等方性の異方性を有
する磁性粉末とを混合して使用し、磁性層の垂直方向の
角型を0.3以上とし、かつ水平方向の角型を0.6以
上とするとともに、垂直方向と水平方向の配向比(垂直
方向の角型/水平方向の角型)を0.3以上かつ1.0
未満の範囲内となるようにすると、低周波および高周波
帯域で高い出力が得られ、記録波長が1.0μ以下まで
の高密度記録が可能で長波長記録および高密度記録がと
もに良好に行なえる磁気記録媒体が得られることを見い
だし、この発明をなすに至った。
As a result of various studies in view of the current situation, the inventors of the present invention discovered that magnetic powder having -axis anisotropy and magnetic powder having isotropic anisotropy were mixed and used in the perpendicular direction of the magnetic layer. The square shape is 0.3 or more, and the horizontal square shape is 0.6 or more, and the vertical to horizontal orientation ratio (vertical square/horizontal square) is 0.3. or more and 1.0
If it is within the range below, high output can be obtained in low frequency and high frequency bands, high density recording is possible up to a recording wavelength of 1.0 μ or less, and both long wavelength recording and high density recording can be performed well. It was discovered that a magnetic recording medium could be obtained, and this invention was made.

この発明において使用される一軸異方性を有する磁性粉
末は磁場の印加により配向され易く、水平方向の磁場が
印加されると水平方向に配向されて低周波帯域での出力
が高くなる。また等方性の異方性を有する磁性粉末はい
ずれの方向から磁場を印加してもほとんど配向されない
が、いずれの方向にも磁化されやすい性質を有するため
に、特に高周波帯域での出力増加に一寄与する。
The magnetic powder having uniaxial anisotropy used in this invention is easily oriented by applying a magnetic field, and when a horizontal magnetic field is applied, it is oriented in the horizontal direction and the output in the low frequency band becomes high. In addition, magnetic powder with isotropic anisotropy is hardly oriented when a magnetic field is applied from any direction, but because it has the property of being easily magnetized in any direction, it is particularly useful for increasing output in high frequency bands. Make a contribution.

従って、−軸異方性を有する磁性粉末と、等方性の異方
性を有する磁性粉末とを混合して使用し、これらの混合
磁性粉末を含む磁性塗料を基体上に塗布する際、基体と
平行な方向に磁場を印加すると一軸異方性を有する磁性
粉末が水平方向に配向され、この水平方向に配向された
一軸異方性を有する磁性粉末および等方性の異方性を有
する磁性粉末の水平方向の成分が有効に利用されて低周
波帯域での出力が向上するとともに等方性の異方性を有
する磁性粉末の垂直成分が有効に利用されて高周波帯域
でも高い出力が得られる。
Therefore, when a magnetic powder having -axis anisotropy and a magnetic powder having isotropic anisotropy are mixed and used, and a magnetic paint containing these mixed magnetic powders is applied onto a substrate, the substrate When a magnetic field is applied in a direction parallel to the magnetic field, the magnetic powder with uniaxial anisotropy is oriented in the horizontal direction, and the magnetic powder with uniaxial anisotropy oriented in the horizontal direction and the magnetic powder with isotropic anisotropy are oriented in the horizontal direction. The horizontal component of the powder is effectively used to improve the output in the low frequency band, and the vertical component of the magnetic powder, which has isotropic anisotropy, is effectively used to obtain high output even in the high frequency band. .

このように−軸異方性を有する磁性粉末と等方性の異方
性を有する磁性粉末とを混合して使用し、これらの混合
磁性粉末を含む磁性塗料を基体上に塗布する際、基体と
平行な方向に磁場を印加して形成される磁性層は、垂直
方向の角型が0.3以上、かつ水平方向の角型が0.6
以上で、垂直方向と水平方向の配向比(垂直方向の角型
/水平方向の角型)が0.3以上かつ1.0未満の範囲
内であることが好ましく、垂直方向の角型が0.3より
小さかったり配向比が0.3より小さいと高周波帯域で
の出力が高くならず、水平方向の角型が0.6より小さ
かったり配向比が1.0以上になると低周波帯域での出
力を充分に高くすることができない。従ってこれらの混
合磁性粉末は磁性層の垂直方向の角型、水平方向の角型
および配向比が前記の範囲内となるように配合割合を調
整し、かつ水平方向に配向させるのが好ましい。
In this way, when a magnetic powder having -axis anisotropy and a magnetic powder having isotropic anisotropy are mixed and used, and a magnetic paint containing these mixed magnetic powders is applied onto a substrate, the substrate The magnetic layer formed by applying a magnetic field in a direction parallel to , has a square shape in the vertical direction of 0.3 or more and a square shape in the horizontal direction of 0.6.
In the above, it is preferable that the orientation ratio in the vertical direction and the horizontal direction (vertical direction square shape/horizontal direction square shape) is within the range of 0.3 or more and less than 1.0, and the vertical direction square shape is 0. If the horizontal square shape is smaller than 0.6 or the orientation ratio is 1.0 or more, the output in the high frequency band will not be high. The output cannot be made high enough. Therefore, it is preferable to adjust the blending ratio of these mixed magnetic powders so that the vertical square shape, horizontal square shape, and orientation ratio of the magnetic layer are within the above-mentioned ranges, and to orient the powder in the horizontal direction.

このように混合して使用される一軸異方性を有する磁性
粉末としては、たとえば、γ−Fe20.粉末、Fe5
0.粉末、Co含有r−Fe205粉末、Co含有F 
e y O4粉末、CrO2粉末、Fe粉末、Co粉末
、Fe−Ni粉末などが好適なものとして使用され、等
方性の異方性を有する磁性粉末としては粒状および針状
のコバルト固溶酸化鉄磁性粉末が好適なものとして使用
される。これらの磁性粉末は保磁力がほぼ同等か近いも
のを混合して使用するのが好ましく、これらの混合磁性
粉末を使用して形成される磁性層の保磁力は500エル
ステツドより小さいと記録再生が良好に行なえず、20
00エルステツドより大きくすると長波長記録が困難と
なるため500〜2000エルステツドの範囲内となる
ようにするのが好ましい。
As the magnetic powder having uniaxial anisotropy that is mixed and used in this way, for example, γ-Fe20. Powder, Fe5
0. Powder, Co-containing r-Fe205 powder, Co-containing F
e y O4 powder, CrO2 powder, Fe powder, Co powder, Fe-Ni powder, etc. are preferably used, and as magnetic powders having isotropic anisotropy, granular and needle-shaped cobalt solid solution iron oxides are used. Magnetic powders are preferably used. It is preferable to use a mixture of these magnetic powders that have approximately the same or similar coercive force, and if the coercive force of the magnetic layer formed using these mixed magnetic powders is less than 500 oersteds, recording and reproduction will be good. Unable to go to 20
If it is larger than 00 Oersted, long wavelength recording becomes difficult, so it is preferably within the range of 500 to 2000 Oersted.

この発明の磁気記録媒体を製造するには常法に準じて行
なえばよく、たとえば、−軸異方性を有する磁性粉末と
等方性の異方性を有する磁性粉末とを混合した混合磁性
粉末を、結合剤樹脂、有機溶剤等とともに混合分散して
磁性塗料を調製し、この磁性塗料をポリエステルフィル
ムなどの基体上にロールコータ−などの任意の塗布手段
によって水平方向の配向処理を行ないながら塗布し、乾
燥すればよい。
The magnetic recording medium of the present invention may be manufactured according to a conventional method, such as a mixed magnetic powder obtained by mixing a magnetic powder having -axis anisotropy and a magnetic powder having isotropic anisotropy. is mixed and dispersed with binder resin, organic solvent, etc. to prepare a magnetic paint, and this magnetic paint is applied onto a substrate such as a polyester film while performing horizontal orientation treatment using any coating means such as a roll coater. and dry it.

ここに用いる結合剤樹脂としては、塩化ビニル−酢酸ビ
ニル系共重合体、ポリビニルブチラール樹脂、ポリウレ
タン系樹脂、繊維素系樹脂、イソシアネート化合物など
従来汎用されている結合剤樹脂か広く用いられる。
As the binder resin used here, conventionally widely used binder resins such as vinyl chloride-vinyl acetate copolymers, polyvinyl butyral resins, polyurethane resins, cellulose resins, and isocyanate compounds are widely used.

また、有機溶剤としては、メチルイソブチルケトン、メ
チルエチルケトン、シクロヘキサノン、トルエン、酢酸
エチル、テトラヒドロフラン、ジメチルホルムアミドな
どが単独で或いは二種以上混合して使用される。
Further, as the organic solvent, methyl isobutyl ketone, methyl ethyl ketone, cyclohexanone, toluene, ethyl acetate, tetrahydrofuran, dimethyl formamide, etc. are used alone or in combination of two or more.

なお、磁性塗料中には通常使用されている各種添加剤、
たとえば、分散剤、潤滑剤、研磨剤、帯電防止剤などを
任意に添加使用してもよい。
In addition, various additives commonly used in magnetic paints,
For example, dispersants, lubricants, abrasives, antistatic agents, and the like may be optionally added.

次に、この発明の実施例について説明する。 。Next, embodiments of the invention will be described. .

実施例1 粒径(長軸)0.3μ、軸比(長軸/短軸)8のr−F
e20.粉末100(lを水ioj中に分散させた後、
これに硫酸コバルト430りと硫酸第一鉄1280gと
を加えて混合溶解し、次いで苛性ソーダ1450りを溶
解した苛性ソーダ水溶液51を加えて45°Cで8時間
反応させた。反応終了後、水洗、ろ過、乾燥してコバル
ト含有酸化鉄磁性粉末を得た。得られたコバルト含有酸
化鉄磁性粉末は、−軸異方性を有し、保磁力(Hc )
は1230エルステツド、飽和磁化量(σS)は77、
2 emu / 9で角型(σr/σs)は0.50で
あった。
Example 1 r-F with particle size (long axis) of 0.3μ and axial ratio (long axis/short axis) of 8
e20. After dispersing the powder 100 (l) in water ioj,
To this, 430 g of cobalt sulfate and 1280 g of ferrous sulfate were added and mixed and dissolved, and then 51 aqueous solution of caustic soda in which 1450 g of caustic soda was dissolved was added and reacted at 45° C. for 8 hours. After the reaction was completed, it was washed with water, filtered, and dried to obtain cobalt-containing iron oxide magnetic powder. The obtained cobalt-containing iron oxide magnetic powder has −axis anisotropy and has a coercive force (Hc)
is 1230 oersted, saturation magnetization (σS) is 77,
The squareness (σr/σs) was 0.50 at 2 emu/9.

次に、この−軸異方性を有するコバルト含有酸化鉄磁性
粉末の一部を、さらに空気中で450’Cの温度で3時
間加熱酸化してコバルト固溶酸化鉄磁性粉末を得た。得
られたコバルト固溶酸化鉄磁性粉末は等方性の異方性を
有し、保磁力(Hc)は1180エルステツド、飽和磁
化量(σS)は73.2emu/q−で角型(σr/σ
S)は0.78で゛あった。
Next, a part of this cobalt-containing iron oxide magnetic powder having -axis anisotropy was further heated and oxidized in air at a temperature of 450'C for 3 hours to obtain a cobalt solid solution iron oxide magnetic powder. The obtained cobalt solid solution iron oxide magnetic powder has isotropic anisotropy, has a coercive force (Hc) of 1180 oersteds, a saturation magnetization (σS) of 73.2 emu/q-, and a square shape (σr/ σ
S) was 0.78.

このようにして得られた2種類の磁性粉末を使用し、 一軸異方性コバルト含有酸化鉄磁性  450重量部粉
末 等方異方性コバルト固溶酸化鉄磁性  300 〃粉末 VAGH(米国U、 C,C社製、塩化  125 〃
ビニルー酢酸ビニルービニルアル コール共重合体) バンデツクスT−5250(大日本   80  〃イ
ンキ社製、ウレタンエラストマー) コロネートしく日本ポリウレタンエ   22.5//
業社製、三官能性低分子量インク アネート化合物) シクロヘキサノン          730 〃メチ
ルエチルケトン         730  〃の組成
からなる混合物をボールミルで3日間混合分散して磁性
塗料を調製した。この磁性塗料を厚さ12μのポリエス
テルベースフィルム上に乾燥厚が3μとなるように反発
磁界中、配向処理を施こしながら塗布、乾燥し、表面処
理を行なった後、所定の巾に裁断して磁気テープをつく
った。
Using the two types of magnetic powders obtained in this way, uniaxially anisotropic cobalt-containing iron oxide magnetism 450 parts by weight powder isotropic anisotropic cobalt solid solution iron oxide magnetism 300 parts VAGH powder (USA U, C, Manufactured by Company C, chloride 125
Vinyl-vinyl acetate-vinyl alcohol copolymer) Bandex T-5250 (Dainippon 80 (manufactured by Ink Co., Ltd., urethane elastomer) Coronate Shikuni Nippon Polyurethane 22.5//
A magnetic paint was prepared by mixing and dispersing a mixture consisting of 730 cyclohexanone and 730 methyl ethyl ketone in a ball mill for 3 days. This magnetic paint was applied to a polyester base film with a thickness of 12 μm to a dry thickness of 3 μm while performing an orientation treatment in a repulsive magnetic field, dried, and after surface treatment, it was cut into a predetermined width. I made magnetic tape.

実施例2 実施例1において、硫酸コバルトの使用量を430gか
ら120りに変更し、硫酸第一鉄の使用量を1280!
7から3202に変更し、さらに苛性ソーダの使用量を
1450りから9507に変更した以外は実施例1と同
様にして保磁力590エルステツド、飽和磁化ik 7
6.8 emu/ g、角型0.49の一軸異方性を有
するコバルト含有酸化鉄磁性粉末を得た。またこのコバ
ルト含有酸化鉄磁性粉末の一部を実施例1と同様にして
加熱酸化し、保磁力570エルステツド、飽和磁化量7
3.6 emu/9、角型0.73の等方性の異方性を
有するコバルト固溶酸化鉄磁性粉末を得た。次いでこの
ようにして得られた2種の磁性粉末を実施例Iにおいて
それぞれ対応する2種の磁性粉末に代えて同量使用した
以外は実施例1と同様にして磁気テープをつくつた。
Example 2 In Example 1, the amount of cobalt sulfate used was changed from 430g to 120g, and the amount of ferrous sulfate was changed to 1280g!
Coercive force 590 oersted, saturation magnetization ik 7
A cobalt-containing iron oxide magnetic powder having a uniaxial anisotropy of 6.8 emu/g and a square shape of 0.49 was obtained. In addition, a part of this cobalt-containing iron oxide magnetic powder was heated and oxidized in the same manner as in Example 1, resulting in a coercive force of 570 Oersted and a saturation magnetization of 7.
A cobalt solid solution iron oxide magnetic powder having an isotropy of 3.6 emu/9 and a square shape of 0.73 was obtained. Next, a magnetic tape was prepared in the same manner as in Example 1, except that the two types of magnetic powder thus obtained were used in the same amount in place of the two corresponding magnetic powders in Example I.

実施例3 実施例1において、磁性塗料調製時に使用する一軸異方
性コバルト含有酸化鉄磁性粉末の使用量を450重量部
から600重量部に変更し、等方異方性コバルト固溶酸
化鉄磁性粉末の使用量を300重量部から150重量部
に変更した以外は実施例1と同様にして磁気テープをつ
くった。
Example 3 In Example 1, the amount of the uniaxially anisotropic cobalt-containing iron oxide magnetic powder used in preparing the magnetic paint was changed from 450 parts by weight to 600 parts by weight, and the isotropically anisotropic cobalt solid solution iron oxide magnetic powder was changed from 450 parts by weight to 600 parts by weight. A magnetic tape was produced in the same manner as in Example 1 except that the amount of powder used was changed from 300 parts by weight to 150 parts by weight.

実施例4 実施例Iにおいて、硫酸コバルトの使用量を430りか
ら3809に変更し、硫酸第一鉄の使用量を1280り
から1130りに変更し、さらに苛性ソーダの使用量を
145(lから13007に変更した以外は実施例1と
同様にして保磁力1150エルステツド、飽和磁化Mk
 77.5 emu/L9、角型0.49の一軸異方性
を有するコバルト含有酸化鉄磁性粉末を得た。またこの
コバルト含有酸化鉄磁性粉末の一部を実施例1と同様に
して加熱酸化し、保磁力1100エルステッド、飽和磁
化量73.5 emu/り、角型0.76の等方性の異
方性を有するコバルト固溶酸化鉄磁性粉末を得た。次い
でこのようにして得られた一軸異方性を有するコバルト
含有酸化鉄磁性粉末を実施例IKおける一軸異方性コバ
ルト含有酸化鉄磁性粉末に代えて500重量部使用し、
また等方性の異方性を有するコバルト固溶酸化鉄磁性粉
末を実施例1における等方異方性コバルト固溶酸化鉄磁
性粉末に代えて250重量部使用した以外は実施例1と
同様にして磁気テープをつくった。
Example 4 In Example I, the amount of cobalt sulfate used was changed from 430 l to 3809 l, the amount of ferrous sulfate used was changed from 1280 l to 1130 l, and the amount of caustic soda used was changed from 145 l to 13007 l. Coercive force 1150 oersted, saturation magnetization Mk
A cobalt-containing iron oxide magnetic powder having a uniaxial anisotropy of 77.5 emu/L9 and a square shape of 0.49 was obtained. In addition, a part of this cobalt-containing iron oxide magnetic powder was heated and oxidized in the same manner as in Example 1 to obtain a coercive force of 1100 Oe, a saturation magnetization of 73.5 emu/r, and an isotropic anisotropy of square shape 0.76. A cobalt solid-soluted iron oxide magnetic powder having properties was obtained. Next, 500 parts by weight of the thus obtained cobalt-containing iron oxide magnetic powder having uniaxial anisotropy was used in place of the uniaxially anisotropic cobalt-containing iron oxide magnetic powder in Example IK,
In addition, the procedure was the same as in Example 1 except that 250 parts by weight of isotropic anisotropic cobalt solid solution iron oxide magnetic powder was used in place of the isotropic anisotropic cobalt solid solution iron oxide magnetic powder in Example 1. and made magnetic tape.

実施例5 実施例4において、硫酸コバルトの使用量を380りか
ら285りに変更し、硫酸第一鉄の使用量を1130g
から850gに変更し、さらに苛性ソーダの使用量を1
300りから9759に変更した以外は実施例4と同様
にして保磁力960エルステツド、飽和磁化量77.2
 emu/9 、角型0.49の一軸異方性を有するコ
バルト含有酸化鉄磁性粉末を得た。またこのコバルト含
有酸化鉄磁性粉末の一部を実施例4と同様にして加熱酸
化し、保磁力930エルステツド、飽和磁化量73.5
emu/!12、角型0.75の等方性の異方性を有す
・るコバルト固溶醇化鉄磁性粉末を得た。次いでこのよ
うにして得られた2種の磁性粉末を実施例4においてそ
れぞれ対応する2種の磁性粉末に代えて同量使用した以
外は実施例4と同様にして磁気テープを:つくった。
Example 5 In Example 4, the amount of cobalt sulfate used was changed from 380 g to 285 g, and the amount of ferrous sulfate was changed to 1130 g.
to 850g, and the amount of caustic soda used was changed to 1.
The coercive force was 960 oersted and the saturation magnetization was 77.2 in the same manner as in Example 4 except that 300 was changed to 9759.
A cobalt-containing iron oxide magnetic powder having a uniaxial anisotropy of emu/9 and a square shape of 0.49 was obtained. In addition, a part of this cobalt-containing iron oxide magnetic powder was heated and oxidized in the same manner as in Example 4, resulting in a coercive force of 930 Oersted and a saturation magnetization of 73.5.
emu/! 12. A cobalt solid solution melted iron magnetic powder having an isotropic anisotropy of 0.75 square shape was obtained. Next, a magnetic tape was prepared in the same manner as in Example 4, except that the two types of magnetic powder thus obtained were used in the same amount in place of the two corresponding magnetic powders in Example 4.

実施例6 実施例4において、磁性塗料調製時に使用する一軸異方
性コバルト含有酸化鉄磁性粉末の使用量を500重景部
から375重量部に変更し、等方界方性コバルト固溶酸
化鉄磁性粉末の使用量を250重量部から375重量部
に変更した以外は実施例4と同様にして磁気テープをつ
くった。
Example 6 In Example 4, the amount of the uniaxially anisotropic cobalt-containing iron oxide magnetic powder used in preparing the magnetic paint was changed from 500 parts by weight to 375 parts by weight, and the amount of isotropic cobalt solid solution iron oxide was changed from 500 parts by weight to 375 parts by weight. A magnetic tape was produced in the same manner as in Example 4 except that the amount of magnetic powder used was changed from 250 parts by weight to 375 parts by weight.

実施例7 実施例1において、−軸異方性つノ<ルト含有酸化鉄磁
性粉末に代えて、粒径(長軸)0.4μ、軸比(長軸/
短軸)15、保磁力1220エルステッド、飽和磁化量
’ l 50 emu/り、角型0.50の一軸異方性
の金属鉄磁性粉末を同量使用した以外は実施例1と同様
にして磁気テープ゛をつくった。
Example 7 In Example 1, instead of the iron oxide magnetic powder containing -axis anisotropy
Short axis) 15, coercive force 1220 oersteds, saturation magnetization 'l 50 emu/l, and magnetization in the same manner as in Example 1 except that the same amount of uniaxially anisotropic metallic iron magnetic powder of square shape 0.50 was used. I made a tape.

実施例8 実施例7において、−軸異方性金属鉄磁性粉末の使用量
を450重量部から250重量部に変更し、等方異方性
コバルト固溶酸化鉄磁性粉末の使用量を300重量部か
ら500重量部に変更した以外は実施例7と同様にして
磁気テープをつくった。
Example 8 In Example 7, the amount of -axis anisotropic metal iron magnetic powder used was changed from 450 parts by weight to 250 parts by weight, and the amount of isotropic anisotropic cobalt solid solution iron oxide magnetic powder was changed to 300 parts by weight. A magnetic tape was produced in the same manner as in Example 7, except that the amount was changed from 1.0 parts to 500 parts by weight.

比較例1 実施例1における磁性塗料組成において、等方異方性コ
バルト固溶酸化鉄磁性粉末を省き、−軸異方性コバルト
含有酸化鉄磁性粉末の使用量を450重量部から750
重量部に変更した以外は実施例1と同様にして磁気テー
プをつくった。
Comparative Example 1 In the magnetic coating composition in Example 1, the isotropic anisotropic cobalt solid solution iron oxide magnetic powder was omitted, and the amount of the -axis anisotropic cobalt-containing iron oxide magnetic powder was changed from 450 parts by weight to 750 parts by weight.
A magnetic tape was produced in the same manner as in Example 1 except that the parts by weight were changed.

比較例2 実施例1における磁性塗料組成において、−軸異方性コ
バルト含有酸化鉄磁性粉末を省き、等方異方性コバルト
固溶酸化鉄磁性粉末の使用量を300重量部から750
重景部に変更した以外は実施例1と同様にして磁気テー
プをつくった。
Comparative Example 2 In the magnetic coating composition in Example 1, the -axis anisotropic cobalt-containing iron oxide magnetic powder was omitted, and the amount of the isotropic anisotropic cobalt solid solution iron oxide magnetic powder was changed from 300 parts by weight to 750 parts by weight.
A magnetic tape was produced in the same manner as in Example 1 except that the heavy background part was changed.

比較例3 比較例1において、磁場配向処理を省き、−軸異方性コ
バルト含有酸化鉄磁性粉末をランダムに分布させた以外
は実施例1と同様にして磁気テープをつくった。
Comparative Example 3 A magnetic tape was produced in the same manner as in Example 1, except that in Comparative Example 1, the magnetic field orientation treatment was omitted and the -axis anisotropic cobalt-containing iron oxide magnetic powder was randomly distributed.

各実施例および各比較例で得られた磁気テープについて
、長手方向の保磁力(Hc ) 、残留磁束密度(Br
 )、最大磁束密度(Bs)お上び角型(Br/Bs)
と事前方向の保磁力(Hc )、残留磁束密度(Br 
)および角型(Br/ Bs )を測定し、配向比(垂
直方向の角型/長手方向の角型)を測定した。また各種
記録波長における最大出力レベル(M、0.L)を測定
した。垂直方向の角型は磁気テープの垂直方向に4πB
r で与えられる反磁界が働くと考えてヒステリシス曲
線上で作図し、反磁界を補正して求めた。
Regarding the magnetic tapes obtained in each example and each comparative example, the longitudinal coercive force (Hc), residual magnetic flux density (Br
), maximum magnetic flux density (Bs) and square type (Br/Bs)
, the coercive force (Hc) in the forward direction, and the residual magnetic flux density (Br
) and squareness (Br/Bs) were measured, and the orientation ratio (vertical squareness/longitudinal squareness) was measured. Furthermore, the maximum output level (M, 0.L) at various recording wavelengths was measured. The vertical square shape is 4πB in the vertical direction of the magnetic tape.
It was calculated by plotting on a hysteresis curve assuming that the demagnetizing field given by r acts, and correcting the demagnetizing field.

下表はその結果である。The table below shows the results.

上表から明らかなように、この発明で得られた磁気テー
プのうちで、比較例1〜3に示す従来のテープと同程度
の保磁力を有する実施例1.3.7.8のテープと比較
例1〜3のテープの最大出力レベルを比較すると、この
発明で得られた磁気テープは、全周波数域で比較例のテ
ープより高い値を示す。テープの保磁力の値は、テープ
の用途に応じて、任意の値に設定されるが、本発明によ
り製造したテープは、保磁力の大小にかかわらず、同程
度の保磁力を有する従来のテープと比較すると、全周波
数域で高出力を示す。実施例2.4.5.6のテープに
ついても、同程度の保磁力を有する従来テープより高い
出力が得られることを確認している。このことからこの
発明によって得られる磁気記録媒体は全周波数域で高い
出力が得られ、長波長記録および高密度記録がともに良
好に行なえることがわかる。
As is clear from the above table, among the magnetic tapes obtained by the present invention, the tapes of Examples 1, 3, 7, and 8 have the same coercive force as the conventional tapes shown in Comparative Examples 1 to 3. Comparing the maximum output levels of the tapes of Comparative Examples 1 to 3, the magnetic tape obtained by the present invention exhibits higher values than the tape of Comparative Examples in all frequency ranges. The coercive force value of a tape can be set to an arbitrary value depending on the use of the tape, but the tape manufactured according to the present invention has a coercive force of the same level as that of conventional tapes, regardless of the coercive force. Compared to this, it shows high output in all frequency ranges. It has been confirmed that the tapes of Examples 2.4.5.6 also provide higher output than conventional tapes having the same coercive force. This shows that the magnetic recording medium obtained according to the present invention can obtain high output in all frequency ranges and can perform both long wavelength recording and high density recording well.

Claims (1)

【特許請求の範囲】[Claims] 1、磁性層中に一軸異方性を有する磁性粉末と等方性の
異方性を有する磁性粉末とを含み、垂直方向の角型が0
.3以上かつ水平方向の角型が0.6以上で、垂直方向
と水平方向の配向比(垂直方向の角型/水平方向の角型
)が0.3以上かつ1.0未満の範囲内であることを特
徴とする磁気記録媒体
1. The magnetic layer contains magnetic powder with uniaxial anisotropy and magnetic powder with isotropic anisotropy, and the square shape in the vertical direction is 0.
.. 3 or more and the horizontal square shape is 0.6 or more, and the vertical to horizontal orientation ratio (vertical square shape/horizontal square shape) is within the range of 0.3 or more and less than 1.0. A magnetic recording medium characterized by
JP23034282A 1982-12-30 1982-12-30 Magnetic recording medium Pending JPS59124023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23034282A JPS59124023A (en) 1982-12-30 1982-12-30 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23034282A JPS59124023A (en) 1982-12-30 1982-12-30 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPS59124023A true JPS59124023A (en) 1984-07-18

Family

ID=16906341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23034282A Pending JPS59124023A (en) 1982-12-30 1982-12-30 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS59124023A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289525A (en) * 1985-06-14 1986-12-19 Matsushita Electric Ind Co Ltd Magnetic recording medium
JP2006281376A (en) * 2005-03-31 2006-10-19 Japan Society For The Promotion Of Machine Industry Manufacturing method of cutting tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289525A (en) * 1985-06-14 1986-12-19 Matsushita Electric Ind Co Ltd Magnetic recording medium
JP2006281376A (en) * 2005-03-31 2006-10-19 Japan Society For The Promotion Of Machine Industry Manufacturing method of cutting tool

Similar Documents

Publication Publication Date Title
US4677024A (en) Magnetic recording medium
US4465735A (en) Magnetic recording medium
JPH0719363B2 (en) Magnetic recording medium
US4480004A (en) Magnetic recording medium
JPS59124023A (en) Magnetic recording medium
JPH0252415B2 (en)
JPS59129933A (en) Magnetic recording medium
JP2659957B2 (en) Magnetic powder, manufacturing method thereof, and magnetic recording medium using the magnetic powder
JP2802518B2 (en) Magnetic recording media
JPS59127224A (en) Magnetic recording medium
US4722862A (en) Magnetic recording medium
JPH0252414B2 (en)
JPH0743824B2 (en) Magnetic recording medium and manufacturing method thereof
JPH0619829B2 (en) Magnetic recording medium
JPS59129935A (en) Magnetic recording medium
JPS5852804A (en) Magnetic recording medium
JPS59157846A (en) Magnetic disk
JPS59167854A (en) Magnetic recording medium
JPS60157718A (en) Magnetic recording medium
JPH0789410B2 (en) Magnetic recording medium
JPS58139407A (en) Magnetic recording medium
JPS59193532A (en) Magnetic disk
JPS6238531A (en) Magnetic recording medium
JPS60115024A (en) Magnetic recording medium and its production
JPS59151342A (en) Magnetic recording medium and its manufacture