JPS59157846A - Magnetic disk - Google Patents

Magnetic disk

Info

Publication number
JPS59157846A
JPS59157846A JP3159683A JP3159683A JPS59157846A JP S59157846 A JPS59157846 A JP S59157846A JP 3159683 A JP3159683 A JP 3159683A JP 3159683 A JP3159683 A JP 3159683A JP S59157846 A JPS59157846 A JP S59157846A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic powder
powder
magnetic disk
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3159683A
Other languages
Japanese (ja)
Inventor
Minoru Yamano
稔 山野
Fumio Togawa
文夫 戸川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP3159683A priority Critical patent/JPS59157846A/en
Publication of JPS59157846A publication Critical patent/JPS59157846A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/842Coating a support with a liquid magnetic dispersion
    • G11B5/845Coating a support with a liquid magnetic dispersion in a magnetic field

Abstract

PURPOSE:To obtain a high output by using needlelike cobalt-contg. iron oxide magnetic powder having triaxial anisotropy as magnetic powder for forming a magnetic layer on a base body and orienting the same in a horizontal direction. CONSTITUTION:A compsn. composed of 270pts. (wt.) gamma-Fe2O3 needlelike magnetic powder dissolving Co as solid solution (5.0wt% content of Co, triaxial anisotropy), 80pts. VAGH (vinyl chloride/vinyl acetate-vinyl alcohol copolymer), 15pts. N1432J (acrylonitrile-butadiene copolymer), 10pts. Coronate L (trifunctional low molecular isocyanate compd.), 34pts. HS-500 (carbon black), 11pts. alpha-Fe2O3 powder, 420pts. methyl isobutyl ketone, and 420pts. toluene is mixed and dispersed for 48hr in a ball mill. Such magnetic coating is applied on both surfaces of a polyester film and an N-N repulsive magnetic field is applied on the film in its longitudinal direction to orient the magnetic powder in a horizontal direction. The coating is then dried to form a magnetic layer having 3mu thickness and the material is blanked into a disc shape, by which a magnetic disk having a high output is obtd.

Description

【発明の詳細な説明】 この発明は磁気ディスクに関し、その目的とするところ
は電磁;変換時性が良好で高密度@蝉に適した磁気ディ
スクを提供することみある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic disk, and an object thereof is to provide a magnetic disk that has good conversion properties and is suitable for high-density storage.

磁気記録媒体のうち、磁気テープのように長手方向に磁
気記録がなされるものは、磁性層中の針状磁性粉末を長
手方向に配向させるなどして電磁変換特性を向上させて
いる。
Among magnetic recording media, those in which magnetic recording is performed in the longitudinal direction, such as magnetic tape, have improved electromagnetic conversion characteristics by orienting acicular magnetic powder in the magnetic layer in the longitudinal direction.

これに対して、一般に、ポリエステルフィルムなどの基
体上に磁性粉末、結合剤成分、有機溶剤およびその他の
必要成分からなる磁性塗料を塗布、乾燥して磁性層を形
成した後、これを円形に打ち抜いてつくられる磁気ディ
スクは、円周方向に磁気記録がなされるため、磁気テー
プのように従来一般に使用される一軸異方性の針状磁性
粉末を基体の長手方向に配向させたのでは良好な電磁変
換特性が得られない。
In general, a magnetic paint consisting of magnetic powder, a binder component, an organic solvent, and other necessary components is applied onto a substrate such as a polyester film, dried to form a magnetic layer, and then punched out in a circular shape. Since magnetic recording is performed in the circumferential direction of magnetic disks manufactured by lithography, it is not possible to orient the uniaxially anisotropic acicular magnetic powder in the longitudinal direction of the substrate, which is commonly used in the past, as in magnetic tapes. Electromagnetic conversion characteristics cannot be obtained.

このため、従来の磁気ディスクにおいては磁性塗料を基
体上に塗布する際、塗・料に剪断力がかかるのを極力防
止したり、磁場配向を全(行わないで乾燥したりして磁
性層中に含まれる一軸異方性の針状磁性粉末を無゛配向
にすることが行われているが、このように−軸異方性の
針状磁性粉末を無配向にした場合は磁気テープ等のよう
番こ長手・方向に配向させる場合に比べて電磁゛変換特
性が劣化することは否めず、磁気テープに比しで出力が
低く記録密度の点でも大きく劣り、未だ充分に出力が高
くて高密度記録が行えるものは得られていない。
For this reason, in conventional magnetic disks, when applying magnetic paint onto the substrate, it is necessary to prevent shearing force from being applied to the paint as much as possible, or to dry it without completely aligning the magnetic field. The uniaxially anisotropic acicular magnetic powder contained in the magnetic tape has been made non-oriented, but when the uniaxially anisotropic acicular magnetic powder is made non-oriented in this way, it becomes difficult to use magnetic tape, etc. It is undeniable that the electromagnetic conversion characteristics will deteriorate compared to the case where the magnetic tape is oriented in the longitudinal direction and direction. No material capable of density recording has been obtained.

この発明者らばかかる現状から使用する磁性粉末につい
て種々検討を行い、従来の一軸異方性の針状磁性粉末に
代えて三軸異方性を有する針状のコバルト含有酸化鉄磁
性粉末を使用したところ、この種の磁性粉末は磁化容易
方向が等方的であるため磁気ディスクに使用した場合出
力が高くなって記録密度も向上されることがわかり、さ
らに検討を重ねた結果、三軸異方性を有する針状のコバ
ルト含有酸化鉄磁性粉末を無配向にして磁性層中に含有
させただ&Jでは未だ充分ではないが、この三軸異方性
を有する針状のコバルト含有酸化鉄磁性粉末を水平方向
に配向して磁性層中に含有させると、この種の磁性粉末
が針状であるため充填性が向上されるとともに表面平滑
性も良好になり、電磁変換特性がさらに改善されて一段
と高い出力が得られ、高密度記録に適した磁気ディスク
が得られることを見いだし、この発明をなすに至った。
The inventors conducted various studies on the magnetic powder to be used in light of the current situation, and used acicular cobalt-containing iron oxide magnetic powder with triaxial anisotropy instead of the conventional uniaxial anisotropic acicular magnetic powder. As a result, it was found that this type of magnetic powder has an isotropic direction of easy magnetization, which increases the output and improves the recording density when used in magnetic disks.After further investigation, it was found that the direction of easy magnetization is isotropic. The acicular cobalt-containing iron oxide magnetic powder with triaxial anisotropy is contained in the magnetic layer in a non-oriented manner.However, this acicular cobalt-containing iron oxide magnetic powder with triaxial anisotropy is still insufficient. When oriented in the horizontal direction and incorporated into the magnetic layer, this type of magnetic powder has an acicular shape, which improves the filling properties and also improves the surface smoothness, further improving the electromagnetic characteristics. It was discovered that a magnetic disk capable of obtaining high output and suitable for high-density recording could be obtained, and this invention was made.

この発明において使用される、コバルト含有酸化鉄磁性
粉末は、酸化鉄磁性粉末の内部にコバルトを固溶した軸
比が3.0以上で、長軸径が0.1〜0.5μの針状の
三軸異方性を有する磁性粉末であることが好ましく、粒
状のものや長軸径が0.5μより大きいものでは充填性
が充分に向上されず、磁性層の表面子?lt性も充分に
良好にならない。また、酸化鉄磁性粉末に含有されるコ
バルトの含有量は磁性粉末全量に対して2〜15重量%
の範囲内で含有させるのが好ましい。
The cobalt-containing iron oxide magnetic powder used in this invention has an acicular shape with an axial ratio of 3.0 or more and a major axis diameter of 0.1 to 0.5μ, in which cobalt is solidly dissolved inside the iron oxide magnetic powder. It is preferable to use a magnetic powder having a triaxial anisotropy of 0.5 μm. If it is granular or has a long axis diameter larger than 0.5μ, the filling property will not be sufficiently improved, and the surface density of the magnetic layer will increase. The thermal properties are also not sufficiently good. In addition, the content of cobalt contained in the iron oxide magnetic powder is 2 to 15% by weight based on the total amount of magnetic powder.
The content is preferably within the range of .

このように、酸化鉄磁性粉末の内部にコバルトを固溶し
た針状で三軸異方性を有する磁性粉末を、結合剤樹脂、
有機溶剤およびその他の必要成分とともに混合分散して
磁性塗料を調製し、これをグラビア塗布あるいはロール
コータ−など任意の手段によりポリエステルフィルムな
どの基体上に塗布し、N−N対向磁石を用いたりして水
平方向に磁性粉末の配向処理を行って乾燥すると、磁性
層中に含まれる磁性粉末が針状のものであるため磁性粉
末の充填性が高(なり、表面平滑性の良好な磁性層が形
成される。また、この種の磁性粉末は三軸異方性を有し
残留磁束密度が等方的に大きいため、いずれの方向にも
良好な磁気記録が行え、従って、上記のようにして磁性
層を形成した後、円形に打ち抜いて磁気ディスクとすれ
ば、円周方向に良好な磁気記録が行えるとともに前記の
磁性粉末が高い充填密度で含有されて磁性層の表面平滑
性も良好になり、一段と出力が高くて、高密度記録に適
した磁気ディスクが得られる。
In this way, the acicular magnetic powder with triaxial anisotropy, which contains cobalt as a solid solution inside the iron oxide magnetic powder, is mixed with a binder resin,
A magnetic paint is prepared by mixing and dispersing it with an organic solvent and other necessary components, and this is applied onto a substrate such as a polyester film by any means such as gravure coating or a roll coater, and N-N opposing magnets are used. When the magnetic powder is oriented in the horizontal direction and dried, the magnetic powder contained in the magnetic layer is acicular, so the filling properties of the magnetic powder are high (this results in a magnetic layer with good surface smoothness). In addition, this type of magnetic powder has triaxial anisotropy and isotropically large residual magnetic flux density, so good magnetic recording can be performed in any direction. If a magnetic layer is formed and then punched out into a circular shape to form a magnetic disk, good magnetic recording can be performed in the circumferential direction, and the magnetic powder is contained at a high packing density, resulting in good surface smoothness of the magnetic layer. , a magnetic disk with even higher output and suitable for high-density recording can be obtained.

このような効果を得るため、磁性層中に含有される針状
で三軸異方性を有するコバルト含有酸化鉄磁性粉末の配
向度は、メウスバウワー法による測定値、即ち、第1図
に示すように積層した磁気記録媒体1の矢印Aで示され
る方向からT線を照射して第2図に示されるようなスペ
クトルをとり、このスペクトルの左から2番目と5番目
のピークCの平均強度と、左から1番目と6番目のピー
クCの平均強度との比(C2,5/C+ 、6)で表し
た測定値で0.6以上であることが好ましく、この値が
0.6より小さいと磁性粉末が無配向となり、充填性や
磁性層の表面平滑性が充分に良好にならず、高い出力が
得られない。磁性層中に含有される針状で三軸異方性を
有するコバルト含有酸化鉄磁性粉末のこのような配向ば
、磁性塗料塗布時の剪断力による機械的な配向および磁
場配向によって行われる。機械的配向は磁性塗料の粘度
に依存し、磁性塗料の粘度が50センチポイズ(ずり速
度2 X 104sec’ )以下では磁性塗料塗布時
に磁性塗料にかかる剪断力が充分でなく前記磁性粉末が
充分に配向されないため、磁性塗料の粘度は50センチ
ポイズ(ずり速度2 X 10’  5ec−1)以上
であることが好ましく、粘度が50センチポイズ(すり
速度2 X 104sec’ )以上の高粘度の磁性塗
料を使用すると塗布時の剪断力によって前記磁性粉末の
50%以上が機械的に配向される。
In order to obtain such an effect, the degree of orientation of the cobalt-containing iron oxide magnetic powder, which is acicular and has triaxial anisotropy and is contained in the magnetic layer, is determined by the Meussbauer method, that is, as shown in Figure 1. A T-ray is irradiated from the direction indicated by the arrow A of the magnetic recording medium 1 stacked on the magnetic recording medium 1 to obtain a spectrum as shown in FIG. 2, and the average intensity of the second and fifth peaks C from the left of this spectrum is , the measured value expressed as the ratio of the average intensity of the first and sixth peaks C from the left (C2,5/C+, 6) is preferably 0.6 or more, and this value is smaller than 0.6. The magnetic powder becomes non-oriented, and the filling properties and surface smoothness of the magnetic layer are not sufficiently improved, making it impossible to obtain high output. Such orientation of the cobalt-containing iron oxide magnetic powder, which is acicular and has triaxial anisotropy and is contained in the magnetic layer, is performed by mechanical orientation by shearing force during application of the magnetic paint and by magnetic field orientation. Mechanical orientation depends on the viscosity of the magnetic paint, and if the viscosity of the magnetic paint is less than 50 centipoise (shear rate 2 x 104 sec'), the shearing force applied to the magnetic paint during application of the magnetic paint is insufficient and the magnetic powder is not sufficiently oriented. Therefore, it is preferable that the viscosity of the magnetic paint is 50 centipoise (shear rate 2 x 10' 5ec-1) or more. More than 50% of the magnetic powder is mechanically oriented by shearing force during application.

ここに用いる結合剤樹脂としては、塩化ビニル−酢酸ビ
ニル系共重合体、ポリビニルブチラール樹脂、ポリウレ
タン系樹脂、繊維素系樹脂、イソシアネート化合物など
従来汎用されている結合剤樹脂が広く用いられる。
As the binder resin used here, conventionally widely used binder resins such as vinyl chloride-vinyl acetate copolymers, polyvinyl butyral resins, polyurethane resins, cellulose resins, and isocyanate compounds are widely used.

また、有機溶剤としては、メチルイソブチルケトン、メ
チルエチルケトン、シクロヘキサノン、トルエン、酢酸
エチル、テトラヒドロフラン、ジメチルホルムアミドな
どが単独で或いは二種以上混合して使用される。
Further, as the organic solvent, methyl isobutyl ketone, methyl ethyl ketone, cyclohexanone, toluene, ethyl acetate, tetrahydrofuran, dimethyl formamide, etc. are used alone or in combination of two or more.

なお、磁性塗料中には通常使用されている各種添加剤、
たとえば、分散剤、潤滑剤、研磨剤、帯′電防止剤など
を任意に添加使用してもよい。
In addition, various additives commonly used in magnetic paints,
For example, dispersants, lubricants, abrasives, antistatic agents, and the like may be optionally added.

次に、この発明の実施例について説明する。Next, embodiments of the invention will be described.

実施例I Co固熔r−Fe203磁性粉 270重量部末(三軸
異方性、粒径(長軸) 0.3μ、軸比10、保磁力675′ エルステツド、飽和磁化量72 emu 7g 、角型0.74、コバ゛ルト含有量5.
0重量%) VAGH(米国[J、C,C社製、   80〃塩化ビ
ニル−酢酸ビニル−ビ ニルアルコール共重合体) N1432J  (日本ゼオン社   15〃製、アク
リロニトリル−ブタ ジエン共重合体) コロネートしく日本ポリウレ   10〃タン工業社製
、三官能性細分 子量イソシアネート化合物) N3−500(旭カーボン社   34〃製、カーボン
ブラック) α−Fe203粉末       11〃メチルイソブ
チルケトン    420〃トルエン        
   420〃この組成物をボールミル中で48時間混
合分散して磁性塗料を鋼製した。磁性塗料の粘度は80
センチボイズであった。この磁性塗料を厚さ75μのポ
リエステルフィルム両面に塗布し、N’−、N反発磁界
をフィルムの長手方向に加えて磁場配向し、乾燥して乾
燥厚が3μの磁性層を形成した。
Example I Co-solidified r-Fe203 magnetic powder 270 parts by weight (triaxial anisotropy, particle size (major axis) 0.3 μ, axial ratio 10, coercive force 675' Oersted, saturation magnetization 72 emu 7 g, angle Type 0.74, cobalt content 5.
0% by weight) VAGH (manufactured by J, C, C, USA, 80 vinyl chloride-vinyl acetate-vinyl alcohol copolymer) N1432J (manufactured by Nippon Zeon Co., Ltd. 15, acrylonitrile-butadiene copolymer) Coronat Shiku Nippon Polyurethane 10〃Tan Kogyo Co., Ltd., trifunctional small molecular weight isocyanate compound) N3-500 (Asahi Carbon Co., Ltd. 34〃Manufactured, carbon black) α-Fe203 powder 11〃Methyl isobutyl ketone 420〃Toluene
420 This composition was mixed and dispersed in a ball mill for 48 hours to prepare a magnetic paint. The viscosity of magnetic paint is 80
It was centiboise. This magnetic paint was applied to both sides of a polyester film with a thickness of 75 μm, and an N'-, N repulsive magnetic field was applied in the longitudinal direction of the film for magnetic field orientation, and dried to form a magnetic layer with a dry thickness of 3 μm.

しかる後円板状に打ち抜いて磁気ディスクをつくった。Afterwards, it was punched out into a disk shape to create a magnetic disk.

実施例2 実施例1における磁性塗料の組成において、粒径(長軸
)0.3μ、軸比10、保磁力675エルステツド、飽
和磁化量72emu 7g 、角型0.74、コバルト
含有量5.0重量%の三軸異方性のCo固固溶−Fe2
03磁性粉末に代えて粒径(長軸> 0.32μ、軸比
10、保磁力1050エルステツド、飽和磁化量73e
mu 7g 、角型0.73、コバルト含有量9.5重
量%の三軸異方性のCo固熔γ−Fe203磁性粉末を
同量使用した以外は実施例1と同様にして磁気ディスク
をつくった。磁性塗料の粘度は75セ、ンチポイズであ
った。
Example 2 In the composition of the magnetic paint in Example 1, the particle size (major axis) is 0.3 μ, the axial ratio is 10, the coercive force is 675 oersted, the saturation magnetization is 72 emu 7 g, the square shape is 0.74, and the cobalt content is 5.0. wt% triaxial anisotropic Co solid solution-Fe2
Particle size (major axis > 0.32μ, axial ratio 10, coercive force 1050 oersted, saturation magnetization amount 73e) in place of 03 magnetic powder
A magnetic disk was produced in the same manner as in Example 1, except that the same amount of triaxially anisotropic Co-solid γ-Fe203 magnetic powder having a square shape of 0.73 g and a cobalt content of 9.5% by weight was used. Ta. The viscosity of the magnetic paint was 75 centipoise.

比較例1 実施例工における磁性塗料の組成において、Co固溶r
−Fe203磁性粉末に代えて、粒径(長軸)0.3μ
、軸比工0、保磁力620エルステツド、飽和磁化量7
6 emu 7g 、角型0.50、コバルト含有量5
.0重量%の一軸異方性のCo被被着−Fe203磁性
粉末を同量使用し、メチルイソブチルケトンの使用量を
420重量部から600重量部に変更し、またトルエン
の使用量を420重量部から600重量部に変更し、さ
らに実施例1における磁場配向処理を省いた以外は実施
例1と同様にして磁気ディスクをつくった。磁性塗料の
粘度は20センチボイズであった。
Comparative Example 1 In the composition of the magnetic paint in the example process, Co solid solution r
-Instead of Fe203 magnetic powder, particle size (long axis) 0.3μ
, axial ratio 0, coercive force 620 oersted, saturation magnetization 7
6 emu 7g, square shape 0.50, cobalt content 5
.. The same amount of 0% by weight uniaxially anisotropic Co-coated Fe203 magnetic powder was used, the amount of methyl isobutyl ketone was changed from 420 parts by weight to 600 parts by weight, and the amount of toluene was changed to 420 parts by weight. A magnetic disk was produced in the same manner as in Example 1 except that the amount was changed to 600 parts by weight and the magnetic field orientation treatment in Example 1 was omitted. The viscosity of the magnetic paint was 20 centivoise.

比較例2 比較例1における磁性塗料の組成において、−軸異方性
のCO被着r−Fe203磁性粉末に代えて、粒径(長
軸)0.1 μ、軸比8、保磁力1380エルステンド
、飽和磁化量123 emu 7g 、角型0.49の
一軸異方性のα−Fe磁性粉末を同量使用した以外は比
較例1と同様にして磁気ディスクをつくった。磁性塗料
の粘度は25センチボイズであった。
Comparative Example 2 In the composition of the magnetic paint in Comparative Example 1, instead of the -axis anisotropic CO-coated r-Fe203 magnetic powder, a particle size (major axis) of 0.1 μ, an axial ratio of 8, and a coercive force of 1380 L were used. A magnetic disk was produced in the same manner as in Comparative Example 1, except that the same amount of stained, saturation magnetization 123 emu 7 g, square shape 0.49 uniaxially anisotropic α-Fe magnetic powder was used. The viscosity of the magnetic paint was 25 centivoise.

比較例3 実施例1において、磁場配向処理を省いた以外は実施例
工と同様にして磁気ディスクをつくった。
Comparative Example 3 A magnetic disk was manufactured in the same manner as in Example 1 except that the magnetic field orientation treatment was omitted.

磁性塗料の粘度は80センチポイズであった。The viscosity of the magnetic paint was 80 centipoise.

比較例4 実施例2において、磁場配向処理を省いた以外は実施例
2と同様にして磁気ディスクをつくった。
Comparative Example 4 A magnetic disk was produced in the same manner as in Example 2, except that the magnetic field orientation treatment was omitted.

磁性塗料の粘度は75センチポイズであった。The viscosity of the magnetic paint was 75 centipoise.

各実施例および各比較例で得られた磁気ディスクについ
て、保磁力、残留磁束密度、角型、塗布方向とそれに垂
直な方向の角型比OR1表面粗度を表すSP値(値が大
きいほどスペーシングが大)を測定し、配向度をメウス
バウヮー法によって測定した。また、記録波長0.83
μにおけるC/Nを測定した。
For the magnetic disks obtained in each example and each comparative example, the coercive force, residual magnetic flux density, squareness, squareness ratio OR1 surface roughness in the coating direction and the direction perpendicular to it were SP values (the larger the value, the smoother the surface roughness). (large pacing) was measured, and the degree of orientation was measured by the Meuss-Bower method. Also, the recording wavelength is 0.83
The C/N at μ was measured.

下表はその結果である。The table below shows the results.

上表から明らかなように、実施例1で得られた磁気ディ
スクは、比較例1および3で得られた磁気ディスクに比
して残留借束密度が大きく、角型−配向度およびC/N
が高くて表面性も格段によくなっており、また実施例2
で得られた磁気ディスクは、比較例2および4で得られ
た磁気ディスクに比して、角型、配向度およびC/Nが
高くて表面性がよく、このことからこの発明で得られる
磁気ディスクは磁性層の表面平滑性が良好で磁気特性お
よび電磁変換特性が向上されていることがわかる。
As is clear from the above table, the magnetic disk obtained in Example 1 has a higher residual debt density than the magnetic disks obtained in Comparative Examples 1 and 3, and has a higher squareness-orientation degree and C/N.
is high and the surface quality is also much improved, and Example 2
Compared to the magnetic disks obtained in Comparative Examples 2 and 4, the magnetic disks obtained in Comparative Examples 2 and 4 had a higher square shape, higher degree of orientation, and higher C/N, and had better surface properties. It can be seen that the surface smoothness of the magnetic layer of the disk is good, and the magnetic properties and electromagnetic conversion properties are improved.

また、実施例1、比較例1および3で得られた磁気ディ
スクについて、記録密度と出力との関係を調べた。第3
図はこの関係をグラフで表したもので、グラフAは実施
例1で得られた磁気ディスク、グラフBは比較例1で得
られた磁気ディスク、グラフCは比較例3で得られた磁
気ディスクのそれぞれの関係を示したものである。これ
らのグラフから明らかなように、実施例1で得られた磁
気ディスク(グラフA)は比較例1で得られた磁気ディ
スク(グラフB)および比較例3で得られた磁気ディス
ク(グラフC)に比し、出力が高く、低域の出力に対し
て50%出力が低下したときの記録密度は、比較例1で
得られたものは12KBPl比較例3で得られたものは
2’OKB、PIであるのに対し、実施例1で得られた
ものは23KBPIで記録密度も一段と向上されている
ことがわかる。
Furthermore, for the magnetic disks obtained in Example 1 and Comparative Examples 1 and 3, the relationship between recording density and output was investigated. Third
The figure shows this relationship in a graph. Graph A is the magnetic disk obtained in Example 1, graph B is the magnetic disk obtained in Comparative Example 1, and graph C is the magnetic disk obtained in Comparative Example 3. This shows the relationship between each. As is clear from these graphs, the magnetic disk obtained in Example 1 (Graph A) is the same as the magnetic disk obtained in Comparative Example 1 (Graph B) and the magnetic disk obtained in Comparative Example 3 (Graph C). Compared to this, the recording density when the output is high and the output is reduced by 50% compared to the low-frequency output is 12 KBPl in Comparative Example 1, 2'OKB in Comparative Example 3, It can be seen that the recording density is 23 KBPI, whereas that obtained in Example 1 is 23 KBPI, which further improves the recording density.

さらに、実施例2、比較例2および4で得られた磁気デ
ィスクについて、記録波長1.25μ、トランク巾58
μでMn−Znフェライトヘッドを使用したときの再生
出力エンベロープ写真をとって図示したところ第4図に
示すようなエンベロープ曲線が得られた。この第4図に
おいて曲線Aは実施例2で得られた磁気ディスクのエン
ベロープ曲線を示し、曲線Bは比較例2で得られた磁気
ディスクのエンベロープ曲線を示す。また曲線Cは比較
例4で得られた磁気ディスクのエンベロープ曲線を示し
、これらのエンベロープ曲線から明らかなように、実施
例2で得られたものは比較例2および4で得られたもの
に比してエンベロープ曲線の形状がよく出力も大きくな
っており、このことからこの発明によって得られる磁気
ディスクは高出力が得られることがわかる。
Furthermore, regarding the magnetic disks obtained in Example 2 and Comparative Examples 2 and 4, the recording wavelength was 1.25μ, and the trunk width was 58μ.
When a reproduced output envelope photograph was taken and illustrated when a Mn--Zn ferrite head was used with .mu., an envelope curve as shown in FIG. 4 was obtained. In FIG. 4, curve A shows the envelope curve of the magnetic disk obtained in Example 2, and curve B shows the envelope curve of the magnetic disk obtained in Comparative Example 2. Curve C shows the envelope curve of the magnetic disk obtained in Comparative Example 4, and as is clear from these envelope curves, the one obtained in Example 2 is comparable to that obtained in Comparative Examples 2 and 4. The shape of the envelope curve is good and the output is large, which indicates that the magnetic disk obtained by the present invention can provide high output.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はメウスバウワー法による磁性粉末粒子の配向度
測定方法を示す説明図、第2図はメウスバウワー法によ
って測定して得られたスペクトルを示す図、第3図はこ
の発明によって得られた磁気ディスクおよび従来の磁気
ディスクの記録密度と出力の関係図、第4図はこの発明
で得られた磁気ディスクおよび従来の磁気ディスクのエ
ンベロープ曲線図である。 第1図 出 ↑ 第2図 第3図 1    2     5   .10122023記
録密度(KBPI)
Fig. 1 is an explanatory diagram showing a method for measuring the orientation degree of magnetic powder particles by the Meuss-Bauer method, Fig. 2 is a diagram showing a spectrum obtained by measuring by the Meuss-Bauer method, and Fig. 3 is a magnetic disk obtained by the present invention. FIG. 4 is an envelope curve diagram of the magnetic disk obtained by the present invention and the conventional magnetic disk. Figure 1 ↑ Figure 2 Figure 3 1 2 5 . 10122023 recording density (KBPI)

Claims (1)

【特許請求の範囲】[Claims] 1、基体上に、三軸異方性を有する針状のコバルト含有
酸化鉄砲4も粉末を含有させて水平方向に配向させた・
磁性層を形成し、これを円形に打ち抜き成形してなる磁
、気ディスク
1. A needle-shaped cobalt-containing iron gun 4 with triaxial anisotropy was also loaded with powder and oriented in the horizontal direction on the substrate.
A magnetic disk made by forming a magnetic layer and punching it into a circular shape.
JP3159683A 1983-02-26 1983-02-26 Magnetic disk Pending JPS59157846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3159683A JPS59157846A (en) 1983-02-26 1983-02-26 Magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3159683A JPS59157846A (en) 1983-02-26 1983-02-26 Magnetic disk

Publications (1)

Publication Number Publication Date
JPS59157846A true JPS59157846A (en) 1984-09-07

Family

ID=12335573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3159683A Pending JPS59157846A (en) 1983-02-26 1983-02-26 Magnetic disk

Country Status (1)

Country Link
JP (1) JPS59157846A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174137A (en) * 1984-09-19 1986-04-16 Hitachi Maxell Ltd Magnetic disk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174137A (en) * 1984-09-19 1986-04-16 Hitachi Maxell Ltd Magnetic disk

Similar Documents

Publication Publication Date Title
US7510790B2 (en) Magnetic powder, method for producing the same and magnetic recording medium comprising the same
US20060068232A1 (en) Magnetic tape
JP2006092672A (en) Magnetic tape
JPH01300419A (en) Magnetic recording medium
EP0273748B1 (en) Plate-like magnetoplumbite type ferrite particles for magnetic recording and magnetic recording media using the same
US4239637A (en) Magnetic material for recording media
US4677024A (en) Magnetic recording medium
JPH03701B2 (en)
JPS5853022A (en) Magnetic recording medium
JPH0252415B2 (en)
JPS59157846A (en) Magnetic disk
JP2802518B2 (en) Magnetic recording media
JPS59129933A (en) Magnetic recording medium
JPH07114015B2 (en) Magnetic recording medium
JPH0252414B2 (en)
JPH0619829B2 (en) Magnetic recording medium
JPS59129935A (en) Magnetic recording medium
JPS59124023A (en) Magnetic recording medium
JPS59151342A (en) Magnetic recording medium and its manufacture
JP2741018B2 (en) Magnetic recording media
JPS5852804A (en) Magnetic recording medium
JPS59127224A (en) Magnetic recording medium
JPS59193532A (en) Magnetic disk
JPS59167854A (en) Magnetic recording medium
JPS60115024A (en) Magnetic recording medium and its production