JP2006092672A - Magnetic tape - Google Patents

Magnetic tape Download PDF

Info

Publication number
JP2006092672A
JP2006092672A JP2004277748A JP2004277748A JP2006092672A JP 2006092672 A JP2006092672 A JP 2006092672A JP 2004277748 A JP2004277748 A JP 2004277748A JP 2004277748 A JP2004277748 A JP 2004277748A JP 2006092672 A JP2006092672 A JP 2006092672A
Authority
JP
Japan
Prior art keywords
magnetic
layer
magnetic tape
magnetic powder
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004277748A
Other languages
Japanese (ja)
Inventor
Naonobu Miama
尚伸 美甘
Masayoshi Kawarai
正義 河原井
Sadamu Kuze
定 久世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2004277748A priority Critical patent/JP2006092672A/en
Publication of JP2006092672A publication Critical patent/JP2006092672A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic tape exhibiting a high-output and good reproducing output noise ratio (C/N) and excellent high recording density characteristics by securing the good reproducing output noise ratio (C/N) in a short wavelength zone corresponding to especially a high capacity of 1 TB or more. <P>SOLUTION: The magnetic tape is provided with a nonmagnetic support and at least one magnetic layer formed in one surface of the support. Magnetic powders contained in the uppermost magnetic layer comprises magnetic particles having particle sizes of 30 nm or less, and a ratio (Hc<SB>M</SB>/Hc<SB>T</SB>) between the coercive force Hc<SB>M</SB>of a longitudinal direction and the coercive force Hc<SB>T</SB>of a width direction is ≥2.2. Especially, the particles sizes of magnetic powders contained in the uppermost magnetic layer are 20 nm or less, and the magnetic tape is made of iron nitride based magnetic powders having an axis ratio (long diameter/short diameter) set to <2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高記録密度特性に優れた磁気テープ、特に塗布型の磁気テープ(以下、「磁気記録テープ」あるいは単に「テープ」ということもある)に関する。

The present invention relates to a magnetic tape excellent in high recording density characteristics, in particular, a coating type magnetic tape (hereinafter also referred to as “magnetic recording tape” or simply “tape”).

磁気テープは、オーディオテープ、ビデオテープ、コンピュータテープ等、種々の用途があるが、特にデータバックアップ用テープの分野では、バックアップの対象となるハードディスクの大容量化にともない、1巻当たり数10〜100GBの記録容量のものが商品化されている。また、1TBを超える大容量バックアップテープも提案されており、磁気テープの高記録密度化は不可欠である。

このような高記録密度化に対応した塗布型の磁気テープを製造するにあたっては、磁性粉末の微粒子化とそれらの塗膜中への高密度充填、塗膜の平滑化、磁性層の薄層化に関する高度な技術が用いられている。また、斜め蒸着やスパッタ膜のような金属薄膜を磁性層として設けた薄膜型の磁気テープも商品化されている。

Magnetic tapes have various uses such as audio tapes, video tapes, computer tapes, etc., but especially in the field of data backup tapes, with the increase in capacity of hard disks to be backed up, several 10 to 100 GB per volume. The one with the recording capacity is commercialized. In addition, a large-capacity backup tape exceeding 1 TB has been proposed, and a high recording density of the magnetic tape is indispensable.

When manufacturing coating-type magnetic tapes corresponding to such high recording densities, it is necessary to make magnetic powder fine particles, fill them with high density, smooth the coating, and thin the magnetic layer. Advanced technology is used. In addition, thin film type magnetic tapes in which a metal thin film such as oblique vapor deposition or a sputtered film is provided as a magnetic layer have been commercialized.

塗布型の磁気テープでは、高記録密度に対応した短波長領域での良好な電磁変換特性を確保するには用いる磁性粉末が特に重要である。磁性粉末の改良に関しては、主として、短波長記録に対応するために、年々、微粒子化とともに、高保磁力化、高飽和磁化で代表される磁気特性の改善が図られている。

高記録密度磁気テープでは、オーディオ用や家庭用ビデオテープに使用されていた強磁性酸化鉄、Co変性強磁性酸化鉄、酸化クロム等に代えて、現在では、長軸方向の粒子サイズが100nm程度の針状の金属磁性粉末が主として使用されている。

In a coating-type magnetic tape, the magnetic powder used is particularly important in order to ensure good electromagnetic conversion characteristics in a short wavelength region corresponding to a high recording density. With regard to the improvement of magnetic powder, mainly in order to cope with short wavelength recording, improvement of magnetic characteristics represented by high coercive force and high saturation magnetization has been achieved year by year with finer particles.

With high recording density magnetic tape, instead of ferromagnetic iron oxide, Co-modified ferromagnetic iron oxide, chromium oxide, etc. used for audio and home video tapes, the particle size in the major axis direction is now about 100 nm. The needle-shaped metal magnetic powder is mainly used.

また、近年、希土類元素と鉄または鉄を主体とする遷移金属元素とからなる平均粒子サイズが5〜200nm、保磁力が200kA/m程度の本質的に粒状ないし楕円状である希土類−鉄系磁性粉末の使用が提案されている(特許文献1〜3参照)。具体的には、特許文献1,2には、非磁性支持体上に、希土類元素と鉄または鉄を主体とする遷移金属元素(またはさらに硼素)とからなる平均粒子サイズが5〜200nmの磁性粉末および結合剤を含有する磁性層を有する磁気記録媒体が開示されている。

特許文献3には、非磁性支持体と、この非磁性支持体の一面に形成された非磁性粉を含む下層と、この下層の上に形成された磁性粉を含む磁性層と、さらに非磁性支持体の他方の面に形成された非磁性粉を含むバックコート層を有する磁気テープにおいて、上記の磁性層が、希土類元素−鉄−硼素系磁性粉末等からなる平均粒子径が5〜50nmの板状、粒状ないし楕円状の磁性粉を含む、厚さが0.09μm以下の磁性層で構成されており、かつ下層、バックコート層の少なくとも一層に平均粒子径が10〜100nmの非磁性の板状粒子を含むことを特徴とした磁気テープが開示されている。

Also, in recent years, rare earth-iron-based magnetism that is essentially granular or elliptical with an average particle size of 5 to 200 nm and a coercive force of about 200 kA / m consisting of a rare earth element and a transition metal element mainly composed of iron or iron. The use of powder has been proposed (see Patent Documents 1 to 3). Specifically, in Patent Documents 1 and 2, a magnetic material having an average particle size of 5 to 200 nm made of a rare earth element and a transition metal element mainly composed of iron or iron (or further boron) on a nonmagnetic support. A magnetic recording medium having a magnetic layer containing a powder and a binder is disclosed.

Patent Document 3 discloses a nonmagnetic support, a lower layer containing nonmagnetic powder formed on one surface of the nonmagnetic support, a magnetic layer containing magnetic powder formed on the lower layer, and a nonmagnetic material. In the magnetic tape having a back coat layer containing nonmagnetic powder formed on the other surface of the support, the magnetic layer has an average particle diameter of 5 to 50 nm made of rare earth element-iron-boron magnetic powder or the like. It is composed of a magnetic layer having a thickness of 0.09 μm or less, including a plate-like, granular or elliptical magnetic powder, and at least one of the lower layer and the backcoat layer is a non-magnetic material having an average particle diameter of 10 to 100 nm. A magnetic tape characterized by containing plate-like particles is disclosed.

さらに、希土類元素と鉄または鉄を主体とする遷移金属元素と窒素とからなる平均粒子径が5〜50nmの略粒状である窒化鉄系磁性粉末の使用が提案されており、その保磁力は210kA/m以上のものも開示されている(特許文献4,5参照)。

具体的には、特許文献4,5には、非磁性支持体の一方の面上に非磁性下層と磁性層を形成し、非磁性支持体の他方の面上にバック層を形成した磁気記録媒体において、最上層磁性層に含まれる磁性粉末が、希土類元素と鉄または鉄を主体とする遷移金属元素とからなる、特にコアー部分がFe162 からなる、平均粒子径が5〜50nmで平均軸比が1以上2以下である略粒状の希土類−鉄系磁性粉末であり、かつ媒体全体の厚さが6μm未満である磁気記録媒体が開示されている。

Furthermore, it has been proposed to use an iron nitride-based magnetic powder having an average particle diameter of 5 to 50 nm composed of rare earth elements and iron or transition metal elements mainly composed of iron and nitrogen, and its coercive force is 210 kA. / M or more is also disclosed (see Patent Documents 4 and 5).

Specifically, Patent Documents 4 and 5 describe magnetic recording in which a nonmagnetic lower layer and a magnetic layer are formed on one surface of a nonmagnetic support, and a back layer is formed on the other surface of the nonmagnetic support. In the medium, the magnetic powder contained in the uppermost magnetic layer is composed of a rare earth element and a transition metal element mainly composed of iron or iron, in particular, the core portion is composed of Fe 16 N 2 , and the average particle diameter is 5 to 50 nm. A magnetic recording medium is disclosed which is a substantially granular rare earth-iron-based magnetic powder having an average axial ratio of 1 or more and 2 or less, and the total thickness of the medium is less than 6 μm.

さらに詳しくは、特許文献4では、サーボ信号を記録した磁気テープを1リールタイプのカートリッジに収容し、サーボ信号によりデータトラックをトレースすることにより、高いトラック密度を実現した磁気テープカートリッジが開示されている。また、再生ヘッドに磁気抵抗効果型磁気ヘッド(MRヘッド)を搭載することにより、0.09μm以下の上層磁性層厚さでも、高再生出力(高C)、高再生出力ノイズ比(高C/N)を実現している。特許文献5には、上記の特許文献4の磁気記録媒体にサーボ信号記録用の下層磁性層を形成し、サーボ信号出力を高くして、サーボトラッキング特性を向上させた磁気テープおよび磁気テープカートリッジが開示されている。

More specifically, Patent Document 4 discloses a magnetic tape cartridge that realizes a high track density by accommodating a magnetic tape on which a servo signal is recorded in a one-reel type cartridge and tracing a data track by the servo signal. Yes. Further, by mounting a magnetoresistive head (MR head) on the reproducing head, even with an upper magnetic layer thickness of 0.09 μm or less, a high reproduction output (high C) and a high reproduction output noise ratio (high C / N) is realized. Patent Document 5 discloses a magnetic tape and a magnetic tape cartridge in which the lower magnetic layer for servo signal recording is formed on the magnetic recording medium of Patent Document 4 described above, the servo signal output is increased, and the servo tracking characteristics are improved. It is disclosed.

また、電磁変換特性の改善のため、磁性層中の磁性粉末の配向構造を規定した磁気記録媒体の提案もなされている(特許文献6〜8参照)

例えば、特許文献6,7には、短波長信号から長波長信号の幅広い記録波長領域において高い電磁変換特性を発揮する磁気記録媒体を得る目的で、磁性粉末として板状の強磁性六方晶系フェライトを主体としたものを使用し、磁性層の厚さを1μm以下とした磁気記録媒体において、長手方向の抗磁力をHc1 、垂直方向の抗磁力をHc2 、幅方向の抗磁力をHc3 としたとき、Hc1 >Hc2 >Hc3 の関係、またはHc2 >Hc1 >Hc3 の関係を有するようにした磁気記録媒体が提案されている。

In addition, in order to improve electromagnetic conversion characteristics, magnetic recording media in which the orientation structure of the magnetic powder in the magnetic layer is defined have been proposed (see Patent Documents 6 to 8).

For example, in Patent Documents 6 and 7, a plate-like ferromagnetic hexagonal ferrite is used as a magnetic powder for the purpose of obtaining a magnetic recording medium exhibiting high electromagnetic conversion characteristics in a wide recording wavelength region from a short wavelength signal to a long wavelength signal. In a magnetic recording medium having a magnetic layer thickness of 1 μm or less, the coercive force in the longitudinal direction is Hc 1 , the coercive force in the vertical direction is Hc 2 , and the coercive force in the width direction is Hc 3. In such a case, a magnetic recording medium having a relationship of Hc 1 > Hc 2 > Hc 3 or a relationship of Hc 2 > Hc 1 > Hc 3 has been proposed.

特許文献8には、高出力化等のすぐれた短波長特性を発揮する磁気記録媒体を得る目的で、平均粒子径が5〜100nmの粒状の希土類−遷移金属系磁性粉末を使用し、磁性層の厚さを300nm以下とした磁気記録媒体において、長手方向の保磁力/幅方向の保磁力との比を1.20以上、好ましくは1.25以上通常1.35までとし、かつ長手方向における角形比/幅方向における角形比との比を1.9以上、好ましくは2.2以上通常4.0までとなるようにした磁気記録媒体が提案されている。
In Patent Document 8, a granular rare earth-transition metal magnetic powder having an average particle diameter of 5 to 100 nm is used for the purpose of obtaining a magnetic recording medium exhibiting excellent short wavelength characteristics such as high output. In the magnetic recording medium having a thickness of 300 nm or less, the ratio of the coercive force in the longitudinal direction / the coercive force in the width direction is 1.20 or more, preferably 1.25 or more and usually 1.35, and in the longitudinal direction. There has been proposed a magnetic recording medium in which the ratio of the squareness ratio / the squareness ratio in the width direction is 1.9 or more, preferably 2.2 or more and usually 4.0.

特開2001−181754号公報JP 2001-181754 A 特開2002−056518号公報JP 2002-056518 A 特開2004−005896号公報JP 2004-005896 A WO03/079332A1パンフレットWO03 / 079332A1 brochure WO03/079333A1パンフレットWO03 / 079333A1 brochure 特開平06−274847号公報Japanese Patent Laid-Open No. 06-274847 特開平06−282835号公報Japanese Patent Laid-Open No. 06-282835 特開2003−272123号公報JP 2003-272123 A

特許文献1〜8に開示される磁気記録媒体は、各文献に記載される前記独自の構成とすることでそれに応じた特有の効果が奏されるが、本発明者らの検討では、いずれの媒体も電磁変換特性の改善の面でなお十分でないことがわかった。

例えば、特許文献1〜5に開示されているような略粒状等の微粒子磁性粉末を使用しただけでは、保磁力、平均粒子サイズから期待されるほど、MRヘッドで評価した際の再生出力(C)および再生出力ノイズ比(C/N)等の電磁変換特性の大幅な改善効果が得られないものであった。また、特許文献6〜8に開示されているような磁性層中の磁性粉末の配向構造を規定した磁気記録媒体でも、高出力等の特性が得られても、以下のように、再生出力ノイズ比(C/N)等の特性面では十分とはいえなかった。

The magnetic recording media disclosed in Patent Documents 1 to 8 have a unique effect according to the unique configuration described in each document. It was found that the medium was still not sufficient in terms of improving the electromagnetic conversion characteristics.

For example, when only fine particle magnetic powders such as those disclosed in Patent Documents 1 to 5 are used, the reproduction output (C) is evaluated with an MR head as expected from the coercive force and the average particle size. ) And reproduction output noise ratio (C / N) and other electromagnetic conversion characteristics cannot be greatly improved. Further, even if a magnetic recording medium that defines the orientation structure of the magnetic powder in the magnetic layer as disclosed in Patent Documents 6 to 8, even if characteristics such as high output are obtained, reproduction output noise is as follows. In terms of characteristics such as the ratio (C / N), it was not sufficient.

つまり、特許文献6,7では、磁性粉末として、板状の強磁性六方晶系フェライトで、その板状比が3〜7、平均粒子径が30〜100nm程度のものが好ましいとされ、実施例には、このような磁性粉末を用いて磁性層中の磁性粉末の配向構造を前記のように規制した、特に長手方向の抗磁力(保磁力)Hc1 >幅方向の抗磁力Hc3 の関係として両者の比が2.2以上となるようにした媒体が示されているが、本発明の目的とするような短波長域では、再生出力ノイズ比(C/N)が低くなる傾向があることがわかった。

また、特許文献8では、実施例として、平均粒子径が5〜100nmの粒状の希土類−遷移金属系磁性粉末を用い、磁性層における長手方向の保磁力/幅方向の保磁力との比を1.26〜1.33となるようにした磁気記録媒体が示されているが、この場合も、やはり再生出力ノイズ比(C/N)が低くなる傾向があることがわかった。

That is, in Patent Documents 6 and 7, it is preferable that the magnetic powder is a plate-like ferromagnetic hexagonal ferrite having a plate-like ratio of 3 to 7 and an average particle size of about 30 to 100 nm. The magnetic powder is used to regulate the orientation structure of the magnetic powder in the magnetic layer as described above, and in particular, the relationship of coercive force (coercive force) Hc 1 in the longitudinal direction> coercive force Hc 3 in the width direction. As shown in FIG. 1, a medium in which the ratio between the two is 2.2 or more is shown, but the reproduction output noise ratio (C / N) tends to be low in a short wavelength region as the object of the present invention. I understood it.

In Patent Document 8, as an example, granular rare earth-transition metal magnetic powder having an average particle diameter of 5 to 100 nm is used, and the ratio of the coercive force in the longitudinal direction to the coercive force in the width direction in the magnetic layer is set to 1. Although the magnetic recording medium is set so as to be .26 to 1.33, it has been found that the reproduction output noise ratio (C / N) also tends to be low in this case.

本発明は、このような従来技術の問題点を克服し、高出力でかつ良好な再生出力ノイズ比(C/N)を示す磁気テープを提供すること、特に1TB以上の高容量に対応しうる、短波長域における良好な再生出力ノイズ比(C/N)を確保して高記録密度特性に優れた磁気テープを提供することを課題としている。

The present invention overcomes the problems of the prior art and provides a magnetic tape exhibiting a high output and a good reproduction output noise ratio (C / N), and can cope with a high capacity of 1 TB or more. It is an object of the present invention to provide a magnetic tape excellent in high recording density characteristics by securing a good reproduction output noise ratio (C / N) in a short wavelength region.

本発明者らは、上記の課題に対して、電磁変換特性、とりわけ再生出力ノイズ比C/Nの向上、改良方法について、詳細に検討した結果、磁性粉末として、軸比(長径/短径)が2未満となる略粒状の磁性粒子で、その粒子サイズが30nm以下、特に好ましくは20nm以下となる微粒子磁性粉末、中でも窒化鉄系磁性粉末を使用すると共に、これを含ませた磁性層の配向構造を、長手方向の保磁力HcM と幅方向の保磁力HcT との比が特定値以上となる配向構造としたときに、短波長記録時の出力Cが大きくノイズNが小さい、再生出力ノイズ比(C/N)に格段にすぐれた、良好な短波長記録再生特性を示す磁気テープが得られることを知り、本発明を完成するに至った。

As a result of detailed investigations on the electromagnetic conversion characteristics, in particular, the improvement of the reproduction output noise ratio C / N, and the improvement method, the present inventors have obtained an axial ratio (major axis / minor axis) as a magnetic powder. Is a substantially granular magnetic particle having a particle size of less than 2 and a particle size of 30 nm or less, particularly preferably 20 nm or less, particularly a fine particle magnetic powder, particularly an iron nitride magnetic powder, and the orientation of the magnetic layer containing the same. When the structure is an orientation structure in which the ratio of the coercive force Hc M in the longitudinal direction to the coercive force Hc T in the width direction is greater than a specific value, the output C during short wavelength recording is large and the noise N is small. Knowing that a magnetic tape exhibiting excellent short-wavelength recording / reproducing characteristics with an excellent noise ratio (C / N) can be obtained, the present invention has been completed.

すなわち、本発明は、非磁性支持体とこの支持体の一方の面に形成された少なくとも1層の磁性層とを有する磁気テープにおいて、最上層磁性層に含まれる磁性粉末は、粒子サイズが30nm以下の略粒状の磁性粒子からなり、長手方向の保磁力HcM と幅方向の保磁力HcT との比〔HcM /HcT 〕が2.2以上であることを特徴とする磁気テープに係るものであり、特に、最上層磁性層に含まれる磁性粉末は、粒子サイズが20nm以下の略粒状の磁性粒子からなる、また軸比(長径/短径)が2未満である、さらに窒化鉄系磁性粉末である上記構成の磁気テープに係るものである。

That is, according to the present invention, in a magnetic tape having a nonmagnetic support and at least one magnetic layer formed on one surface of the support, the magnetic powder contained in the uppermost magnetic layer has a particle size of 30 nm. A magnetic tape comprising the following substantially granular magnetic particles, wherein the ratio [Hc M / Hc T ] of the coercive force Hc M in the longitudinal direction and the coercive force Hc T in the width direction is 2.2 or more In particular, the magnetic powder contained in the uppermost magnetic layer is composed of substantially granular magnetic particles having a particle size of 20 nm or less, and has an axial ratio (major axis / minor axis) of less than 2. Further, iron nitride The present invention relates to a magnetic tape having the above structure, which is a magnetic powder.

このように、本発明者らは、略粒状の特定の微粒子磁性粉末を使用し、これを含ませた磁性層の配向構造として、長手方向の保磁力HcM を大きくすると共に、幅方向の保磁力HcT を小さくすると、短波長記録時の出力Cが大きくノイズNが小さくなり、良好な短波長記録再生特性が得られることを知り、この知見をもとに長手方向の保磁力HcM と幅方向の保磁力HcT との比(HcM /HcT )と再生出力ノイズ比(C/N)との関係につき、詳細検討した結果、上記比(HcM /HcT )を2.2以上と大きくしたときに、上記C/Nが顕著に向上してくることを見出したものである。

As described above, the inventors of the present invention use specific particulate magnetic powder having a substantially granular shape and increase the coercive force Hc M in the longitudinal direction as well as the coercive force in the width direction as the orientation structure of the magnetic layer including this. When the magnetic force Hc T is reduced, the output C at the time of short wavelength recording is increased and the noise N is reduced, and good short wavelength recording / reproducing characteristics can be obtained. Based on this knowledge, the longitudinal coercive force Hc M and As a result of a detailed study on the relationship between the ratio (Hc M / Hc T ) to the coercive force Hc T in the width direction and the reproduction output noise ratio (C / N), the ratio (Hc M / Hc T ) is 2.2. It has been found that the C / N is remarkably improved when it is increased as described above.

長手方向の保磁力と幅方向の保磁力との比(HcM /HcT )は、2.5以上であるのが好ましく、3.0以上であるのがより好ましい。理想的には無限大であるのが好ましいが、現状では10以下である。10以下であるという理由は、磁性粉末の粒子形状が略粒状で完全な球ではなく、またカーボンブラックやアルミナ等の充填剤の存在、磁性粉末の不均一分散等により、磁性粒子の回転が束縛されて、磁性粉末の磁化容易軸を長手方向に完全に配向させることが難しいためである。なお、小規模実験によると、長手方向の保磁力と幅方向の保磁力の比を10にするためには、0.7T以上の磁界中で配向および乾燥を行う方法を加味すれば有効であることが確認されている。

The ratio of the coercivity in the longitudinal direction to the coercivity in the width direction (Hc M / Hc T ) is preferably 2.5 or more, and more preferably 3.0 or more. Ideally, it is preferably infinite, but currently it is 10 or less. The reason is that the particle shape of the magnetic powder is not substantially spherical and is not a perfect sphere, and the rotation of the magnetic particle is constrained by the presence of a filler such as carbon black or alumina, the non-uniform dispersion of the magnetic powder, etc. This is because it is difficult to completely orient the easy magnetization axis of the magnetic powder in the longitudinal direction. In addition, according to a small-scale experiment, in order to set the ratio of the coercive force in the longitudinal direction to the coercive force in the width direction, it is effective if a method of orientation and drying is applied in a magnetic field of 0.7 T or more. It has been confirmed.

このように構成される本発明の磁気テープが短波長域において優れたC/Nが得られる理由は明確ではないが、つぎのように考えられる。

図1に示すように、磁気テープ1の最上層磁性層において長手方向に記録された信号が磁気ヘッド3によって反対方向に磁化する場合、図2に示すように、時間の経過Tと共に磁化2が回転して磁化反転する。磁化2の回転方向には、幅方向と膜面に垂直方向が考えられるが、膜面に垂直方向では磁化が膜面に垂直方向に立つと超薄膜の最上層磁性層では反磁界が大きくなるので、幅方向(磁性層面内)が磁化回転方向になると考えられる。

The reason why the magnetic tape of the present invention configured as described above can obtain excellent C / N in the short wavelength region is not clear, but is considered as follows.

As shown in FIG. 1, when a signal recorded in the longitudinal direction in the uppermost magnetic layer of the magnetic tape 1 is magnetized in the opposite direction by the magnetic head 3, as shown in FIG. Rotates and reverses magnetization. The rotation direction of the magnetization 2 can be a width direction and a direction perpendicular to the film surface, but if the magnetization is perpendicular to the film surface in the direction perpendicular to the film surface, the demagnetizing field increases in the ultrathin uppermost magnetic layer. Therefore, the width direction (in the magnetic layer plane) is considered to be the magnetization rotation direction.

このため、幅方向の保磁力HcT が小さい磁性層の方が弱い磁気ヘッド磁界でも容易に磁化反転が可能となる。したがって、磁気ヘッドから離れた部分、つまり最上層磁性層の下部でも容易に磁化反転する。その結果、最上層磁性層の表面部から下部までのすべてにわたり容易に磁化反転が可能となり、幅方向の保磁力HcT が小さい磁性層の方が磁気記録に係る磁性粒子を多くすることができ、短波長記録をする場合の出力(C)、出力ノイズ比(C/N)が大きくなるものと考えられる。

これに対し、幅方向の保磁力HcT が大きい磁性層では弱い磁気ヘッド磁界では容易に磁化反転せず、磁気ヘッドから離れた部分、つまり最上層磁性層の下部では磁化反転を起こしにくい。その結果、最上層磁性層の表面部に比べて下部での磁化反転が減少し、磁気記録に係る磁性粒子が少なくなるため、短波長記録をする場合の出力(C)、出力ノイズ比(C/N)が低下してくるものと考えられる。

Therefore, the magnetization reversal can be easily performed even with a magnetic head magnetic field that is weaker in the magnetic layer having a smaller coercive force Hc T in the width direction. Therefore, magnetization reversal is easily performed even at a portion away from the magnetic head, that is, below the uppermost magnetic layer. As a result, the magnetization can be easily reversed from the surface portion to the lower portion of the uppermost magnetic layer, and the magnetic layer having a smaller coercive force Hc T in the width direction can increase the number of magnetic particles related to magnetic recording. It is considered that the output (C) and the output noise ratio (C / N) when performing short wavelength recording are increased.

In contrast, in a magnetic layer having a large coercive force Hc T in the width direction, magnetization reversal is not easily caused by a weak magnetic head magnetic field, and magnetization reversal is unlikely to occur in a portion away from the magnetic head, that is, below the uppermost magnetic layer. As a result, the magnetization reversal at the lower portion is reduced compared with the surface portion of the uppermost magnetic layer, and the number of magnetic particles related to magnetic recording is reduced. Therefore, the output (C) and the output noise ratio (C) when performing short wavelength recording. / N) is considered to decrease.

図3および図4は、これらの関係を模式的に示したものである。

すなわち、図3は、最上層磁性層における幅方向の保磁力HcT を小さくし、長手方向の保磁力HcM との比(HcM /HcT )を2.2以上とした例であり、この場合は、最上層磁性層の表面部から下部までのすべてにわたり容易に磁化反転が可能となるため、出力(C)、出力ノイズ比(C/N)が大きくなる。一方、図4は、最上層磁性層における幅方向の保磁力HcT を大きくし、長手方向の保磁力HcM との比(HcM /HcT )を2.2未満とした例であり、この場合は、最上層磁性層の表面部に比べて下部での磁化反転が減少するため、出力(C)、出力ノイズ比(C/N)が低下する。

3 and 4 schematically show these relationships.

That is, FIG. 3 is an example in which the coercive force Hc T in the width direction in the uppermost magnetic layer is reduced and the ratio (Hc M / Hc T ) to the coercive force Hc M in the longitudinal direction is 2.2 or more. In this case, since magnetization can be easily reversed from the surface portion to the lower portion of the uppermost magnetic layer, the output (C) and output noise ratio (C / N) are increased. On the other hand, FIG. 4 is an example in which the coercive force Hc T in the width direction in the uppermost magnetic layer is increased and the ratio (Hc M / Hc T ) to the coercive force Hc M in the longitudinal direction is less than 2.2. In this case, since the magnetization reversal at the lower portion is reduced as compared with the surface portion of the uppermost magnetic layer, the output (C) and the output noise ratio (C / N) are lowered.

また、本発明の上記構成においては、図1(および図3、図4)に示される磁化遷移領域(磁性層中の磁化が反転する境界領域)4も、HcM /HcT の値が大きいほど狭くなるので短波長記録に優れる磁気テープを得ることができる。

磁性粉末は単磁区粒子のため、磁化遷移領域は磁性粉末の長手方向の粒子径以下にはならず、本発明のように粒子サイズが30nm以下と記録波長に比べて小さい場合は、粒子径の微小化にともなって磁化遷移領域が30nm以下になる。

In the above configuration of the present invention, the magnetization transition region (boundary region where the magnetization in the magnetic layer is reversed) 4 shown in FIG. 1 (and FIGS. 3 and 4) also has a large value of Hc M / Hc T. Since it becomes narrower, a magnetic tape excellent in short wavelength recording can be obtained.

Since the magnetic powder is a single domain particle, the magnetization transition region does not become smaller than the particle size in the longitudinal direction of the magnetic powder, and when the particle size is 30 nm or less and smaller than the recording wavelength as in the present invention, With the miniaturization, the magnetization transition region becomes 30 nm or less.

なお、長手方向の保磁力HcM が大きいほど反磁界による自己減磁も小さくなるため、この長手方向のHcM を大きくして、これと幅方向のHcT との比(HcM /HcT )を大きくする、つまりHcM /HcT の値を2.2以上、好ましくは2.5以上、より好ましくは3.0以上とすることにより、C/Nを高くすることができる。HcM /HcT の値が2.2未満ではC/N向上効果が小さい。HcM /HcT の値が10を超えると、C/N向上効果が飽和するため、通常は10以下である。HcM /HcT の値が10を超えるとC/N向上効果が飽和する理由は不明であるが、磁化遷移領域の大きさが磁性粉末の粒子径とコンパラオーダーになるためと推定している。

The larger the coercive force Hc M in the longitudinal direction, the smaller the self-demagnetization due to the demagnetizing field. Therefore, the Hc M in the longitudinal direction is increased and the ratio of this to the width direction Hc T (Hc M / Hc T ) Is increased, that is, the value of Hc M / Hc T is set to 2.2 or more, preferably 2.5 or more, more preferably 3.0 or more, so that C / N can be increased. When the value of Hc M / Hc T is less than 2.2, the C / N improvement effect is small. When the value of Hc M / Hc T exceeds 10, the C / N improvement effect is saturated, and is usually 10 or less. The reason why the C / N improvement effect saturates when the value of Hc M / Hc T exceeds 10 is unknown, but it is estimated that the size of the magnetization transition region is comparable to the particle size of the magnetic powder. .

以上のように、本発明では、全く新しい着眼点として、磁気テープの長手方向の保磁力HcM を大きくし、幅方向の保磁力HcT を小さくして、長手方向の保磁力と幅方向の保磁力との比(HcM /HcT )を特定値以上に規定することで、電磁変換特性の大幅な改善をはかれることを見出したものである。上記比が特定値未満では、長手方向への反磁界が大きく、短波長域のC/Nが確保できなくなり、10を超えるあまりに大きい値にすることは、現状の磁性粉をはじめとした材料や手法を駆使しても難しい。

As described above, in the present invention, as a completely new focus, the longitudinal coercive force Hc M of the magnetic tape is increased, the transverse coercive force Hc T is decreased, and the longitudinal coercive force Hc T is reduced. It has been found that the electromagnetic conversion characteristics can be significantly improved by defining the ratio (Hc M / Hc T ) to the coercive force to a specific value or more. If the ratio is less than a specific value, the demagnetizing field in the longitudinal direction is large, and the C / N in the short wavelength range cannot be secured. It is difficult to make full use of the technique.

本発明において、保磁力HcM およびHcT は、東英工業社製の試料振動型磁力計で、25℃、外部磁場1273.3kA/mで定法に準じて測定した値である。測定試料の調製は、磁気テープ20枚を貼り合わせ、これを直径8mmに打ち抜いて行った。測定値は、磁気テープの長手方向および幅方向に10回測定した平均値である。

In the present invention, the coercive forces Hc M and Hc T are values measured according to a conventional method at 25 ° C. and an external magnetic field of 1273.3 kA / m using a sample vibration magnetometer manufactured by Toei Kogyo. The measurement sample was prepared by attaching 20 magnetic tapes and punching them into a diameter of 8 mm. The measured value is an average value measured ten times in the longitudinal direction and the width direction of the magnetic tape.

磁気テープの保磁力は、従来では、通常、長手方向の保磁力(HcM )を指していた。これは、HcM が短波長記録時の反磁場による出力低下に影響し、HcM を大きくすると反磁場による出力低下を小さくでき、短波長出力を向上できるので、着目されていたからである。しかし、本発明においては、1TBを超える大容量高密度記録(概ね1.0GB/in2 を超える)媒体に要求される短波長域におけるC,C/Nの向上には、磁気テープの幅方向の保磁力(HcT )を小さくするのが効果的であり、さらに長手方向と幅方向とに分けて保磁力を制御して(HcM /HcT )の値を調整することが、上記特性の向上に極めて効果的であることをはじめて見出したものである。

Conventionally, the coercive force of a magnetic tape usually refers to the coercive force (Hc M ) in the longitudinal direction. This is because Hc M affects the output decrease due to the demagnetizing field at the time of short wavelength recording, and when Hc M is increased, the output decrease due to the demagnetizing field can be reduced and the short wavelength output can be improved. However, in the present invention, in order to improve C and C / N in a short wavelength region required for a large-capacity high-density recording exceeding 1 TB (approximately exceeding 1.0 GB / in 2 ), the width direction of the magnetic tape is used. It is effective to reduce the coercive force (Hc T ) of the material, and further to adjust the value of (Hc M / Hc T ) by controlling the coercive force separately in the longitudinal direction and the width direction. It has been found for the first time that it is extremely effective in improving the above.

本発明において、(HcM /HcT )の値を2.2以上にするための手段は、特に制限されないが、好ましくは以下の(a)〜(d)の方法が挙げられる。

以下の(a)〜(d)の方法を単独で用いて、好ましくはこれらの幾つかを併用することにより、所定の(HcM /HcT )の値を有する磁気テープを製造することができる。もちろん、(HcM /HcT )の値を制御する方法は、以下の(a)〜(d)の方法に限定されず、他の公知の方法を、適宜併用しても差し支えない。

In the present invention, the means for setting the value of (Hc M / Hc T ) to 2.2 or more is not particularly limited, but the following methods (a) to (d) are preferable.

A magnetic tape having a predetermined value (Hc M / Hc T ) can be produced by using the following methods (a) to (d) alone, and preferably using some of them together. . Of course, the method of controlling the value of (Hc M / Hc T ) is not limited to the following methods (a) to (d), and other known methods may be used in combination as appropriate.

(a) 同じ長手方向の保磁力でも、幅方向の保磁力を小さくして、(HcM /HcT )の値を大きくするには、磁性粉末の形状を選定する。

磁性粉の形状は略粒状である。略粒状の磁性粉末とは、軸比(長径/短径)が2未満、好ましくは1.5以下、より好ましくは1.5未満である、球状、略球状、楕円体状、略楕円体状、多面体状、略多面体状、板状、略板状の粒子である。

なお、長径とは、略球状、楕円体状、略楕円体状、多面体状、略多面体状では最大さしわたし径であり、板状、略板状粒子では板径である。また、短径とは、略球状、楕円体状、略楕円体状、多面体状、略多面体状粒子では最大さしわたし径と直角方向のさしわたし最大径であり、板状、略板状粒子では板厚である。

HcM に対し、相対的にHcT をより小さくするには、略粒状の微粒子磁性粉末の粒子サイズは30nm以下が好ましく、20nm以下がより好ましく、15nm以下がさらに好ましく、15nm未満が最も好ましい。また、3nm以上が好ましく、5nm以上がより好ましく、8nm以上がさらに好ましい。この範囲の粒子サイズが好ましいのは、3nm未満では磁性粉末の磁気塗料への分散が難しいため、相対的にHcT が高くなる。また、30nmを超えると、磁気テープのノイズが高くなる。なお、粒子サイズが30nmを超える粒子の混入を排除するものではないが、30nmを超える粒子が混入している場合でも、数平均粒子サイズは30nm以下が好ましい。

(A) To reduce the coercive force in the width direction and increase the value of (Hc M / Hc T ) even with the same longitudinal coercive force, the shape of the magnetic powder is selected.

The shape of the magnetic powder is substantially granular. The substantially granular magnetic powder is a spherical, substantially spherical, ellipsoidal or substantially ellipsoidal shape having an axial ratio (major axis / minor axis) of less than 2, preferably 1.5 or less, more preferably less than 1.5. , Polyhedral, substantially polyhedral, plate-like, and substantially plate-like particles.

In addition, the major axis is the maximum diameter in the case of substantially spherical shape, ellipsoidal shape, substantially elliptical shape, polyhedral shape, and substantially polyhedral shape, and the plate diameter in the case of plate-like and substantially plate-like particles. In addition, the minor axis is the maximum diameter in the direction perpendicular to the diameter of the sphere, ellipsoid, substantially ellipsoid, polyhedron, or polyhedron. For particles, it is the plate thickness.

In order to make Hc T relatively smaller than Hc M , the particle size of the substantially granular fine magnetic powder is preferably 30 nm or less, more preferably 20 nm or less, further preferably 15 nm or less, and most preferably less than 15 nm. Moreover, 3 nm or more is preferable, 5 nm or more is more preferable, and 8 nm or more is further more preferable. The particle size in this range is preferable because if the particle size is less than 3 nm, it is difficult to disperse the magnetic powder in the magnetic coating material, so that the Hc T is relatively high. Moreover, when it exceeds 30 nm, the noise of a magnetic tape will become high. In addition, although mixing of the particle | grains with a particle size exceeding 30 nm is not excluded, even when the particle | grains exceeding 30 nm are mixed, the number average particle size is preferably 30 nm or less.

(b) 焼結の少ない磁性粉末を用いることが好ましい。

本発明の磁気テープに用いられる最上層磁性層に含まれる略粒状の磁性粉末としては、希土類元素、アルミニウム、珪素、ジルコニウム、チタンのように、その酸化物が600℃以下の水素還元によって還元されない元素(特に、希土類元素、アルミニウム、珪素)の少なくとも一つが外層部分に主体的に存在し、かつ鉄または鉄を主体とする遷移金属元素と窒素がコアー部分に主体的に存在するものが好ましい。

磁性粉の外層部分をこのような構成にすることにより、磁性粉製造時の磁性粉どうしの焼結が防止され、HcM に対して、相対的にHcT をより小さくすることができる。さらに、コアー部分がFe162 相を含有する窒化鉄系磁性粉末がより好ましい。また、磁性粉末の粒子毎の窒素等の組成分布が小さいことが好ましい。

(B) It is preferable to use a magnetic powder with little sintering.

As the substantially granular magnetic powder contained in the uppermost magnetic layer used in the magnetic tape of the present invention, its oxides, such as rare earth elements, aluminum, silicon, zirconium and titanium, are not reduced by hydrogen reduction at 600 ° C. or lower. It is preferable that at least one of elements (particularly, rare earth element, aluminum, silicon) is mainly present in the outer layer part, and a transition metal element mainly composed of iron or iron and nitrogen are mainly present in the core part.

By configuring the outer layer portion of the magnetic powder in such a configuration, sintering of the magnetic powders during the production of the magnetic powder can be prevented, and Hc T can be made relatively smaller than Hc M. Furthermore, an iron nitride-based magnetic powder whose core portion contains an Fe 16 N 2 phase is more preferable. Moreover, it is preferable that composition distribution, such as nitrogen for every particle | grains of magnetic powder, is small.

(c) 媒体の長手方向の角形を制御することが好ましい。

記録方向つまり長手方向の保磁力HcM を大きくすることと電磁変換特性を低下させないことのため、長手方向の角形は0.75以上であるのが好ましい。角形は大きければ大きいほど好ましい。理論的な理想値としては1であるが、現実的には0.95程度が限界である。また、媒体のSFD(異方性磁界分布)は小さい方が好ましい。SFDは1.0以下が好ましく、0.7以下がより好ましい。粒子径がそろっている、つまり粒度分布が狭い磁性粉末を用いると、SFDは良好になる。媒体のSFDが小さい方が、同じ長手方向の角形を示しても幅方向の保磁力HcT を小さくする効果がある。粒子径がそろってる方が分散が均一に行えて同様の効果が生じる。

これらを具現化する方法としては、最上層磁性層の塗布後に強い(例えば0.5T以上の)配向磁界を印加し、その後、均一配向磁界(例えば0.1T以上)を最上層磁性層が略乾燥するまで継続して印加すればよい。均一磁界の印加方法としては、反発磁石を多数並べる方法と、ソレノイドを使用する方法、両者の併用方法があり、いずれの方法を採用してもよい。反発磁石を多数並べる方法はランニングコストが安いという長所があるが、反発磁石と反発磁石の間で磁界が磁気媒体膜面方向に対して磁界が垂直方向に立ったり、磁界がない部分や反転が生じたりするので、磁性塗膜の乾燥位置を長手方向に磁界が生じている部分にうまく合わせる必要がある。一方、ソレノイドを使用する方法は電力等のランニングコストは高いが、配向磁界が磁気記録媒体の長手方向に正確に向くので、磁性粉末の磁化容易軸の長手方向への配向が良くなり、長手方向の保磁力と幅方向の保磁力との比(HcM /HcT )が非常に大きくなるという長所を有する。

(C) It is preferable to control the square in the longitudinal direction of the medium.

In order to increase the coercive force Hc M in the recording direction, that is, the longitudinal direction and not to deteriorate the electromagnetic conversion characteristics, the longitudinal square is preferably 0.75 or more. The larger the square, the better. The theoretical ideal value is 1, but in reality, about 0.95 is the limit. The medium preferably has a smaller SFD (anisotropic magnetic field distribution). SFD is preferably 1.0 or less, and more preferably 0.7 or less. When magnetic powder having a uniform particle size, that is, a narrow particle size distribution is used, the SFD is improved. A smaller SFD of the medium has an effect of reducing the coercive force Hc T in the width direction even if the same longitudinal square is shown. If the particle diameter is uniform, the dispersion can be performed uniformly and the same effect is produced.

As a method for embodying these, a strong (for example, 0.5 T or more) orientation magnetic field is applied after the uppermost magnetic layer is applied, and then the uniform magnetic field (for example, 0.1 T or more) is applied to the uppermost magnetic layer. What is necessary is just to apply continuously until it dries. As a method for applying a uniform magnetic field, there are a method in which a large number of repulsive magnets are arranged, a method in which a solenoid is used, and a method in which both are used, and either method may be adopted. The method of arranging a large number of repulsive magnets has the advantage that the running cost is low, but the magnetic field between the repulsive magnets and the repulsive magnets stands perpendicular to the magnetic medium film surface direction, or there is no magnetic field or inversion. Therefore, it is necessary to adjust the drying position of the magnetic coating film to the portion where the magnetic field is generated in the longitudinal direction. On the other hand, the method using a solenoid has a high running cost such as electric power, but since the orientation magnetic field is accurately oriented in the longitudinal direction of the magnetic recording medium, the orientation of the magnetic powder in the longitudinal direction of the easy axis of magnetization is improved. The ratio (Hc M / Hc T ) between the coercive force and the coercive force in the width direction is very large.

(d) HcM に対して、相対的にHcT をより小さくするには、磁性塗料での磁性粉の分散性を向上させることが有効である。

このための手法は、微粒子磁性粉の分散性を上げるために従来から用いられている公知の手法が可能であり、これらを適宜組み合せて実施すればよい。磁性塗料の調製においては、磁性粉を混練する前に、分散工程で良くほぐれるように、予め分散剤や樹脂と一緒に高速撹拌混合しておくのが好ましい。

混練には、樹脂とよくなじむように、大きなせん断力がかかる加圧型混練機や連続式2軸混練機等を用いるのが好ましく、通常の混練機であるならば、磁性粉末のバッチ量を適宜工夫するのが好ましい。分散は、通常のサンドミル型の分散機でよい。分散メディアとしては、従来の一般的な材質のものが使えるが、粒径が1mm未満で、チタニア、ジルコニアを主成分とするビーズを使用するのが好ましい。これは小粒径で比重が大きいほど分散能力が大きく、磁性粉がよくほぐれて配向しやすく、かつテープ幅方向の保磁力が小さくなりやすいからである。また、磁性粉末の表面を分散しやすいように、公知の表面処理剤で処理してもよい。さらに、バインダとして用いる樹脂には、分散性を向上させる官能基を持つ従来公知の樹脂を使用するのが好ましい。

(D) It is effective to improve the dispersibility of the magnetic powder in the magnetic coating material in order to make Hc T relatively smaller than Hc M.

As a technique for this purpose, a known technique conventionally used for increasing the dispersibility of the fine particle magnetic powder is possible, and these may be carried out by appropriately combining them. In preparing the magnetic coating material, it is preferable to stir and mix with a dispersant and a resin in advance at high speed before kneading the magnetic powder so that the magnetic powder can be unraveled well.

For kneading, it is preferable to use a pressure-type kneader or a continuous biaxial kneader that applies a large shearing force so as to be well blended with the resin. If it is a normal kneader, the batch amount of the magnetic powder is appropriately set. It is preferable to devise. The dispersion may be a normal sand mill type disperser. As the dispersion medium, a conventional general material can be used, but it is preferable to use beads having a particle diameter of less than 1 mm and mainly composed of titania and zirconia. This is because the smaller the particle size and the larger the specific gravity, the larger the dispersion ability, the more easily the magnetic powder is loosened and oriented, and the coercive force in the tape width direction tends to be small. Moreover, you may process with a well-known surface treating agent so that the surface of magnetic powder may be disperse | distributed easily. Furthermore, as the resin used as the binder, it is preferable to use a conventionally known resin having a functional group that improves dispersibility.

本発明の好ましい形態としては、下記のようである。

(1) 非磁性支持体と、この支持体の一方の面上に形成された磁性粉末とバインダ樹脂とを含む少なくとも1層の磁性層とを有する磁気テープにおいて、最上層磁性層に含まれる磁性粉末が粒子サイズ30nm以下の略粒状の磁性粒子であり、長手方向の保磁力と記録面内における幅方向の保磁力との比(長手方向との保磁力/幅方向の保磁力)が2.2以上である磁気テープ。特に、最上層磁性層に含まれる磁性粉末の粒子サイズが20nm以下であるのがより好ましい。

(2) 最上層磁性層の長手方向の保磁力が160〜400kA/m、より好ましくは200〜400kA/mである磁気テープ。

(3) 最上層磁性層の幅方向の保磁力が16〜180kA/m、より好ましくは20〜120kA/mである磁気テープ。

(4) 最上層磁性層における〔(長手方向の保磁力)−(幅方向の保磁力)〕の値が155〜360kA/mである磁気テープ。

(5) 最上層磁性層の厚さが0.09μm以下である磁気テープ。

(6) 最上層磁性層の残留磁束密度(Br)と厚さ(δ)の積(Br・δ)が0.0018μTm以上、0.05μTm以下である磁気テープ。

(7) 非磁性支持体と最上層磁性層との間に、非磁性粉末とバインダ樹脂を含む少なくとも1層の下層を有する磁気テープ。

(8) 非磁性支持体の他方の面上に形成されたバック層を有する磁気テープ。

(9) バック層がカーボンブラック粉末と結合剤とを含有するバックコート層である磁気テープ。

(10) テープの全厚が6μm未満である磁気テープ。

(11) 最上層磁性層に含まれる略粒状の磁性粉末が、外層部分とコアー部分からなる磁性粉末である磁気テープ。

(12) 最上層磁性層に含まれる磁性粉末が、粒子サイズ20nm以下の略粒状粒子で、軸比が1.5未満である磁気テープ。

(13) 最上層磁性層に含まれる略粒状の磁性粉末の粒子サイズが15nm未満で軸比が1.5未満である磁気テープ。

(14) 最上層磁性層に含まれる磁性粉末が、希土類元素、アルミニウム、珪素、チタン、ジルコニウムのようにその酸化物が600℃以下の水素還元温度で還元されない元素(特に、希土類元素、アルミニウム、珪素)の少なくとも一つが磁性粉末の外層部分に主体的に存在する磁性粉末である磁気テープ。

(15) 最上層磁性層に含まれる略粒状の磁性粉末のコアー部分が、鉄または鉄の一部が遷移金属元素で置換された窒化鉄相からなる窒化鉄系磁性粉末である磁気テープ。

(16) 最上層磁性層に含まれる略粒状の窒化鉄系磁性粉末のコアー部分の窒化鉄相が鉄または鉄の一部が遷移金属元素で置換されたFe162 相を含有する磁気テープ。なお、Fe162 相は、鉄(Fe)の一部が鉄以外の元素、窒素(N)の一部が窒素以外の元素で置換されたもの、鉄と窒素の化学量論量が16:2よりずれたものを含む。

(17) 最上層磁性層に含まれる略粒状の窒化鉄系磁性粉末中の希土類元素の含有量が鉄に対して0.05〜20原子%である磁気テープ。

(18) 最上層磁性層に含まれる略粒状の磁性粉末中の希土類元素の含有量が、鉄に対して0.5〜15原子%である磁気テープ。

(19) 最上層磁性層に含まれる略粒状の磁性粉末中のアルミニウムの含有量が、鉄に対して0.5〜15原子%である磁気テープ。

(20) 最上層磁性層に含まれる略粒状の磁性粉末中の珪素の含有量が、鉄に対して0.5〜15原子%である磁気テープ。

(21) 最上層磁性層に含まれる略粒状の窒化鉄系磁性粉末中の窒素の含有量が、鉄に対して1.0〜20原子%である磁気テープ。

(22) 最上層磁性層に含まれる略粒状の窒化鉄系磁性粉末中の窒素の含有量が、鉄に対して2.0〜12.5原子%である磁気テープ。

(23) 最上層磁性層に含まれる略粒状の希土類−窒化鉄系磁性粉末中の希土類元素は、サマリウム、ネオジム、イットリウムの中から選ばれた少なくとも1種の元素である磁気テープ。

(24) 箱状のケース本体と、このケース本体の内部に配置された磁気テープを巻装したリールを有してなり、この磁気テープに記録された磁気記録信号は磁気抵抗効果型磁気ヘッド(MRヘッド)で再生される磁気記録カートリッジ。

Preferred embodiments of the present invention are as follows.

(1) In a magnetic tape having a nonmagnetic support and at least one magnetic layer including a magnetic powder and a binder resin formed on one surface of the support, the magnetic content contained in the uppermost magnetic layer The powder is a substantially granular magnetic particle having a particle size of 30 nm or less, and the ratio of the coercive force in the longitudinal direction to the coercive force in the width direction in the recording surface (coercive force in the longitudinal direction / coercive force in the width direction) is 2. Magnetic tape that is 2 or more. In particular, the particle size of the magnetic powder contained in the uppermost magnetic layer is more preferably 20 nm or less.

(2) A magnetic tape in which the coercive force in the longitudinal direction of the uppermost magnetic layer is 160 to 400 kA / m, more preferably 200 to 400 kA / m.

(3) A magnetic tape in which the coercive force in the width direction of the uppermost magnetic layer is 16 to 180 kA / m, more preferably 20 to 120 kA / m.

(4) A magnetic tape having a value of [(coercivity in the longitudinal direction) − (coercivity in the width direction)] in the uppermost magnetic layer is 155 to 360 kA / m.

(5) A magnetic tape in which the uppermost magnetic layer has a thickness of 0.09 μm or less.

(6) The magnetic tape in which the product (Br · δ) of the residual magnetic flux density (Br) and the thickness (δ) of the uppermost magnetic layer is 0.0018 μTm or more and 0.05 μTm or less.

(7) A magnetic tape having at least one lower layer containing nonmagnetic powder and a binder resin between the nonmagnetic support and the uppermost magnetic layer.

(8) A magnetic tape having a back layer formed on the other surface of the nonmagnetic support.

(9) A magnetic tape in which the back layer is a back coat layer containing carbon black powder and a binder.

(10) Magnetic tape whose total thickness is less than 6 μm.

(11) A magnetic tape in which the substantially granular magnetic powder contained in the uppermost magnetic layer is a magnetic powder comprising an outer layer portion and a core portion.

(12) A magnetic tape in which the magnetic powder contained in the uppermost magnetic layer is substantially granular particles having a particle size of 20 nm or less and an axial ratio is less than 1.5.

(13) A magnetic tape in which the particle size of the substantially granular magnetic powder contained in the uppermost magnetic layer is less than 15 nm and the axial ratio is less than 1.5.

(14) The magnetic powder contained in the uppermost magnetic layer is an element in which the oxide is not reduced at a hydrogen reduction temperature of 600 ° C. or less, such as rare earth elements, aluminum, silicon, titanium, zirconium (especially rare earth elements, aluminum, A magnetic tape in which at least one of silicon is a magnetic powder mainly existing in an outer layer portion of the magnetic powder.

(15) A magnetic tape in which a core portion of a substantially granular magnetic powder contained in the uppermost magnetic layer is an iron nitride-based magnetic powder composed of iron nitride phase in which iron or a part of iron is substituted with a transition metal element.

(16) A magnetic tape containing an Fe 16 N 2 phase in which the iron nitride phase of the core portion of the substantially granular iron nitride magnetic powder contained in the uppermost magnetic layer is iron or a part of the iron is replaced with a transition metal element . In the Fe 16 N 2 phase, a part of iron (Fe) is replaced with an element other than iron, a part of nitrogen (N) is replaced with an element other than nitrogen, and the stoichiometric amount of iron and nitrogen is 16 : Includes deviations from 2.

(17) A magnetic tape in which the content of rare earth elements in the substantially granular iron nitride magnetic powder contained in the uppermost magnetic layer is 0.05 to 20 atomic% with respect to iron.

(18) A magnetic tape in which the content of rare earth elements in the substantially granular magnetic powder contained in the uppermost magnetic layer is 0.5 to 15 atomic% with respect to iron.

(19) A magnetic tape in which the content of aluminum in the substantially granular magnetic powder contained in the uppermost magnetic layer is 0.5 to 15 atomic% with respect to iron.

(20) A magnetic tape in which the content of silicon in the substantially granular magnetic powder contained in the uppermost magnetic layer is 0.5 to 15 atomic% with respect to iron.

(21) A magnetic tape in which the content of nitrogen in the substantially granular iron nitride magnetic powder contained in the uppermost magnetic layer is 1.0 to 20 atomic% with respect to iron.

(22) A magnetic tape in which the content of nitrogen in the substantially granular iron nitride magnetic powder contained in the uppermost magnetic layer is 2.0 to 12.5 atomic% with respect to iron.

(23) The magnetic tape in which the rare earth element in the substantially granular rare earth-iron nitride magnetic powder contained in the uppermost magnetic layer is at least one element selected from samarium, neodymium, and yttrium.

(24) It has a box-shaped case body and a reel on which a magnetic tape disposed inside the case body is wound, and a magnetic recording signal recorded on the magnetic tape is a magnetoresistive effect type magnetic head ( MR recording head).

このように、本発明によれば、特定形状の微粒子磁性粉末を使用して、これを含ませた磁性層の配向構造を規制したことにより、電磁変換特性に優れた磁気テープ、特に、再生出力ノイズ比(C/N)の高い磁気テープを提供することができる。

As described above, according to the present invention, a magnetic tape having excellent electromagnetic conversion characteristics, in particular, a reproduction output, is obtained by using a fine-particle magnetic powder having a specific shape and regulating the orientation structure of the magnetic layer containing the powder. A magnetic tape having a high noise ratio (C / N) can be provided.

以下に、本発明の磁気テープの構成要素として、磁性粉末、非磁性支持体、磁性層、磁性塗料の調製、磁場配向処理、下層、潤滑剤、バック層、有機溶剤の順に、項分けして、詳しく説明することにする。

The components of the magnetic tape of the present invention are as follows: magnetic powder, nonmagnetic support, magnetic layer, magnetic coating preparation, magnetic field orientation treatment, lower layer, lubricant, back layer, and organic solvent. I will explain in detail.

<磁性粉末>
略粒状の微粒子磁性粉末には、平均粒子サイズが5〜200nm、保磁力が80〜400kA/mの希土類−鉄−ホウ素系磁性粉末(特開2001−181754号公報)、希土類−鉄系磁性粉末(特開2002−56518号公報)がある。

また、希土類元素は含まないが、Fe162 相を主相としたBET比表面積が10m2 /g以上の窒化鉄系磁性粉末(特開2000−277311号公報)がある。得られる保磁力は200kA/m未満と小さく、粒子サイズは不明である。

さらに、焼結防止効果、高保磁力化効果、安定性(耐食性)向上効果の高い希土類元素、アルミニウム、珪素から選ばれる元素の少なくとも一つを磁性粉末の外層部分に主体的に存在させることで、保磁力を210kA/m以上と高くした、塗料分散性、酸化安定性に優れた、平均粒子サイズが5〜50nmの(希土類、アルミニウム、珪素)−窒化鉄系磁性粉末(WO03/079332A1、WO03/079333A1)がある。

<Magnetic powder>
The substantially granular fine particle magnetic powder includes rare earth-iron-boron magnetic powder having an average particle size of 5 to 200 nm and a coercive force of 80 to 400 kA / m (Japanese Patent Laid-Open No. 2001-181754), rare earth-iron magnetic powder. (Japanese Patent Laid-Open No. 2002-56518).

Moreover, there is an iron nitride-based magnetic powder (Japanese Patent Laid-Open No. 2000-277311) that does not contain rare earth elements but has a BET specific surface area of 10 m 2 / g or more with an Fe 16 N 2 phase as a main phase. The coercive force obtained is as small as less than 200 kA / m, and the particle size is unknown.

Furthermore, by making at least one element selected from rare earth elements, aluminum, and silicon, which have a high anti-sintering effect, a high coercive force effect, and a stability (corrosion resistance) improving effect, mainly present in the outer layer portion of the magnetic powder, (Rare earth, aluminum, silicon) -iron nitride magnetic powder (WO03 / 079322A1, WO03 /) having a coercive force as high as 210 kA / m or more, excellent in paint dispersibility and oxidation stability, and having an average particle size of 5 to 50 nm 079333A1).

これらの磁性粉末の中で、粒子サイズが30nm以下で、軸比(長軸長/短軸長)が2未満である、略粒状の窒化鉄系微粒子磁性粉末が、本発明の最上層磁性層の微粒子磁性粉末として、特に好ましい。

また、希土類、アルミニウム、珪素、ジルコニウム、チタン等のようにその酸化物が600℃以下の水素還元温度で還元されない元素(特に希土類元素、アルミニウム、珪素)の少なくとも一つの元素を外層部分に主体的に含有し、コアー部分に鉄または鉄を主体とする遷移金属の窒化物を主体的に含有する窒化鉄系微粒子磁性粉末がより好ましい。

さらに、外層部分に希土類元素、アルミニウム、珪素の少なくとも一つの元素を含有し、かつコアー部分にFe162 を含有する窒化鉄系微粒子磁性粉末がいっそう好ましい。ここでいうコアー部分にFe162 を含有する窒化鉄系微粒子磁性粉末には、Fe162 相が、鉄(Fe)の一部が鉄以外の元素、窒素(N)の一部が窒素以外の元素で置換されたもの、鉄と窒素の化学量論量が16:2よりずれたものを含む。

Among these magnetic powders, a substantially granular iron nitride fine particle magnetic powder having a particle size of 30 nm or less and an axial ratio (major axis length / minor axis length) of less than 2 is the uppermost magnetic layer of the present invention. Particularly preferred as a fine magnetic powder.

Further, at least one element such as rare earth, aluminum, silicon, zirconium, titanium, etc. whose oxide is not reduced at a hydrogen reduction temperature of 600 ° C. or less (particularly rare earth element, aluminum, silicon) is mainly used in the outer layer portion. It is more preferable to use iron nitride-based fine particle magnetic powder mainly containing iron or a transition metal nitride mainly composed of iron in the core portion.

Furthermore, an iron nitride-based fine particle magnetic powder containing at least one element of rare earth element, aluminum, or silicon in the outer layer portion and Fe 16 N 2 in the core portion is more preferable. The iron nitride-based fine particle magnetic powder containing Fe 16 N 2 in the core portion mentioned here has an Fe 16 N 2 phase, an iron (Fe) part of which is an element other than iron, and a part of nitrogen (N). Includes those substituted with elements other than nitrogen, and those in which the stoichiometric amounts of iron and nitrogen deviate from 16: 2.

なお、希土類、アルミニウム、珪素、ジルコニウム、チタン等のようにその酸化物が600℃以下の水素還元温度で還元されない元素を外層部分に主体的に含有させる理由は、磁性粉末の製造工程の一つである水素還元工程における粒子間の焼結を防止して粒子サイズの小さい窒化鉄系微粒子磁性粉末を得やすくするためである。また、コアー部分に窒化物(特に、Fe162 相)主体的に含有させる理由は、保磁力、飽和磁化の高い窒化鉄系微粒子磁性粉末を得やすくするためである。

The reason why the outer layer portion mainly contains an element whose oxide is not reduced at a hydrogen reduction temperature of 600 ° C. or less, such as rare earth, aluminum, silicon, zirconium, titanium, etc. is one of the manufacturing processes of magnetic powder. This is to prevent sintering between particles in the hydrogen reduction step and to easily obtain an iron nitride fine particle magnetic powder having a small particle size. The reason why the core portion mainly contains nitride (particularly, Fe 16 N 2 phase) is to make it easy to obtain iron nitride-based fine particle magnetic powder having high coercive force and saturation magnetization.

また、必要に応じて、アルミニウム、珪素、リン、ジルコニウムのように分散性向上に有効な元素または化合物を、磁性粉末表面にさらに含有または吸着させてもよい。また、必要に応じて、炭素、カルシウム、マンガン、マグネシウム、バリウム、ストロンチウムまたはこれらの化合物を、磁性粉末表面に含有または吸着させてもよい。

前記の希土類元素には、イットリウム、イッテルビウム、セシウム、プラセオジム、ランタン、サマリウム、ユーロピウム、ネオジム、テルビウム等が挙げられる。これらのうち、イットリウム、サマリウムまたはネオジムが、還元時の粒子形状の維持効果が大きいので、これらの少なくとも1種を選択使用するのが望ましい。

Further, if necessary, an element or compound effective for improving dispersibility such as aluminum, silicon, phosphorus, and zirconium may be further contained or adsorbed on the surface of the magnetic powder. If necessary, carbon, calcium, manganese, magnesium, barium, strontium, or a compound thereof may be contained or adsorbed on the surface of the magnetic powder.

Examples of the rare earth element include yttrium, ytterbium, cesium, praseodymium, lanthanum, samarium, europium, neodymium, and terbium. Of these, yttrium, samarium or neodymium has a large effect of maintaining the particle shape during reduction, and therefore it is desirable to selectively use at least one of these.

粒子サイズは、30nm以下が好ましく、20nm以下がより好ましく、15nm未満がさらに好ましい。粒子サイズを3nm以上にすると、磁性塗料調製時の分散が容易である。5nm以上がより好ましく、8nm以上がさらに好ましい。

粒子サイズが30nmを超えたり、3nm未満の磁性粒子の混入を排除するものではないが、その場合でも、平均粒子サイズが30nm以下、3nm以上が好ましい。また、軸比(長径/短径)は2未満であるのが磁性粉末の充填性が高くなるので好ましく、1.5以下がより好ましく、1.5未満がさらに好ましい。軸比が2を超える磁性粒子の混入を排除するものではないが、その場合でも、平均軸比が2未満が好ましい。

The particle size is preferably 30 nm or less, more preferably 20 nm or less, and even more preferably less than 15 nm. When the particle size is 3 nm or more, dispersion during preparation of the magnetic paint is easy. 5 nm or more is more preferable, and 8 nm or more is more preferable.

Although it does not exclude the inclusion of magnetic particles having a particle size of more than 30 nm or less than 3 nm, even in that case, the average particle size is preferably 30 nm or less and 3 nm or more. Further, the axial ratio (major axis / minor axis) is preferably less than 2, since the filling property of the magnetic powder becomes high, preferably 1.5 or less, more preferably less than 1.5. Although mixing of magnetic particles with an axial ratio exceeding 2 is not excluded, even in that case, the average axial ratio is preferably less than 2.

なお、粒子サイズは、透過型電子顕微鏡(TEM)により倍率20万倍で撮影した写真から求めた最大さしわたし径(長軸径)である。

平均粒子サイズは、同写真から粒子サイズ(最大さしわたし径、長軸径)を求め、50個の粒子サイズを算術平均して求めた。

また、軸比は、同写真から求めた最大さしわたし径(長軸径)と、最大さしわたし径方向と直交する方向のさしわたし最大径(短軸径)との比〔(最大さしわたし径)/(最大さしわたし径方向と直交する方向のさしわたし最大径)〕である。

平均軸比は、個々の粒子の軸比を求め、50個の軸比を算術平均して求めた。テープ状となった媒体においての磁性粉粒子サイズは、媒体の縦断面(長手方向に切断)の走査型電子顕微鏡(SEM)写真を倍率20万倍で撮影して求めた。

The particle size is the maximum diameter (major axis diameter) obtained from a photograph taken at a magnification of 200,000 with a transmission electron microscope (TEM).

The average particle size was obtained by calculating the particle size (maximum diameter and major axis diameter) from the photograph and arithmetically averaging 50 particle sizes.

Also, the axial ratio is the ratio of the maximum diameter (long axis diameter) obtained from the photo to the maximum diameter (short axis diameter) in the direction perpendicular to the maximum diameter direction. Sashimi diameter) / (maximum squeezing diameter in the direction perpendicular to the squeezing diameter direction)].

The average axial ratio was obtained by calculating the axial ratio of individual particles and arithmetically averaging the 50 axial ratios. The magnetic powder particle size in the tape-shaped medium was determined by taking a scanning electron microscope (SEM) photograph of the longitudinal section (cut in the longitudinal direction) of the medium at a magnification of 200,000 times.

磁性粉末の外層部分に主体的に存在する希土類元素、アルミニウム、珪素、ジルコニウム、チタン等の、鉄に対する合算含有量は、0.2〜20原子%が好ましく、2〜10原子%がより好ましい。希土類元素、アルミニウム、珪素、ジルコニウム、チタン等の合算含有量が少なすぎると、還元時に焼結などにより粗大粒子が生成しやすくなり、粒度分布が悪くなり、幅方向の保磁力(HcT )が大きくなりやすく、好ましくない。また、希土類元素、アルミニウム、珪素、ジルコニウム、チタン等の合算含有量が多すぎると、飽和磁化の過度な低下が起こりやすく、好ましくない。

合算含有量の中で、希土類元素の含有量は、0.2〜15原子%が好ましく、2〜10原子%がより好ましい。希土類元素が多すぎると、コストアップの要因になるばかりでなく、飽和磁化の過度な低下が起こりやすい。希土類元素が少なすぎると、希土類元素に基づく磁気異方性の寄与が小さくなる場合がある。

The total content of iron such as rare earth elements, aluminum, silicon, zirconium, titanium, and the like mainly present in the outer layer portion of the magnetic powder is preferably 0.2 to 20 atomic%, and more preferably 2 to 10 atomic%. If the total content of rare earth elements, aluminum, silicon, zirconium, titanium, etc. is too small, coarse particles are likely to be generated by sintering during reduction, particle size distribution is deteriorated, and the coercive force (Hc T ) in the width direction is reduced. It tends to be large and is not preferable. Further, if the total content of rare earth elements, aluminum, silicon, zirconium, titanium, etc. is too large, the saturation magnetization tends to be excessively lowered, which is not preferable.

In the total content, the content of rare earth elements is preferably 0.2 to 15 atomic%, and more preferably 2 to 10 atomic%. If there are too many rare earth elements, not only will the cost increase, but the saturation magnetization will tend to decrease excessively. When there are too few rare earth elements, the contribution of the magnetic anisotropy based on rare earth elements may become small.

鉄に対する窒素の含有量は、1.0〜20原子%が好ましく、3〜13原子%がより好ましい。8〜13原子%がさらに好ましい。

鉄に対する窒素の含有量が少なすぎると、Fe162 相の形成量が少なく、磁気異方性の寄与が小さく、保磁力増加や飽和磁化増加の効果(特に、保磁力増加効果)が小さくなる。また、鉄に対する窒素の含有量が多すぎると、Fe4 NやFe3 N等の保磁力や飽和磁化の小さい窒化鉄や、非磁性窒化物が形成されやすく、保磁力増加や飽和磁化増加の効果が少なくなり、特に飽和磁化の低下が過度になる。

The content of nitrogen with respect to iron is preferably 1.0 to 20 atomic%, and more preferably 3 to 13 atomic%. 8-13 atomic% is more preferable.

If the content of nitrogen relative to iron is too small, the amount of Fe 16 N 2 phase formed will be small, the contribution of magnetic anisotropy will be small, and the effect of increasing coercivity and increasing saturation magnetization (especially the effect of increasing coercivity) will be small. Become. In addition, if the content of nitrogen relative to iron is too large, iron nitride with a small coercive force and saturation magnetization such as Fe 4 N and Fe 3 N and nonmagnetic nitride are likely to be formed, and increase in coercive force and increase in saturation magnetization will occur. The effect is reduced, and particularly the saturation magnetization is excessively lowered.

最上層磁性層の長手方向の保磁力は、160〜400kA/mが好ましく、200〜400kA/mがより好ましく、220kA/m以上がさらに好ましく、250kA/m以上がいっそう好ましい。160kA/m未満では、記録波長を十分小さくし難く、400kA/mを超えると、磁気ヘッドによる記録が不十分になる場合がある。380kA/m以下が好ましく、350kA/m以下がより好ましい。

磁性粉末のBET比表面積は、40〜200m2 /gが好ましく、50m2 /g以上がより好ましく、60m2 /g以上がさらに好ましい。40m2 /g未満だと、保磁力が十分高くなりにくく、200m2 /gを超えると、塗料分散性が低下したり、化学的に不安定になったりする場合がある。100m2 /g以下がより好ましい。

The coercive force in the longitudinal direction of the uppermost magnetic layer is preferably 160 to 400 kA / m, more preferably 200 to 400 kA / m, still more preferably 220 kA / m or more, and even more preferably 250 kA / m or more. If it is less than 160 kA / m, it is difficult to make the recording wavelength sufficiently small, and if it exceeds 400 kA / m, recording by the magnetic head may be insufficient. 380 kA / m or less is preferable, and 350 kA / m or less is more preferable.

BET specific surface area of the magnetic powder is preferably 40 to 200 m 2 / g, more preferably at least 50 m 2 / g, more 60 m 2 / g is more preferred. If it is less than 40 m 2 / g, the coercive force is not likely to be sufficiently high, and if it exceeds 200 m 2 / g, the dispersibility of the paint may be lowered or chemically unstable. 100 m 2 / g or less is more preferable.

磁性粉末の飽和磁化は、70〜160Am2 /kg(70〜160emu/g)が好ましい。この範囲が好ましいのは、70Am2 /kg未満では再生出力が低くなりやすく、160Am2 /kgを超えると磁性粉末の凝集力が大きくなって、塗料調製時の分散時間が長くなりすぎる場合があるからである。80Am2 /kg以上がより好ましく、90Am2 /kg以上がさらに好ましい。また、140Am2 /kg以下が塗料調製時の分散が容易で、かつ飽和磁化の経時劣化も少ない。

The saturation magnetization of the magnetic powder is preferably 70 to 160 Am 2 / kg (70 to 160 emu / g). This range is preferable, 70 Am 2 / is less than kg likely lower reproduction output, 160Am 2 / kg increased more than the cohesive force of the magnetic powder, and in some cases the dispersion time at the paint preparation is too long Because. 80 Am 2 / kg or more is more preferable, and 90 Am 2 / kg or more is more preferable. In addition, 140 Am 2 / kg or less is easy to disperse at the time of preparing the coating material, and there is little deterioration of the saturation magnetization with time.

上述のように、本発明の希土類−窒化鉄系磁性粉末は、磁気記録媒体用磁性粉として優れた特性を有するが、それとともに、この磁性粉末は、保存安定性にも優れ、これ自体、あるいは磁気記録媒体にしたものを高温多湿環境下に保存したとき、飽和磁化などの磁気特性の劣化が少ないので、高密度記録用磁気記録媒体に適している。

本発明において、MRヘッドを用いて高いC/Nを実現するには、上記の希土類−窒化鉄系磁性粉末をはじめとした略粒状の窒化鉄系微粒子磁性粉末が特に好ましい。以下に、この特に好ましい窒化鉄系磁性粉末の製造方法について、説明する。

As described above, the rare earth-iron nitride magnetic powder of the present invention has excellent characteristics as a magnetic powder for a magnetic recording medium. At the same time, the magnetic powder is excellent in storage stability, itself or When a magnetic recording medium is stored in a high-temperature and high-humidity environment, it is suitable for a magnetic recording medium for high-density recording because there is little deterioration in magnetic characteristics such as saturation magnetization.

In the present invention, in order to achieve a high C / N ratio using an MR head, a substantially granular iron nitride-based fine particle magnetic powder including the rare earth-iron nitride-based magnetic powder is particularly preferable. Below, the manufacturing method of this especially preferable iron nitride type magnetic powder is demonstrated.

本発明の上記(希土類元素、アルミニウム、珪素)系窒化鉄系磁性粉末は、WO03/079332A1、WO03/079333A1に記載のように、出発原料としてヘマタイト、マグネタイト、ゲータイトのような鉄系酸化物または水酸化物を用い、これに希土類元素、アルミニウム、珪素から選ばれる少なくとも元素を被着したのち、水素ガス等の還元性ガス中、300〜600℃の温度で加熱還元処理を行い、その後、アンモニアを含むガス中、100〜300℃の温度で窒化処理を行うことにより、製造される。

ここで、出発材料としての鉄系酸化物または水酸化物の粒度分布は、小さい方が幅方向の保磁力(HcT )が小さくなりやすく、好ましい。また、粒子毎の窒素の組成分布を抑制するためには、低温で長時間窒化処理を行うのが好ましい。

The (rare earth element, aluminum, silicon) -based iron nitride magnetic powder of the present invention is prepared by using iron-based oxides such as hematite, magnetite, goethite, or water as described in WO03 / 079332A1 and WO03 / 079333A1. An oxide is used, and at least an element selected from rare earth elements, aluminum, and silicon is deposited thereon, and then heat reduction treatment is performed at a temperature of 300 to 600 ° C. in a reducing gas such as hydrogen gas. It manufactures by performing a nitriding process at the temperature of 100-300 degreeC in the gas to contain.

Here, the particle size distribution of the iron-based oxide or hydroxide as the starting material is preferably smaller because the coercive force (Hc T ) in the width direction tends to be smaller. In order to suppress the nitrogen composition distribution for each particle, it is preferable to perform nitriding for a long time at a low temperature.

このように製造される(希土類元素、アルミニウム、珪素)系窒化鉄系磁性粉末に、さらにアルミニウム、珪素、リン、ジルコニウム、炭素、カルシウム、マグネシウム、ジルコニウム、バリウム、ストロンチウム等を吸着または含有させてもよい。処理方法としては、WO03/079333A1に記載の方法で製造される希土類元素等を被着したマグネタイト粒子を、アルミニウム塩等の水溶液に浸漬して、マグネタイト粒子表面にアルミニウムを吸着する方法等が挙げられる。

The (rare earth element, aluminum, silicon) -based iron nitride magnetic powder thus produced may be further adsorbed or contained with aluminum, silicon, phosphorus, zirconium, carbon, calcium, magnesium, zirconium, barium, strontium, or the like. Good. Examples of the treatment method include a method in which magnetite particles coated with a rare earth element and the like produced by the method described in WO03 / 079333A1 are immersed in an aqueous solution such as an aluminum salt to adsorb aluminum on the surface of the magnetite particles. .

磁性粉末には、六方晶Ba−フエライト磁性粉を使用することもできるが、この場合、六方晶Ba−フエライト磁性粉の飽和磁化量は40〜70A・m2 /kg(40〜70emu/g)の範囲にあるのが好ましい。また、この六方晶Ba−フエライト磁性粉の場合も、前記と同様の理由で、最上層磁性層の長手方向の保磁力は160〜400kA/mが好ましく、200〜400kA/mがより好ましく、220kA/m以上がさらに好ましく、250kA/m以上がいっそう好ましい。さらに、六方晶Ba−フエライト磁性粉のBET比表面積は1〜100m2 /gの範囲にあるのが好ましい。

Hexagonal Ba-ferrite magnetic powder can also be used as the magnetic powder. In this case, the saturation magnetization of the hexagonal Ba-ferrite magnetic powder is 40 to 70 A · m 2 / kg (40 to 70 emu / g). It is preferable that it exists in the range. In the case of this hexagonal Ba-ferrite magnetic powder, the coercive force in the longitudinal direction of the uppermost magnetic layer is preferably 160 to 400 kA / m, more preferably 200 to 400 kA / m, and 220 kA for the same reason as described above. / M or more is more preferable, and 250 kA / m or more is more preferable. Further, the BET specific surface area of the hexagonal Ba-ferrite magnetic powder is preferably in the range of 1 to 100 m 2 / g.

また、粒子サイズ(板面方向の最大さしわたし)(以下、板径ともいう)は3〜30nmが好ましく、5〜20nmがより好ましい。3nm未満では粒子の表面エネルギーが増大するため、塗料中への分散が困難になり、30nmを超えると粒子の大きさに基づく粒子ノイズが大きくなる。

さらに、軸比(板径/板厚)(以下、板状比ともいう)は2未満が好ましく、1.5以下がより好ましく、1.5未満がさらに好ましい。板状比が2以上では、長手方向に磁界を印加して板状磁性粉末の板面を、最上層磁性層の長手方向に配向させても、カレンダ工程で板状磁性粉末の板面が最上層磁性層の垂直方向に倒れて、(HcM /HcT )が小さくなったり、カレンダ工程で板状の磁性粉末が下層に食い込んで最上層磁性層と下層の界面が乱れてノイズが高くなるおそれがある。

The particle size (maximum size in the plate surface direction) (hereinafter also referred to as plate diameter) is preferably 3 to 30 nm, more preferably 5 to 20 nm. If it is less than 3 nm, the surface energy of the particles increases, so that dispersion in the paint becomes difficult. If it exceeds 30 nm, particle noise based on the size of the particles increases.

Furthermore, the axial ratio (plate diameter / plate thickness) (hereinafter also referred to as plate-like ratio) is preferably less than 2, more preferably 1.5 or less, and even more preferably less than 1.5. When the plate ratio is 2 or more, even if a magnetic field is applied in the longitudinal direction and the plate surface of the plate-like magnetic powder is oriented in the longitudinal direction of the uppermost magnetic layer, the plate surface of the plate-like magnetic powder is the most in the calendar process. Tilt in the vertical direction of the upper magnetic layer, (Hc M / Hc T ) becomes smaller, or plate-like magnetic powder bites into the lower layer in the calendar process, disturbing the interface between the uppermost magnetic layer and the lower layer and increasing noise There is a fear.

上述のように、板径が30nmを超えたり、3nm未満となる磁性粒子の混入を排除するものではないが、その場合でも、平均板径が30nm以下、3nm以上であるのが好ましい。また、板状比が2以上の磁性粒子の混入を排除するものではないが、その場合でも、平均板状比が2未満であるのが好ましい。

なお、板径とは、透過型電子顕微鏡(TEM)により倍率20万倍で撮影した写真から求めた最大さしわたし径(板径)である。平均板径は、同写真から板径を求め、50個の板径を算術平均して求めた。

また、板状比とは、同写真から求めた板径と板厚の比(板径/板厚)である。平均板状比は、個々の粒子の板状比を求め、50個の板状比を算術平均して求めた。テープ状になった場合の平均板径の求め方は、窒化鉄系磁性粉末の場合と同様である。

As described above, the inclusion of magnetic particles with a plate diameter exceeding 30 nm or less than 3 nm is not excluded, but even in that case, the average plate diameter is preferably 30 nm or less and 3 nm or more. Moreover, although it does not exclude mixing of magnetic particles having a plate ratio of 2 or more, it is preferable that the average plate ratio is less than 2 even in that case.

The plate diameter is the maximum diameter (plate diameter) obtained from a photograph taken at a magnification of 200,000 with a transmission electron microscope (TEM). The average plate diameter was obtained by calculating the plate diameter from the photograph and arithmetically averaging the 50 plate diameters.

The plate ratio is the ratio of plate diameter to plate thickness (plate diameter / plate thickness) determined from the photograph. The average plate ratio was obtained by calculating the plate ratio of individual particles and arithmetically averaging the 50 plate ratios. The method of obtaining the average plate diameter in the case of a tape is the same as in the case of iron nitride magnetic powder.

<非磁性支持体>
非磁性支持体には、ポリエチレンテレフタレートフィルム、ナフタレンテレフタレートフィルム、芳香族ポリアミドフィルム、芳香族ポリイミドフィルム等が使用される。

非磁性支持体の厚さは、用途により異なるが、通常2〜5μm、好ましくは2〜4.5μm、より好ましくは2〜4μmである。この範囲の厚さの非磁性支持体が使用されるのは、2μm未満では製膜が難しく、またテープ強度が小さくなり、5μmを超えるとテープ全厚が厚くなり、テープ1巻当りの記録容量が小さくなるためである。

<Non-magnetic support>
For the nonmagnetic support, a polyethylene terephthalate film, a naphthalene terephthalate film, an aromatic polyamide film, an aromatic polyimide film, or the like is used.

Although the thickness of a nonmagnetic support body changes with uses, it is 2-5 micrometers normally, Preferably it is 2-4.5 micrometers, More preferably, it is 2-4 micrometers. Nonmagnetic supports with a thickness in this range are used because film formation is difficult if the thickness is less than 2 μm, and the tape strength is reduced. If the thickness exceeds 5 μm, the total thickness of the tape is increased, and the recording capacity per tape roll This is because becomes smaller.

<磁性層>
磁性層は、少なくとも記録層として設けられる最上層磁性層からなり、この最上層磁性層の厚さは、5〜90nmが好ましい。この範囲が好ましいのは、5nm未満では均一厚さの磁性層形成が難しく、90nmを超えると厚さ減磁により再生出力の低下が起こりやすいためである。なお、最上層磁性層が90nm以下と薄い場合、非磁性下層を介して最上層磁性層の下に、サーボ信号記録用の下層磁性層を設けてもよい。

<Magnetic layer>
The magnetic layer is composed of at least an uppermost magnetic layer provided as a recording layer, and the thickness of the uppermost magnetic layer is preferably 5 to 90 nm. This range is preferable because it is difficult to form a magnetic layer having a uniform thickness below 5 nm, and the reproduction output tends to decrease due to thickness demagnetization above 90 nm. When the uppermost magnetic layer is as thin as 90 nm or less, a lower magnetic layer for servo signal recording may be provided below the uppermost magnetic layer via a nonmagnetic lower layer.

磁性層には、WO03/079332A1、WO03/079333A1に記載のバインダ樹脂(以下、単にバインダと記載)と量を適用できる。バインダとして2種以上の樹脂を併用する場合、官能基の極性を一致させるのが好ましく、中でも−SO3 M基どうしの組み合わせが好ましい。−SO3 M基のような官能基を有する塩化ビニル系樹脂と、−SO3 M基のような官能基を有するポリウレタン樹脂とを複合するか、同種の官能基を有する複数のポリウレタン樹脂を複合して用いるのがより好ましい。

これらのバインダとともに、バインダ中に含まれる官能基等と結合させて架橋するために、ポリイソシアネート化合物等の熱硬化性の架橋剤を併用するのが望ましい。しかし、下層の上にウエット・オン・ウエットで磁性層を塗布する場合には、下層塗料からある程度のポリイソシアネート化合物が拡散供給されるので、ポリイソシアネート化合物を併用しなくても、磁性層はある程度架橋される。

For the magnetic layer, a binder resin (hereinafter simply referred to as a binder) and an amount described in WO03 / 079332A1 and WO03 / 079333A1 can be applied. When two or more kinds of resins are used in combination as the binder, the polarities of the functional groups are preferably matched, and a combination of —SO 3 M groups is particularly preferable. A vinyl chloride resin having a functional group such as -SO 3 M group, or a composite of a polyurethane resin having a functional group such as -SO 3 M group, combining a plurality of polyurethane resins having a functional group of the same type More preferably, it is used.

It is desirable to use a thermosetting cross-linking agent such as a polyisocyanate compound in combination with these binders in order to bond and crosslink with functional groups contained in the binder. However, when a magnetic layer is applied on the lower layer by wet-on-wet, a certain amount of the polyisocyanate compound is diffused and supplied from the lower layer coating, so that the magnetic layer can be used to some extent even without using a polyisocyanate compound. Cross-linked.

磁性層には、従来公知のα−アルミナ、α−酸化鉄等のモース硬度が6以上の研磨材を単独でまたは組み合せて添加することができる。通常、これら研磨剤の数平均粒子径は、10〜150nmである。また、必要に応じて、数平均粒子径が10〜100nmの板状粒子を添加してもよい。

さらに、磁性層には、導電性向上と表面潤滑性向上のため、従来公知の数平均粒子径が10〜100nmのカーボンブラックを添加することができる。また、導電性向上のために、数平均粒子径が10〜100nmの板状ITO粒子を添加してもよい。

磁性層に含ませる研磨剤やカーボンブラック等の非磁性粉末は、粒度分布が小さいものほど、幅方向の保磁力(HcT )が小さくなりやすく、好ましい。

A conventionally known abrasive having a Mohs hardness of 6 or more, such as α-alumina and α-iron oxide, can be added alone or in combination. Usually, the number average particle size of these abrasives is 10 to 150 nm. Moreover, you may add the plate-shaped particle | grain with a number average particle diameter of 10-100 nm as needed.

Furthermore, carbon black having a conventionally known number average particle size of 10 to 100 nm can be added to the magnetic layer in order to improve conductivity and surface lubricity. In order to improve conductivity, plate-like ITO particles having a number average particle diameter of 10 to 100 nm may be added.

A nonmagnetic powder such as an abrasive or carbon black contained in the magnetic layer is preferably as the particle size distribution is smaller because the coercive force (Hc T ) in the width direction tends to be smaller.

<磁性塗料の調製>
粒子サイズが30nm以下の超微粒子磁性粉末を塗膜中に高充填化し、かつ高分散させるためには、下記のような工程で、塗料製造を行うのが好ましい。

混練工程の前工程として、磁性粉の顆粒を解砕機を用いて解砕し、その後、混合機でリン酸系の有機酸等やバインダ樹脂と混合し、磁性粉の表面処理、バインダ樹脂との混合を行う工程を設けるのが好ましい。

混練工程には、連続式2軸混練機により固形分濃度80〜85重量%、磁性粉末に対するバインダ樹脂の割合が17〜30重量%で混練を行うのが好ましい。

<Preparation of magnetic paint>
In order to highly fill and disperse the ultrafine magnetic powder having a particle size of 30 nm or less in the coating film, it is preferable to carry out coating production in the following steps.

As a pre-process of the kneading process, the magnetic powder granules are pulverized using a pulverizer, and then mixed with a phosphoric acid organic acid or a binder resin in a mixer, and then the surface treatment of the magnetic powder and the binder resin are performed. It is preferable to provide a step of mixing.

In the kneading step, it is preferable to perform kneading with a continuous biaxial kneader at a solid content concentration of 80 to 85% by weight and a ratio of the binder resin to the magnetic powder of 17 to 30% by weight.

混練工程の後工程として、連続式2軸混練機か他の希釈装置を用いて、少なくとも1回以上の、バインダ樹脂溶液および/または溶媒を加えて混練希釈する工程、サンドミル等の微小メデイア回転型分散装置による分散工程等により塗料分散を行うのが好ましい。

なお、磁性層に含ませる非磁性粉末が磁性粉末よりも大きなものでは、非磁性粉末が磁性塗料の分散時に分散力となる分散メディアによるせん断応力を遮断して、磁性粉末の分散を阻害する場合がある。このような非磁性粉末は、磁性粉末とは別に分散してスラリー状にしておき、これを磁性粉末を分散した塗料と混合して磁性層用塗料を調製するようにすると、幅方向の保磁力(HcT )が小さくなりやすく、好ましい。

As a subsequent step of the kneading step, using a continuous twin-screw kneader or other diluting device, the step of kneading and diluting by adding a binder resin solution and / or a solvent at least once, a fine media rotating type such as a sand mill It is preferable to disperse the paint by a dispersion process using a dispersion device.

If the non-magnetic powder contained in the magnetic layer is larger than the magnetic powder, the non-magnetic powder blocks the shearing stress due to the dispersion media that becomes the dispersion force when dispersing the magnetic paint, thereby inhibiting the dispersion of the magnetic powder. There is. Such a non-magnetic powder is dispersed separately from the magnetic powder to form a slurry, and this is mixed with a paint in which the magnetic powder is dispersed to prepare a magnetic layer paint. (Hc T ) is preferred because it tends to be small.

<磁場配向処理>
最上層磁性層の磁場配向処理は、前述したように従来公知の磁場配向方法で行うことができる。塗布後に、反発磁石で強い(例えば0.5T以上)配向磁界を印加し、引き続きソレノイド電磁石で均一配向磁界(例えば0.1T以上)の印加を、最上層磁性層が略乾燥するまで継続させて行うのが好ましい。また、ランニングコストを安くするためには、反発磁石を多数並べる方法を採用してもよいが、磁界の反転が繰り返されるので、均一磁界発生部で乾燥するようにするのが好ましい。

<Magnetic field orientation treatment>
The magnetic field alignment treatment of the uppermost magnetic layer can be performed by a conventionally known magnetic field alignment method as described above. After application, a strong (for example, 0.5 T or more) orientation magnetic field is applied with a repulsion magnet, and then a uniform orientation magnetic field (for example, 0.1 T or more) is continuously applied with a solenoid electromagnet until the uppermost magnetic layer is substantially dried. Preferably it is done. In order to reduce the running cost, a method of arranging a large number of repulsive magnets may be employed. However, since the reversal of the magnetic field is repeated, it is preferable that the uniform magnetic field generating unit be dried.

<下層>
本発明の磁気テープにおいては、最上層磁性層の平滑性の向上、厚さむらの低減、耐久性の向上のため、下層を形成するのが望ましい。最上層磁性層の磁気記録信号を乱さないため、通常、下層は非磁性である。

下層の厚さは、0.3〜0.9μmが好ましい。0.3μm未満では、磁性層の厚さむらの低減効果、耐久性の向上効果が小さくなる。0.9μmを超えると、磁気テープの全厚が厚くなりすぎて、テープ1巻当りの記録容量が小さくなる。

<Lower layer>
In the magnetic tape of the present invention, it is desirable to form a lower layer in order to improve the smoothness of the uppermost magnetic layer, reduce the thickness unevenness, and improve the durability. Usually, the lower layer is non-magnetic so as not to disturb the magnetic recording signal of the uppermost magnetic layer.

The thickness of the lower layer is preferably 0.3 to 0.9 μm. When the thickness is less than 0.3 μm, the effect of reducing the thickness unevenness of the magnetic layer and the effect of improving the durability are reduced. If it exceeds 0.9 μm, the total thickness of the magnetic tape becomes too thick, and the recording capacity per tape roll becomes small.

下層に使用するバインダ樹脂は、磁性層と同様のものが用いられる。また、下層には、従来公知の酸化チタン、酸化鉄、酸化アルミニウム、酸化ケイ素、酸化ジルコニウム等の非磁性粒子と、カーボンブラックが使用される。

通常は、数平均長軸長が0.05〜0.2μm、数平均短軸長が5〜100nmの非磁性の酸化鉄と、数平均粒子径が0.01〜0.1μmのカーボンブラック、必要により、数平均粒子径が10〜500nmの酸化アルミニウム、特に数平均粒子径が10〜100nmの酸化アルミニウム粒子が用いられる。

The binder resin used for the lower layer is the same as the magnetic layer. For the lower layer, conventionally known nonmagnetic particles such as titanium oxide, iron oxide, aluminum oxide, silicon oxide, zirconium oxide and the like and carbon black are used.

Usually, nonmagnetic iron oxide having a number average major axis length of 0.05 to 0.2 μm, a number average minor axis length of 5 to 100 nm, and carbon black having a number average particle diameter of 0.01 to 0.1 μm, If necessary, aluminum oxide particles having a number average particle diameter of 10 to 500 nm, particularly aluminum oxide particles having a number average particle diameter of 10 to 100 nm are used.

また、WO03/079332A1、WO03/079333A1に記載されるように、0.9μm以下の薄層下層には、数平均板径が10〜100nmの板状酸化アルミニウム粒子や酸化鉄を使用することができる。

このような超微粒子の板状非磁性粉末を使用すると、0.9μm以下の薄層塗布においても厚みむらが小さく、また表面の平滑性が低下することもない。また、板状の粒子が重なった状態で塗膜が形成されるので、塗膜の平面方向の補強効果が大きく、同時に温度、湿度の変化による寸法安定性も大きくなる。

非磁性板状粒子としては、酸化アルミニウムに限らず、セリウムなどの希土類元素、ジルコニウム、珪素、チタン、マンガン、鉄等の元素の酸化物または複合酸化物が用いられる。導電性改良の目的で、板状ITO(インジウム、スズ複合酸化物)粒子を添加してもよい。非磁性板状微粒子の製造方法としては、WO030/079332A1、WO03/079333A1に記載の方法が用いられる。

Further, as described in WO03 / 079332A1 and WO03 / 079333A1, plate-like aluminum oxide particles or iron oxide having a number average plate diameter of 10 to 100 nm can be used for a thin lower layer of 0.9 μm or less. .

When such an ultrafine plate-like non-magnetic powder is used, even when a thin layer of 0.9 μm or less is applied, the thickness unevenness is small and the smoothness of the surface is not lowered. Further, since the coating film is formed in a state where the plate-like particles are overlapped, the reinforcing effect in the planar direction of the coating film is large, and at the same time, the dimensional stability due to changes in temperature and humidity is increased.

The nonmagnetic plate-like particles are not limited to aluminum oxide, and rare earth elements such as cerium, and oxides or composite oxides of elements such as zirconium, silicon, titanium, manganese, and iron are used. For the purpose of improving conductivity, plate-like ITO (indium, tin composite oxide) particles may be added. As a method for producing the nonmagnetic plate-like fine particles, methods described in WO030 / 079332A1 and WO03 / 079333A1 are used.

<潤滑剤>
磁性層、下層には、WO03/079332A1、WO03/079333A1に記載の従来公知の潤滑剤を添加でき、その添加量も上記公知の量でよい。

例えば、下層にミリスチン酸、ステアリン酸、パルミチン酸等の炭素数10以上の高級脂肪酸と、ステアリン酸ブチルなどの高級脂肪酸のエステルを含有させると、ヘッドとの摩擦係数が小さくなるので、好ましい。また、磁性層には、パルミチン酸、ステアリン酸等のアミドである脂肪酸アミドと、高級脂肪酸のエステルを含有させると、テープ走行時の摩擦係数が小さくなるので、好ましい。なお、磁性層の潤滑剤と下層の潤滑剤の相互移動を排除するものではない。

<Lubricant>
A conventionally known lubricant described in WO03 / 079332A1 and WO03 / 079333A1 can be added to the magnetic layer and the lower layer, and the addition amount thereof may be the above known amount.

For example, it is preferable to contain a higher fatty acid having 10 or more carbon atoms such as myristic acid, stearic acid, and palmitic acid in the lower layer and an ester of higher fatty acid such as butyl stearate because the friction coefficient with the head becomes small. In addition, it is preferable that the magnetic layer contains a fatty acid amide that is an amide such as palmitic acid or stearic acid, and an ester of a higher fatty acid because the friction coefficient during running of the tape is reduced. The mutual movement of the lubricant in the magnetic layer and the lubricant in the lower layer is not excluded.

<バック層>
本発明の磁気テープを構成する非磁性支持体の他方の面(磁性層が形成されている面とは反対側の面)には、走行性の向上等を目的として、バック層を形成できる。

このバック層は、蒸着、スパッタ、CVD、塗布により、形成できるが、カーボンブラックとバインダ樹脂からなるバックコート層が一般的である。このようなバックコート層の厚さとしては、0.2〜0.8μmが好ましい。また、表面粗さRaとしては、3〜8nmが好ましく、4〜7nmがより好ましい。

<Back layer>
A back layer can be formed on the other surface (the surface opposite to the surface on which the magnetic layer is formed) of the nonmagnetic support constituting the magnetic tape of the present invention for the purpose of improving running performance.

The back layer can be formed by vapor deposition, sputtering, CVD, or coating, but a back coat layer made of carbon black and a binder resin is generally used. The thickness of such a back coat layer is preferably 0.2 to 0.8 μm. Moreover, as surface roughness Ra, 3-8 nm is preferable and 4-7 nm is more preferable.

バックコート層に含ませるカーボンブラックには、従来公知のアセチレンブラック、ファーネスブラック、サーマルブラック等の小粒径カーボンブラックと、少量の大粒径カーボンブラックを使用する。小粒径カーボンブラックの数平均粒子径は5〜200nmで、大粒径カーボンブラックの数平均粒径300〜400nmである。

バックコート層のバインダ樹脂としては、セルロース系樹脂とポリウレタン系樹脂を使用するのが好ましい。また、バインダ樹脂を硬化するために、ポリイソシアネート化合物等の架橋剤を用いるのが好ましい。

また、バックコート層には、必要により、強度向上を目的として、数平均粒子径が10〜100nmの酸化アルミニウム、セリウム等の希土類元素、ジルコニウム、珪素、チタン、マンガン、鉄等の元素の酸化物または複合酸化物板状粒子や、導電性改良を目的として、板状ITOを添加することができる。

As the carbon black to be included in the back coat layer, a conventionally known small particle size carbon black such as acetylene black, furnace black and thermal black and a small amount of large particle size carbon black are used. The number average particle size of the small particle size carbon black is 5 to 200 nm, and the number average particle size of the large particle size carbon black is 300 to 400 nm.

As the binder resin for the backcoat layer, it is preferable to use a cellulose resin and a polyurethane resin. Moreover, in order to harden binder resin, it is preferable to use crosslinking agents, such as a polyisocyanate compound.

In addition, for the purpose of improving the strength, the back coat layer may have a number average particle diameter of 10 to 100 nm, rare earth elements such as aluminum oxide and cerium, and oxides of elements such as zirconium, silicon, titanium, manganese, and iron. Alternatively, composite ITO plate-like particles and plate-like ITO can be added for the purpose of improving conductivity.

<有機溶剤>
磁性塗料、下層塗料、バックコート層塗料に使用する有機溶剤としては、例えば、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン等のケトン系溶剤、テトラヒドロフラン、ジオキサン等のエーテル系溶剤、酢酸エチル、酢酸ブチル等の酢酸エステル系溶剤等が挙げられる。これらの有機溶剤は、単独でまたは混合して使用でき、さらにトルエンなどと混合して使用することもできる。

<Organic solvent>
Examples of organic solvents used in magnetic paints, lower layer paints, and back coat layer paints include ketone solvents such as methyl ethyl ketone, cyclohexanone, and methyl isobutyl ketone, ether solvents such as tetrahydrofuran and dioxane, and acetic acid such as ethyl acetate and butyl acetate. Examples include ester solvents. These organic solvents can be used alone or as a mixture, and can also be used as a mixture with toluene.

つぎに、本発明の実施例を記載して、さらに具体的に説明する。ただし、本発明は以下の実施例にのみ限定されるものではない。なお、以下の実施例および比較例において、部とあるのは重量部を示すものとする。

Next, examples of the present invention will be described and described in more detail. However, the present invention is not limited only to the following examples. In the following examples and comparative examples, “parts” means “parts by weight”.

<下層塗料成分>
(1)成分
針状酸化鉄粉末(平均粒径:100nm、軸比:5) 68部

粒状アルミナ粉末(平均粒径:80nm) 8部

カーボンブラック(平均粒径:25nm) 24部

ステアリン酸 2.0部

塩化ビニル−ヒドロキシプロピルアクリレート共重合体 8.8部
(含有−SO3 Na基:1×10-4当量/g)

ポリエステルポリウレタン樹脂 4.4部
(Tg:40℃、含有−SO3 Na基:1×10-4当量/g)

シクロヘキサノン 25部

メチルエチルケトン 40部

トルエン 10部


(2)成分
ステアリン酸ブチル 1部

シクロヘキサノン 70部

メチルエチルケトン 50部

トルエン 20部


(3)成分
ポリイソシアネート 1.4部

シクロヘキサノン 10部

メチルエチルケトン 15部

トルエン 10部

<Lower paint component>
(1) Component Acicular iron oxide powder (average particle size: 100 nm, axial ratio: 5) 68 parts

8 parts of granular alumina powder (average particle size: 80 nm)

Carbon black (average particle size: 25 nm) 24 parts

Stearic acid 2.0 parts

8.8 parts of vinyl chloride-hydroxypropyl acrylate copolymer (containing-SO 3 Na group: 1 × 10 −4 equivalent / g)

Polyester polyurethane resin 4.4 parts (Tg: 40 ° C., contained—SO 3 Na group: 1 × 10 −4 equivalent / g)

25 parts of cyclohexanone

40 parts of methyl ethyl ketone

Toluene 10 parts


(2) Component 1 part butyl stearate

70 parts of cyclohexanone

50 parts of methyl ethyl ketone

20 parts of toluene


(3) Component Polyisocyanate 1.4 parts

10 parts of cyclohexanone

15 parts of methyl ethyl ketone

Toluene 10 parts

<磁性塗料成分>
(1)混練工程成分
粒状磁性粉(Y−N−Fe)〔以下、(A)粉という〕 100部
(外層部分にY,Alを主体的に含有し、コアー部分にFe162
を含有、Y/Fe:5.5原子%、Al/Fe:8.2原子%、
N/Fe:11.9原子%、Fe162 相:主相、
飽和磁化量:101.5Am2 /kg(101.5emu/g)、
Hc:211.0kA/m(2,650Oe)、
平均粒子サイズ:17nm、平均軸比:1.2)

塩化ビニル−ヒドロキシプロピルアクリレート共重合体 13部
(含有−SO3 Na基:0.7×10-4当量/g)

ポリエステルポリウレタン樹脂 4.5部
(含有−SO3 Na基:1.0×10-4当量/g)

メチルアシッドホスフェート 2部

テトラヒドロフラン 20部

メチルエチルケトン/シクロヘキサノン 9部


(2)希釈工程成分
パルミチン酸アミド 1.5部

ステアリン酸n−ブチル 1部

メチルエチルケトン/シクロヘキサノン 350部


(3)別分散スラリー成分
粒状アルミナ粉末(平均粒径:80nm) 10部

塩化ビニル−ヒドロキシプロピルアクリレート共重合体 1部

メチルエチルケトン/シクロヘキサノン 15部


(4)配合工程成分
ポリイソシアネート 1.5部

メチルエチルケトン/シクロヘキサノン 29部

<Magnetic paint component>
(1) Components of kneading process Granular magnetic powder (YN-Fe) [hereinafter referred to as (A) powder] 100 parts (Mainly containing Y and Al in the outer layer part and Fe 16 N 2 phase in the core part) Contained, Y / Fe: 5.5 atomic%, Al / Fe: 8.2 atomic%,
N / Fe: 11.9 atomic%, Fe 16 N 2 phase: main phase,
Saturation magnetization: 101.5 Am 2 / kg (101.5 emu / g),
Hc: 211.0 kA / m (2,650 Oe),
(Average particle size: 17 nm, average axial ratio: 1.2)

13 parts of vinyl chloride-hydroxypropyl acrylate copolymer (containing -SO 3 Na group: 0.7 × 10 -4 equivalent / g)

Polyester polyurethane resin 4.5 parts (contained -SO 3 Na group: 1.0 × 10 −4 equivalent / g)

2 parts of methyl acid phosphate

Tetrahydrofuran 20 parts

Methyl ethyl ketone / cyclohexanone 9 parts


(2) Dilution process components Palmitic acid amide 1.5 parts

1 part of n-butyl stearate

Methyl ethyl ketone / cyclohexanone 350 parts


(3) Another dispersed slurry component Granular alumina powder (average particle size: 80 nm) 10 parts

1 part of vinyl chloride-hydroxypropyl acrylate copolymer

Methyl ethyl ketone / cyclohexanone 15 parts


(4) Compounding process component Polyisocyanate 1.5 parts

Methyl ethyl ketone / cyclohexanone 29 parts

上記の下層塗料成分のうち、(1)成分を回分式ニーダで混練したのち、(2)成分を加えて、攪拌後、サンドミルで滞留時間を60分として分散処理を行い、これに(3)成分を加えて、攪拌、ろ過したのち、下層塗料(下層用塗料)とした。

これとは別に、上記の磁性塗料成分のうち、(1)の混練工程成分中、磁性粉末全量と樹脂および溶剤の所定量を予め高速撹拌混合しておき、その混合粉末を(1)の混練工程成分となるように調整したのち、連続式2軸混練機で混練し、さらに(2)の希釈工程成分を加えて、連続式2軸混練機で少なくとも2段階以上に分けて希釈を行い、サンドミルで分散メディアとして直径0.5mmのジルコニアビ−ズを用いて、滞留時間を45分として分散した。これに(3)の別分散スラリー成分をサンドミルで滞留時間を40分として分散したものを加え、さらに(4)の配合工程成分を加えて、撹拌、ろ過したのち、磁性塗料とした。

After kneading the component (1) in the above-mentioned lower layer coating component with a batch kneader, the component (2) is added, and after stirring, dispersion treatment is carried out with a sand mill for 60 minutes, and (3) The ingredients were added, stirred and filtered, and then used as the lower layer coating (lower layer coating).

Apart from this, among the magnetic coating components described above, in the kneading step component of (1), the total amount of the magnetic powder and a predetermined amount of resin and solvent are preliminarily stirred and mixed, and the mixed powder is kneaded in (1). After adjusting to be a process component, knead in a continuous biaxial kneader, further add the dilution process component (2), perform dilution in at least two stages or more in a continuous biaxial kneader, Using a zirconia bead having a diameter of 0.5 mm as a dispersion medium in a sand mill, the residence time was dispersed for 45 minutes. To this was added a dispersion slurry component (3) dispersed in a sand mill with a residence time of 40 minutes, and then a blending step component (4) was added, stirred and filtered to obtain a magnetic paint.

芳香族ポリアミドフイルム(厚さ3.3μm、MD=11GPa、MD/TD=0.70、東レ社製の商品名「ミクトロン」)からなる非磁性支持体(ベースフィルム)上に、上記の下層塗料を、乾燥、カレンダ後の厚さが0.6μmとなるように塗布し、この下層上に、さらに上記の磁性塗料を、磁場配向処理、乾燥、カレンダ処理後の磁性層の厚さが0.09μmとなるように、ウエット・オン・ウエットで塗布し、磁場配向処理後、ドライヤおよび遠赤外線を用いて乾燥し、磁気シートを作製した。

なお、上記磁場配向処理は、ドライヤ前に50cm長さのN−N対向磁石(0.5T)1基、ドライヤ内に50cm長さのソレノイド電磁石(0.1T)5基を20cm間隔で設置して、行った。N−N対向磁石とソレノイド電磁石との距離は20cmで、対向磁石に近いソレノイド電磁石の極はS極である。塗膜の指蝕乾燥位置(粒子が全く動かなくなる位置)は、4台目と5台目のソレノイド電磁石の間であった。塗布速度は100m/分とした。以下、この磁場のかけかたを、配向方法(A)という。

On the nonmagnetic support (base film) made of an aromatic polyamide film (thickness 3.3 μm, MD = 11 GPa, MD / TD = 0.70, trade name “Mikutron” manufactured by Toray Industries, Inc.) Is applied so that the thickness after drying and calendering is 0.6 μm, and the magnetic coating is further coated on the lower layer with a magnetic layer thickness of 0.1 μm after magnetic field orientation treatment, drying and calendering treatment. The coating was applied wet-on-wet so that the thickness was 09 μm, and after magnetic field orientation treatment, drying was performed using a dryer and far infrared rays to prepare a magnetic sheet.

In the magnetic field orientation treatment, one 50 cm long NN counter magnet (0.5T) is installed in front of the dryer, and five 50 cm long solenoid electromagnets (0.1T) are installed in the dryer at intervals of 20 cm. And went. The distance between the NN counter magnet and the solenoid electromagnet is 20 cm, and the pole of the solenoid electromagnet close to the counter magnet is the S pole. The finger-drying position of the coating film (the position where the particles do not move at all) was between the fourth and fifth solenoid electromagnets. The coating speed was 100 m / min. Hereinafter, this method of applying a magnetic field is referred to as an orientation method (A).

<バックコート層用塗料成分>
カーボンブラック(平均粒径:25nm) 80部

カーボンブラック(平均粒径:0.35μm) 10部

粒状酸化鉄粉末(平均粒径:50nm) 10部

ニトロセルロース 45部

ポリウレタン樹脂(SO3 Na基含有) 30部

シクロヘキサノン 260部

トルエン 260部

メチルエチルケトン 525部

<Backcoat layer paint component>
80 parts of carbon black (average particle size: 25 nm)

Carbon black (average particle size: 0.35 μm) 10 parts

Granular iron oxide powder (average particle size: 50 nm) 10 parts

45 parts of nitrocellulose

Polyurethane resin (containing SO 3 Na group) 30 parts

260 parts of cyclohexanone

260 parts of toluene

525 parts of methyl ethyl ketone

上記バックコート層用塗料成分を、サンドミルで滞留時間45分として分散したのち、ポリイソシアネート15部を加えて、ろ過したのち、バックコート層用塗料を調製した。この塗料を、前記の方法で作製した磁気シートの磁性層の反対面に、乾燥、カレンダ後の厚さが0.5μmとなるように、塗布し、乾燥した。

その後、この磁気シートを、金属ロールからなる7段カレンダで、温度100℃、線圧200kg/cmの条件で、鏡面化処理し、さらに磁気シートをコアーに巻いた状態で、70℃72時間エージングしたのち、1/2インチ幅に裁断した。これを200m/分で走行させながら、磁性層表面に対し、ラッピングテープ研磨、ブレード研磨、表面拭き取りの後処理を行い、磁気テープを作製した。

ラッピングテープにはK10000、ブレードには超硬刃、表面拭き取りには東レ社製の商品名「トレシー」を用い、走行テンション0.294Nで処理を行った。

このようにして得られた磁気テープにサーボライタで磁気サーボ信号を記録し、コンピュータ用磁気テープを作製した。この磁気テープの残留磁束密度と磁性層厚さの積Br・δは、0.030μTmであった。さらに、この磁気テープをカートリッジに組み込み、コンピュータ用磁気テープカートリッジを作製した。

After dispersing the coating component for the backcoat layer with a sand mill with a residence time of 45 minutes, 15 parts of polyisocyanate was added and filtered to prepare a coating material for the backcoat layer. This paint was applied to the opposite surface of the magnetic layer of the magnetic sheet produced by the above method so that the thickness after drying and calendering was 0.5 μm and dried.

Thereafter, this magnetic sheet was mirror-finished with a seven-stage calendar made of a metal roll under the conditions of a temperature of 100 ° C. and a linear pressure of 200 kg / cm, and the magnetic sheet was wound around a core and then aged at 70 ° C. for 72 hours. After that, it was cut into 1/2 inch width. While running this at 200 m / min, the surface of the magnetic layer was subjected to post-processing such as lapping tape polishing, blade polishing, and surface wiping to produce a magnetic tape.

The wrapping tape was K10000, the blade was a carbide blade, and the surface was wiped off using a trade name “Toraysee” manufactured by Toray Industries, Ltd., and was treated with a running tension of 0.294N.

A magnetic servo signal was recorded on the magnetic tape thus obtained with a servo writer to produce a magnetic tape for computers. The product Br · δ of the residual magnetic flux density and the magnetic layer thickness of this magnetic tape was 0.030 μTm. Further, this magnetic tape was incorporated into a cartridge to produce a magnetic tape cartridge for a computer.

磁性塗料成分中、磁性粉末(Y−N−Fe)の平均粒子サイズを13nm(平均軸比は1.2)のものに変更した以外は、実施例1と同様にして、磁気テープを作製した。また、これを用いてコンピュータ用磁気テープとコンピュータ用磁気テープカートリッジを作製した。

A magnetic tape was produced in the same manner as in Example 1 except that the average particle size of the magnetic powder (YN-Fe) in the magnetic coating component was changed to 13 nm (average axis ratio was 1.2). . Moreover, the magnetic tape for computers and the magnetic tape cartridge for computers were produced using this.

磁性塗料成分中、磁性粉末(Y−N−Fe)の平均粒子サイズを28nm(平均軸比は1.2)のものに変更した以外は、実施例1と同様にして、磁気テープを作製した。また、これを用いてコンピュータ用磁気テープとコンピュータ用磁気テープカートリッジを作製した。

A magnetic tape was produced in the same manner as in Example 1 except that the average particle size of the magnetic powder (YN-Fe) was changed to 28 nm (average axial ratio was 1.2) in the magnetic coating component. . Moreover, the magnetic tape for computers and the magnetic tape cartridge for computers were produced using this.

磁場配向処理において、ソレノイド電磁石の強度を0.3Tに変更した以外は、実施例1と同様にして、磁気テープを作製した。また、これを用いてコンピュータ用磁気テープとコンピュータ用磁気テープカートリッジを作製した。

A magnetic tape was produced in the same manner as in Example 1 except that the strength of the solenoid electromagnet was changed to 0.3 T in the magnetic field orientation treatment. Moreover, the magnetic tape for computers and the magnetic tape cartridge for computers were produced using this.

磁場配向処理を、下記のように変更した以外は、実施例1と同様にして、磁気テープを作製した。また、これを用いてコンピュータ用磁気テープとコンピュータ用磁気テープカートリッジを作製した。

ドライヤ前に50cm長さのN−N対向磁石(0.5T)を設置し、ドライヤ内で塗膜の指蝕乾燥位置の手前側75cmから50cm長さのS−S対向磁石(0.5T)とN−N対向磁石(0.5T)各1基を50cm間隔で設置して行った。塗布速度は100m/分とした。以下、この磁場のかけかたを、配向方法(B)という。

A magnetic tape was produced in the same manner as in Example 1 except that the magnetic field orientation treatment was changed as follows. Moreover, the magnetic tape for computers and the magnetic tape cartridge for computers were produced using this.

A 50cm long NN counter magnet (0.5T) is installed in front of the dryer, and a 50cm long SS counter magnet (0.5T) from the front side 75cm of the finger-drying position of the coating in the dryer. And NN counter magnets (0.5T), one set each at 50 cm intervals. The coating speed was 100 m / min. Hereinafter, this method of applying a magnetic field is referred to as an orientation method (B).

磁性塗料成分中、(3)の別分散スラリー成分の添加を省いた以外は、実施例1と同様にして、磁気テープを作製した。また、これを用いてコンピュータ用磁気テープとコンピュータ用磁気テープカートリッジを作製した。

A magnetic tape was produced in the same manner as in Example 1 except that the addition of the separate dispersion slurry component (3) in the magnetic paint component was omitted. Moreover, the magnetic tape for computers and the magnetic tape cartridge for computers were produced using this.

比較例1
磁性塗料成分中、磁性粉末として、σs:110A・m2 /kg(110emu/g)、Hc:159.2kA/m(2,000Oe)、平均粒子サイズ:35nm、平均軸比:3.5の合金磁性粉末(Al−Y−Co−Fe)を用いた以外は、実施例1と同様にして、磁気テープを作製した。また、これを用いてコンピュータ用磁気テープとコンピュータ用磁気テープカートリッジを作製した。

Comparative Example 1
In the magnetic coating component, as magnetic powder, σs: 110 A · m 2 / kg (110 emu / g), Hc: 159.2 kA / m (2,000 Oe), average particle size: 35 nm, average axial ratio: 3.5 A magnetic tape was produced in the same manner as in Example 1 except that the alloy magnetic powder (Al—Y—Co—Fe) was used. Moreover, the magnetic tape for computers and the magnetic tape cartridge for computers were produced using this.

比較例2
磁場配向処理に際し、ドライヤ前に50cm長さのN−N対向磁石(0.5T)を1基のみ設置した。この磁場のかけ方を配向方法(C)という。他は、実施例1と同様にして、磁気テープを作製した。また、これを用いてコンピュータ用磁気テープとコンピュータ用磁気テープカートリッジを作製した。

Comparative Example 2
In the magnetic field orientation treatment, only one 50 cm long NN counter magnet (0.5T) was installed before the dryer. This method of applying a magnetic field is referred to as an orientation method (C). Otherwise, a magnetic tape was produced in the same manner as in Example 1. Moreover, the magnetic tape for computers and the magnetic tape cartridge for computers were produced using this.

比較例3
磁性塗料成分中、粒状アルミナの平均粒径を160nmのものに変更し、かつサンドミルの分散メディアを直径1.5mmのチタニアビーズに変更した以外は、実施例1と同様にして、磁気テープを作製した。また、これを用いてコンピュータ用磁気テープとコンピュータ用磁気テープカートリッジを作製した。

Comparative Example 3
A magnetic tape was produced in the same manner as in Example 1 except that the average particle diameter of the granular alumina in the magnetic coating component was changed to 160 nm, and the dispersion media of the sand mill was changed to titania beads having a diameter of 1.5 mm. did. Moreover, the magnetic tape for computers and the magnetic tape cartridge for computers were produced using this.

比較例4
磁性塗料成分中、磁性粉末として、Y/Fe:0.4原子%、Al/Fe:1.5原子%、N/Fe:12.2原子%、Fe162 相:主相、飽和磁化量:105.5Am2 /kg(105.5emu/g)、Hc:202.9kA/m(2,550Oe)、平均粒子サイズ:17nm、平均軸比:1.2)の粒状磁性粉(Y−N−Fe)〔以下、(B)粉という〕を使用した以外は、実施例1と同様にして、磁気テープを作製した。また、これを用いてコンピュータ用磁気テープとコンピュータ用磁気テープカートリッジを作製した。

Comparative Example 4
In the magnetic coating component, as magnetic powder, Y / Fe: 0.4 atomic%, Al / Fe: 1.5 atomic%, N / Fe: 12.2 atomic%, Fe 16 N 2 phase: main phase, saturation magnetization Amount: 105.5 Am 2 / kg (105.5 emu / g), Hc: 202.9 kA / m (2,550 Oe), average particle size: 17 nm, average axial ratio: 1.2) granular magnetic powder (Y− A magnetic tape was produced in the same manner as in Example 1 except that N-Fe) [hereinafter referred to as (B) powder] was used. Moreover, the magnetic tape for computers and the magnetic tape cartridge for computers were produced using this.

比較例5
磁性塗料成分中、粒状アルミナの平均粒径を160nmのものに変更し、かつサンドミルの分散メディアを直径1.0mmのチタニアビーズに変更した以外は、実施例5と同様にして、磁気テープを作製した。また、これを用いてコンピュータ用磁気テープとコンピュータ用磁気テープカートリッジを作製した。

Comparative Example 5
A magnetic tape was produced in the same manner as in Example 5 except that the average particle diameter of the granular alumina in the magnetic coating component was changed to 160 nm, and the dispersion media of the sand mill was changed to titania beads having a diameter of 1.0 mm. did. Moreover, the magnetic tape for computers and the magnetic tape cartridge for computers were produced using this.

比較例6
磁性塗料成分中、磁性粉末として、σs:120A・m2 /kg(120emu/g)、Hc:171.1kA/m(2,150Oe)、平均粒子サイズ:100nm、平均軸比:6.0の合金磁性粉末(Al−Y−Co−Fe)を用いた以外は、実施例1と同様にして、磁気テープを作製した。また、これを用いてコンピュータ用磁気テープとコンピュータ用磁気テープカートリッジを作製した。

Comparative Example 6
In the magnetic coating component, as magnetic powder, σs: 120 A · m 2 / kg (120 emu / g), Hc: 171.1 kA / m (2,150 Oe), average particle size: 100 nm, average axial ratio: 6.0 A magnetic tape was produced in the same manner as in Example 1 except that the alloy magnetic powder (Al—Y—Co—Fe) was used. Moreover, the magnetic tape for computers and the magnetic tape cartridge for computers were produced using this.

比較例7
磁性塗料成分中、磁性粉末として、Y/Fe:5.5原子%、Al/Fe:8.2原子%、N/Fe:12.2原子%、Fe162 相:主相、飽和磁化量:105.5Am2 /kg(105.5emu/g)、Hc:211.0kA/m(2,650Oe)、平均粒子サイズ:35nm、平均軸比:1.2の粒状磁性粉(Y−N−Fe)〔以下、(C)粉という〕を使用した以外は、実施例1と同様にして、磁気テープを作製した。また、これを用いて、コンピュータ用磁気テープとコンピュータ用磁気テープカートリッジを作製した。

Comparative Example 7
In the magnetic coating component, as magnetic powder, Y / Fe: 5.5 atomic%, Al / Fe: 8.2 atomic%, N / Fe: 12.2 atomic%, Fe 16 N 2 phase: main phase, saturation magnetization Amount: 105.5 Am 2 / kg (105.5 emu / g), Hc: 211.0 kA / m (2,650 Oe), average particle size: 35 nm, average axial ratio: 1.2 granular magnetic powder (Y-N A magnetic tape was produced in the same manner as in Example 1 except that -Fe) [hereinafter referred to as (C) powder] was used. Moreover, the magnetic tape for computers and the magnetic tape cartridge for computers were produced using this.

上記の実施例1〜6および比較例1〜7の各磁気テープについて、磁性層(最上層磁性層)の形成に用いた磁性粉末の構成、配向方法、分散機ビーズの構成を、表1にまとめて示した。なお、磁性層中の磁性粉末の粒子サイズは、下記の方法により測定し、原料磁性粉末とほぼ同様の平均粒子サイズ、平均軸比を有していることを確認した。表1中、「SC」はソレノイド電磁石を意味する。

<磁性粉末の粒子サイズ>
磁気テープを樹脂埋めし、それを集束イオンビーム加工装置で厚さ方向の断面を切り出し、その断面を走査型電子顕微鏡(SEM) で20万倍にて必要枚数の磁性層断面の写真撮影を行い、磁性層中の磁性粉末の外形を縁取りする。その外径の最大さしわたしを粒子サイズとして計測する。50個の磁性粉末を計測し、その平均値を平均粒子サイズとした。

For each of the magnetic tapes of Examples 1 to 6 and Comparative Examples 1 to 7, the structure of the magnetic powder used for forming the magnetic layer (the uppermost magnetic layer), the orientation method, and the structure of the disperser beads are shown in Table 1. Shown together. Note that the particle size of the magnetic powder in the magnetic layer was measured by the following method, and it was confirmed that the magnetic powder had the same average particle size and average axial ratio as the raw magnetic powder. In Table 1, “SC” means a solenoid electromagnet.

<Particle size of magnetic powder>
The magnetic tape is filled with resin, and the cross-section in the thickness direction is cut out with a focused ion beam processing device, and the cross-section is photographed with a scanning electron microscope (SEM) at 200,000 times the required number of magnetic layer cross-sections. The outer shape of the magnetic powder in the magnetic layer is trimmed. Measure the maximum outside diameter as the particle size. Fifty magnetic powders were measured, and the average value was taken as the average particle size.

なおまた、上記の各磁気テープの磁性層および下層の厚さは、下記の方法により、測定したものである。
<磁性層および下層の厚さ>
磁気テープを樹脂埋めし、それを集束イオンビーム加工装置で厚さ方向の断面を切り出し、その断面を走査型電子顕微鏡(SEM)で2万倍にて10視野の写真撮影を行い、(1)磁性層表面、(2)磁性層−下層の界面、(3)下層−非磁性支持体の界面を縁取りする。つぎに、写真1視野当り、界面に非磁性粉末のかかっていない任意の5個所を選び、(1)−(2)の縁取りした線間の距離を磁性層の厚さ、(2)−(3)の縁取りした線間の距離を下層の厚さ、として計測した。それらの磁性層および下層の厚さを10視野について平均して各層の厚さとした。

In addition, the thickness of the magnetic layer and the lower layer of each magnetic tape is measured by the following method.
<Thickness of magnetic layer and lower layer>
The magnetic tape is filled with resin, and a cross section in the thickness direction is cut out with a focused ion beam processing apparatus, and the cross section is photographed with 10 fields of view at a magnification of 20,000 with a scanning electron microscope (SEM). (1) Border the surface of the magnetic layer, (2) the interface between the magnetic layer and the lower layer, and (3) the interface between the lower layer and the nonmagnetic support. Next, arbitrary five locations where non-magnetic powder is not applied to the interface per field of view of the photograph are selected, and the distance between the bordered lines of (1)-(2) is set to the thickness of the magnetic layer, (2)-( The distance between the bordered lines in 3) was measured as the thickness of the lower layer. The thicknesses of the magnetic layer and the lower layer were averaged over 10 fields to obtain the thickness of each layer.

つぎに、上記の実施例1〜6および比較例1〜7の各磁気テープについて、磁気特性と共に、電磁変換特性として、下記の方法により、出力(C)と出力対ノイズ比(C/N)を測定した。表2に磁気特性の結果を、表3に電磁変換特性の結果を示した。

また、上記の各磁気テープの電磁変換特性のうち、出力対ノイズ比(C/N)の結果について、このC/Nと、長手Hc(長手方向HcM )/幅Hc(幅方向HcT )との関係として、図5にプロットして示した。

Next, for each of the magnetic tapes of Examples 1 to 6 and Comparative Examples 1 to 7, the output (C) and the output-to-noise ratio (C / N) are obtained as the electromagnetic characteristics along with the magnetic characteristics by the following method. Was measured. Table 2 shows the results of magnetic characteristics, and Table 3 shows the results of electromagnetic conversion characteristics.

Of the electromagnetic conversion characteristics of each magnetic tape, the C / N and the longitudinal Hc (longitudinal direction Hc M ) / width Hc (width direction Hc T ) are the results of the output-to-noise ratio (C / N). 5 is plotted in FIG.

<出力と出力対ノイズ比>
磁気テープの電磁変換特性の測定には、ドラムテスターを用いた。ドラムテスターには電磁誘導型磁気ヘッド(トラック幅25μm、ギャップ0. 1μm)とMR磁気ヘッド(トラック幅8μm)を装着し、誘導型ヘッドで記録、MRヘッドで再生を行った。

両ヘッドは、回転ドラムに対して異なる場所に設置されており、両ヘッドを上下方向に操作することで、トラッキングを合わせることができる。磁気テープはカートリッジに巻き込んだ状態から適切な量を引き出して廃棄し、さらに60cmを切り出し、さらに4mm幅に加工して、回転ドラムの外周に巻き付けた。

出力およびノイズは、ファンクションジェネレータにより、波長0. 2μmの矩形波を書き込み、MR磁気ヘッドの出力をスペクトラムアナライザーに読み込んだ。0. 2μmのキャリア値を媒体再生出力Cとした。また、0. 2μmの矩形波を書き込んだときに、記録波長0. 2μm以上に相当するスペクトルの成分から、再生出力およびシステムノイズを差し引いた値の積分値をノイズ値Nとして用いた。さらに、両者の比をとってC/Nとした。C、C/N共に、実施例5の磁気テープの値との相対値として、求めた。





































<Output and output to noise ratio>
A drum tester was used to measure the electromagnetic conversion characteristics of the magnetic tape. The drum tester was equipped with an electromagnetic induction type magnetic head (track width 25 μm, gap 0.1 μm) and an MR magnetic head (track width 8 μm), and recording was performed with the induction type head and reproduction was performed with the MR head.

Both heads are installed at different locations with respect to the rotating drum, and tracking can be adjusted by operating both heads in the vertical direction. An appropriate amount of the magnetic tape was drawn out from the state of being wound around the cartridge and discarded, and further 60 cm was cut out, further processed into a width of 4 mm, and wound around the outer periphery of the rotating drum.

For the output and noise, a rectangular wave with a wavelength of 0.2 μm was written by a function generator, and the output of the MR magnetic head was read into a spectrum analyzer. The carrier value of 0.2 μm was set as the medium reproduction output C. Further, when a rectangular wave of 0.2 μm was written, the integrated value of the value obtained by subtracting the reproduction output and system noise from the spectral component corresponding to the recording wavelength of 0.2 μm or more was used as the noise value N. Furthermore, the ratio of both was taken as C / N. Both C and C / N were determined as values relative to the value of the magnetic tape of Example 5.






































表1

┌────┬────────────────┬─────┬─────────┐
│ │ 最上層磁性層の磁性粉末 │ 配向 │ 分散機ビーズ │
│ ├───┬────┬───┬───┤ 方法 ├─────┬───┤
│ │種 類│平均粒子│平均 │組 成│ │ 材 質 │粒 径│
│ │ │サイズ │ 軸比│ │ │ │(mm)│
│ │ │(nm)│ │ │ │ │ │
├────┼───┼────┼───┼───┼─────┼─────┼───┤
│ │ │ │ │ │ │ │ │
│実施例1│窒化鉄│ 17 │1.2│(A)│A(SC)│ジルコニア│0.5│
│ │ │ │ │ │ │ │ │
│実施例2│窒化鉄│ 13 │1.2│(A)│A(SC)│ジルコニア│0.5│
│ │ │ │ │ │ │ │ │
│実施例3│窒化鉄│ 28 │1.2│(A)│A(SC)│ジルコニア│0.5│
│ │ │ │ │ │ │ │ │
│実施例4│窒化鉄│ 17 │1.2│(A)│A(SC)│ジルコニア│0.5│
│ │ │ │ │ │ │ │ │
│実施例5│窒化鉄│ 17 │1.2│(A)│B(磁石)│ジルコニア│0.5│
│ │ │ │ │ │ │ │ │
│実施例6│窒化鉄│ 17 │1.2│(A)│A(SC)│ジルコニア│0.5│
│ │ │ │ │ │ │ │ │
├────┼───┼────┼───┼───┼─────┼─────┼───┤
│ │ │ │ │ │ │ │ │
│比較例1│合金鉄│ 35 │3.5│ − │A(SC)│ジルコニア│0.5│
│ │ │ │ │ │ │ │ │
│比較例2│窒化鉄│ 17 │1.2│(A)│C(磁石)│ジルコニア│0.5│
│ │ │ │ │ │ │ │ │
│比較例3│窒化鉄│ 17 │1.2│(A)│A(SC)│ チタニア│1.5│
│ │ │ │ │ │ │ │ │
│比較例4│窒化鉄│ 17 │1.2│(B)│A(SC)│ジルコニア│0.5│
│ │ │ │ │ │ │ │ │
│比較例5│窒化鉄│ 17 │1.2│(A)│B(磁石)│ チタニア│1.0│
│ │ │ │ │ │ │ │ │
│比較例6│合金鉄│100 │6.0│ − │A(SC)│ジルコニア│0.5│
│ │ │ │ │ │ │ │ │
│比較例7│窒化鉄│ 35 │1.2│(C)│A(SC)│ジルコニア│0.5│
│ │ │ │ │ │ │ │ │
└────┴───┴────┴───┴───┴─────┴─────┴───┘









Table 1

┌────┬────────────────┬ ─────┬─────────┐
│ │ Top layer magnetic powder │ Orientation │ Disperser beads │
│ ├───┬────┬───┬───┤ Method ├─────┬───┤
│ │Type │Average particle │Average │Composition│ │ Material │Grain size│
│ │ │Size │ Axis ratio │ │ │ │ (mm) │
│ │ │ (nm) │ │ │ │ │ │
├────┼───┼────┼───┼───┼─────┼─────┼───┤
│ │ │ │ │ │ │ │ │
│Example 1│Iron nitride│ 17 │1.2│ (A) │A (SC) │Zirconia│0.5│
│ │ │ │ │ │ │ │ │
│Example 2│Iron nitride│ 13 │1.2│ (A) │A (SC) │Zirconia│0.5│
│ │ │ │ │ │ │ │ │
│Example 3│Iron nitride│ 28 │1.2│ (A) │A (SC) │Zirconia│0.5│
│ │ │ │ │ │ │ │ │
│Example 4│Iron nitride│ 17 │1.2│ (A) │A (SC) │Zirconia│0.5│
│ │ │ │ │ │ │ │ │
│Example 5│Iron nitride│ 17 │1.2│ (A) │B (Magnet) │Zirconia│0.5│
│ │ │ │ │ │ │ │ │
│Example 6│Iron nitride│ 17 │1.2│ (A) │A (SC) │Zirconia│0.5│
│ │ │ │ │ │ │ │ │
├────┼───┼────┼───┼───┼─────┼─────┼───┤
│ │ │ │ │ │ │ │ │
│Comparative Example 1 │Iron alloy │ 35 │3.5│ − │A (SC) │Zirconia │0.5│
│ │ │ │ │ │ │ │ │
│Comparative example 2│Iron nitride│ 17 │1.2│ (A) │C (magnet) │Zirconia│0.5│
│ │ │ │ │ │ │ │ │
│Comparative example 3│Iron nitride│ 17 │1.2│ (A) │A (SC) │ Titania│1.5│
│ │ │ │ │ │ │ │ │
│Comparative example 4│Iron nitride│ 17 │1.2│ (B) │A (SC) │Zirconia│0.5│
│ │ │ │ │ │ │ │ │
│Comparative Example 5│Iron nitride│ 17 │1.2│ (A) │B (Magnet) │ Titania│1.0│
│ │ │ │ │ │ │ │ │
│Comparative Example 6│Iron alloy│100 │6.0│ − │A (SC) │Zirconia│0.5│
│ │ │ │ │ │ │ │ │
│Comparative example 7│Iron nitride│ 35 │1.2│ (C) │A (SC) │Zirconia│0.5│
│ │ │ │ │ │ │ │ │
└────┴───┴────┴───┴───┴─────┴─────┴───┘









表2

┌────┬────────────────────────────────┐
│ │ 磁 気 特 性 │
│ ├────┬────┬─────┬─────┬────┬─────┤
│ │ 角形 │SFD │長手方向 │ 幅方向 │HcM │ HcM
│ │ │ │HcM │ HcT │/HcT │ −HcT
│ │ │ │ (kA/m) │ (kA/m) │ │ (kA/m) │
├────┼────┼────┼─────┼─────┼────┼─────┤
│ │ │ │ │ │ │ │
│実施例1│0.82│0.61│250.2│ 89.0│2.81│161.2│
│ │ │ │ │ │ │ │
│実施例2│0.80│0.64│245.3│ 90.1│2.72│155.2│
│ │ │ │ │ │ │ │
│実施例3│0.83│0.63│257.7│101.9│2.53│155.8│
│ │ │ │ │ │ │ │
│実施例4│0.83│0.59│268.5│ 81.1│3.31│187.4│
│ │ │ │ │ │ │ │
│実施例5│0.77│0.65│235.2│106.4│2.21│128.8│
│ │ │ │ │ │ │ │
│実施例6│0.82│0.60│251.5│ 90.8│2.77│160.7│
│ │ │ │ │ │ │ │
├────┼────┼────┼─────┼─────┼────┼─────┤
│ │ │ │ │ │ │ │
│比較例1│0.86│0.65│190.5│121.4│1.57│ 69.1│
│ │ │ │ │ │ │ │
│比較例2│0.70│0.70│220.7│131.5│1.68│ 89.2│
│ │ │ │ │ │ │ │
│比較例3│0.77│0.67│226.4│132.0│1.72│ 94.4│
│ │ │ │ │ │ │ │
│比較例4│0.82│0.66│249.4│135.5│1.84│113.9│
│ │ │ │ │ │ │ │
│比較例5│0.70│0.67│220.2│133.4│1.65│ 86.8│
│ │ │ │ │ │ │ │
│比較例6│0.87│0.49│202.5│132.7│1.53│ 69.8│
│ │ │ │ │ │ │ │
│比較例7│0.84│0.60│250.0│113.0│2.21│137.0│
│ │ │ │ │ │ │ │
└────┴────┴────┴─────┴─────┴────┴─────┘









Table 2

┌────┬────────────────────────────────┐
│ │ Magnetic properties │
│ ├────┬────┬─────┬─────┬────┬─────┤
│ │ Square │SFD │Longitudinal │ Width │Hc M │ Hc M
│ │ │ │Hc M │ Hc T │ / Hc T │ -Hc T
│ │ │ │ (kA / m) │ (kA / m) │ │ (kA / m) │
├────┼────┼────┼─────┼┼─────┼────┼─────┤
│ │ │ │ │ │ │ │
│Example 1│0.82│0.61│250.2│ 89.0│2.81│161.2│
│ │ │ │ │ │ │ │
│Example 2│0.80│0.64│245.3│ 90.1│2.72│155.2│
│ │ │ │ │ │ │ │
│Example 3│0.83│0.63│257.7│101.9│2.53│155.8│
│ │ │ │ │ │ │ │
Example 4 | 0.83 | 0.59 | 268.5 | 81.1 | 3.31 | 187.4 |
│ │ │ │ │ │ │ │
│Example 5│0.77│0.65│235.2│106.4│2.21│128.8│
│ │ │ │ │ │ │ │
│Example 6│0.82│0.60│251.5│ 90.8│2.77│160.7│
│ │ │ │ │ │ │ │
├────┼────┼────┼─────┼┼─────┼────┼─────┤
│ │ │ │ │ │ │ │
│Comparative Example 1│0.86│0.65│190.5│121.4│1.57│ 69.1│
│ │ │ │ │ │ │ │
│Comparative Example 2│0.70│0.70│220.7│131.5│1.68│ 89.2│
│ │ │ │ │ │ │ │
│Comparative Example 3│0.77│0.67│226.4│132.0│1.72│ 94.4│
│ │ │ │ │ │ │ │
│Comparative Example 4│0.82│0.66│249.4│135.5│1.84│113.9│
│ │ │ │ │ │ │ │
│Comparative Example 5│0.70│0.67│220.2│133.4│1.65│ 86.8│
│ │ │ │ │ │ │ │
│Comparative Example 6│0.87│0.49│202.5│132.7│1.53│ 69.8│
│ │ │ │ │ │ │ │
│Comparative Example 7│0.84│0.60│250.0│113.0│2.21│137.0│
│ │ │ │ │ │ │ │
└────┴────┴────┴─────┴┴─────┴────┴─────┘









表3

┌──────┬─────────────┐
│ │ 電磁変換特性 │
│ ├──────┬──────┤
│ │ C │ C/N │
│ │ (dB) │ (dB) │
├──────┼──────┼──────┤
│ │ │ │
│ 実施例1 │ 2.4 │ 3.1 │
│ │ │ │
│ 実施例2 │ 1.6 │ 2.8 │
│ │ │ │
│ 実施例3 │ 2.5 │ 1.5 │
│ │ │ │
│ 実施例4 │ 2.7 │ 3.4 │
│ │ │ │
│ 実施例5 │ 0.0 │ 0.0 │
│ │ │ │
│ 実施例6 │ 2.3 │ 3.1 │
│ │ │ │
├──────┼──────┼──────┤
│ │ │ │
│ 比較例1 │ 0.5 │ −3.1 │
│ │ │ │
│ 比較例2 │ −1.5 │ −2.1 │
│ │ │ │
│ 比較例3 │ −1.4 │ −1.8 │
│ │ │ │
│ 比較例4 │ −1.0 │ −0.8 │
│ │ │ │
│ 比較例5 │ −2.1 │ −2.0 │
│ │ │ │
│ 比較例6 │ −1.2 │ −7.5 │
│ │ │ │
│ 比較例7 │ 3.0 │ −3.7 │
│ │ │ │
└──────┴──────┴──────┘


Table 3

┌──────┬─────────────┐
│ │ Electromagnetic conversion characteristics │
│ ├──────┬──────┤
│ │ C │ C / N │
│ │ (dB) │ (dB) │
├──────┼──────┼──────┤
│ │ │ │
│ Example 1 │ 2.4 │ 3.1 │
│ │ │ │
│ Example 2 │ 1.6 │ 2.8 │
│ │ │ │
│ Example 3 │ 2.5 │ 1.5 │
│ │ │ │
│ Example 4 │ 2.7 │ 3.4 │
│ │ │ │
│ Example 5 │ 0.0 │ 0.0 │
│ │ │ │
│ Example 6 │ 2.3 │ 3.1 │
│ │ │ │
├──────┼──────┼──────┤
│ │ │ │
│ Comparative Example 1 │ 0.5 │ -3.1 │
│ │ │ │
│ Comparative Example 2 │ −1.5 │ −2.1 │
│ │ │ │
│ Comparative Example 3 │ −1.4 │ −1.8 │
│ │ │ │
│ Comparative Example 4 │ -1.0 │ -0.8 │
│ │ │ │
│ Comparative Example 5 │ −2.1 │ −2.0 │
│ │ │ │
│ Comparative Example 6 │ −1.2 │ −7.5 │
│ │ │ │
│ Comparative Example 7 │ 3.0 │ -3.7 │
│ │ │ │
└──────┴──────┴──────┘

上記の表1〜表3の結果から、最上層磁性層に含まれる磁性粉末が平均粒子サイズ30nm以下の略粒状粒子で、長手方向の保磁力と幅方向の保磁力との比(HcM /HcT )が2.2以上である実施例1〜6の各磁気テープは、上記磁性粉末として平均粒子サイズが30nmより大きいものや粒状以外のものを用いたり、また上記比(HcM /HcT )が2.2未満となる比較例1〜7の磁気テープに比べて、再生出力(C)および再生出力ノイズ比(C/N)が高いことがわかる。さらに、図5の結果から、上記比(HcM /HcT )が大きくなるほど、C/Nも高くなることもわかる。

From the results of Tables 1 to 3, the magnetic powder contained in the uppermost magnetic layer is substantially granular particles having an average particle size of 30 nm or less, and the ratio of the coercive force in the longitudinal direction to the coercive force in the width direction (Hc M / For each of the magnetic tapes of Examples 1 to 6 with Hc T ) of 2.2 or more, a magnetic powder having an average particle size larger than 30 nm or other than granular is used as the magnetic powder, or the ratio (Hc M / Hc). It can be seen that the reproduction output (C) and reproduction output noise ratio (C / N) are higher than those of the magnetic tapes of Comparative Examples 1 to 7 in which T ) is less than 2.2. Furthermore, it can be seen from the results of FIG. 5 that C / N increases as the ratio (Hc M / Hc T ) increases.

磁気テープにおける磁気記録された磁性層の磁化の様子を模式的に示す図である。It is a figure which shows typically the mode of magnetization of the magnetic layer by which the magnetic recording was carried out in the magnetic tape. 磁気テープにおける磁気記録時の磁性層の磁化の反転の様子を示すモデル図である。It is a model figure which shows the mode of the reversal of the magnetization of the magnetic layer at the time of the magnetic recording in a magnetic tape. 本発明の磁気テープ(HcM /HcT が2.2以上)に磁気記録した場合の磁性層の磁化の様子を模式的に示す図である。The state of magnetization of the magnetic layer in the case of magnetic recording on the magnetic tape of the present invention (Hc M / Hc T is 2.2 or higher) is a view schematically showing. 本発明とは異なる磁気テープ(HcM /HcT が2.2未満)に磁気記録した場合の磁性層の磁化の様子を模式的に示す図である。The present invention is a diagram schematically showing a state of magnetization of the magnetic layer in the case of magnetic recording on different magnetic tapes (less than Hc M / Hc T 2.2). 磁気テープの長手Hc(長手方向HcM )/幅Hc(幅方向HcT )の比とC/Nとの関係を示す特性図である。It is a characteristic view showing the relationship between the ratio of the longitudinal Hc (longitudinal direction Hc M ) / width Hc (width direction Hc T ) and C / N of the magnetic tape.

符号の説明Explanation of symbols

1 磁気テープ(磁性層)
2 磁化
3 磁気ヘッド
4 磁化遷移領域
T 時間経過
1 Magnetic tape (magnetic layer)
2 Magnetization 3 Magnetic head 4 Magnetization transition region T Time lapse

Claims (4)

非磁性支持体とこの支持体の一方の面に形成された少なくとも1層の磁性層とを有する磁気テープにおいて、最上層磁性層に含まれる磁性粉末は、粒子サイズが30nm以下の略粒状の磁性粒子からなり、長手方向の保磁力HcM と幅方向の保磁力HcT との比〔HcM /HcT 〕が2.2以上であることを特徴とする磁気テープ。

In a magnetic tape having a nonmagnetic support and at least one magnetic layer formed on one side of the support, the magnetic powder contained in the uppermost magnetic layer is a substantially granular magnetic particle having a particle size of 30 nm or less. A magnetic tape comprising particles and having a ratio [Hc M / Hc T ] of a coercive force Hc M in the longitudinal direction and a coercive force Hc T in the width direction of 2.2 or more.

最上層磁性層に含まれる磁性粉末は、粒子サイズが20nm以下の略粒状の磁性粒子からなる請求項1に記載の磁気テープ。

The magnetic tape according to claim 1, wherein the magnetic powder contained in the uppermost magnetic layer is formed of substantially granular magnetic particles having a particle size of 20 nm or less.

最上層磁性層に含まれる略粒状の磁性粒子は、軸比(長径/短径)が2未満である請求項1または2に記載の磁気テープ。

The magnetic tape according to claim 1, wherein the substantially granular magnetic particles contained in the uppermost magnetic layer have an axial ratio (major axis / minor axis) of less than 2. 4.

最上層磁性層に含まれる略粒状の磁性粒子は、窒化鉄系磁性粉末である請求項1〜3のいずれかに記載の磁気テープ。
4. The magnetic tape according to claim 1, wherein the substantially granular magnetic particles contained in the uppermost magnetic layer are iron nitride magnetic powder.
JP2004277748A 2004-09-24 2004-09-24 Magnetic tape Withdrawn JP2006092672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004277748A JP2006092672A (en) 2004-09-24 2004-09-24 Magnetic tape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004277748A JP2006092672A (en) 2004-09-24 2004-09-24 Magnetic tape

Publications (1)

Publication Number Publication Date
JP2006092672A true JP2006092672A (en) 2006-04-06

Family

ID=36233498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004277748A Withdrawn JP2006092672A (en) 2004-09-24 2004-09-24 Magnetic tape

Country Status (1)

Country Link
JP (1) JP2006092672A (en)

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017117505A (en) * 2015-12-25 2017-06-29 富士フイルム株式会社 Magnetic tape and magnetic tape unit
US10347280B2 (en) 2016-06-23 2019-07-09 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10347279B2 (en) 2016-02-03 2019-07-09 Fujifilm Corporation Magnetic tape having characterized backcoat layer and method of manufacturing the same
US10360937B2 (en) 2017-03-29 2019-07-23 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10366721B2 (en) 2017-06-23 2019-07-30 Fujifilm Corporation Head positioning of timing-based servo system for magnetic tape recording device
US10373639B2 (en) 2017-03-29 2019-08-06 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10373633B2 (en) 2016-12-27 2019-08-06 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10395685B2 (en) 2017-03-29 2019-08-27 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10403318B2 (en) 2016-06-24 2019-09-03 Fujifilm Corporation Magnetic tape having characterized back coating layer
US10403312B2 (en) 2017-03-29 2019-09-03 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10403320B2 (en) 2016-12-27 2019-09-03 Fujifilm Corporation Magnetic tape device with TMR head and specific logarithmic decrement and magnetic reproducing method
US10403316B2 (en) 2017-07-19 2019-09-03 Fujifilm Corporation Magnetic tape having characterized magnetic layer with servo pattern and magnetic tape device
US10403314B2 (en) 2017-02-20 2019-09-03 Fujifilm Corporation Magnetic tape device employing TMR head and magnetic tape with characterized magnetic layer, and head tracking servo method
US10403319B2 (en) 2015-12-16 2019-09-03 Fujifilm Corporation Magnetic tape having characterized magnetic layer, tape cartridge, and recording and reproducing device
US10403317B2 (en) 2017-03-29 2019-09-03 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10410666B2 (en) 2017-03-29 2019-09-10 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10410665B2 (en) 2017-03-29 2019-09-10 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10424330B2 (en) 2017-02-20 2019-09-24 Fujifilm Corporation Magnetic tape having characterized back coating layer
US10431249B2 (en) 2016-06-23 2019-10-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10431248B2 (en) 2016-06-10 2019-10-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10431250B2 (en) 2017-02-20 2019-10-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10431251B2 (en) 2017-03-29 2019-10-01 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10438623B2 (en) 2017-03-29 2019-10-08 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10438621B2 (en) 2017-02-20 2019-10-08 Fujifilm Corporation Magnetic tape having characterized back coating layer
US10438628B2 (en) 2016-12-27 2019-10-08 Fujifilm Corporation Magnetic tape device with magnetic tape having particular C-H derived C concentration and magnetic reproducing method
US10438622B2 (en) 2017-02-20 2019-10-08 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10438624B2 (en) 2017-02-20 2019-10-08 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10438625B2 (en) 2017-02-20 2019-10-08 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10453488B2 (en) 2017-02-20 2019-10-22 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10460756B2 (en) 2017-02-20 2019-10-29 Fujifilm Corporation Magnetic tape device and head tracking servo method employing TMR element servo head and magnetic tape with characterized magnetic layer
US10475480B2 (en) 2017-02-20 2019-11-12 Fujifilm Corporation Magnetic tape having characterized back coating and magnetic layers
US10475481B2 (en) 2016-02-03 2019-11-12 Fujifilm Corporation Magnetic tape having characterized backcoat layer and method of manufacturing the same
US10477072B2 (en) 2016-06-22 2019-11-12 Fujifilm Corporation Magnetic tape having characterized magnetic layer and hexagonal ferrite powder
US10482915B2 (en) 2016-12-27 2019-11-19 Fujifilm Corporation Magnetic tape device and magnetic reproducing method employing TMR head and magnetic tape having characterized magnetic layer
US10482913B2 (en) 2017-02-20 2019-11-19 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10490220B2 (en) 2017-03-29 2019-11-26 Fujifilm Corporation Magnetic tape device, magnetic reproducing method, and head tracking servo method
US10497388B2 (en) 2016-06-23 2019-12-03 Fujifilm Corporation Magnetic tape including characterized magnetic layer
US10497384B2 (en) 2017-02-20 2019-12-03 Fujifilm Corporation Magnetic tape device and reproducing method employing TMR reproducing head and magnetic tape with characterized magnetic layer
US10497389B2 (en) 2016-06-13 2019-12-03 Fujifilm Corporation Magnetic tape and magnetic tape device
US10504546B2 (en) 2016-06-23 2019-12-10 Fujifilm Corporation Magnetic tape having characterized magnetic particles and magnetic tape device
US10510370B2 (en) 2016-06-23 2019-12-17 Fujifilm Corporation Magnetic tape including characterized magnetic layer and magnetic tape device
US10510368B2 (en) 2016-06-23 2019-12-17 Fujifilm Corporation Magnetic tape including characterized magnetic layer and magnetic tape device
US10510369B2 (en) 2016-06-23 2019-12-17 Fujifilm Corporation Magnetic tape having characterized magnetic particles and magnetic tape device
US10515660B2 (en) 2016-06-22 2019-12-24 Fujifilm Corporation Magnetic tape having controlled surface properties of the back coating layer and magnetic layer
US10515657B2 (en) 2017-09-29 2019-12-24 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US10522179B2 (en) 2016-08-31 2019-12-31 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10522171B2 (en) 2016-06-23 2019-12-31 Fujifilm Corporation Magnetic tape having controlled surface properties of the magnetic layer
US10522180B2 (en) 2015-12-16 2019-12-31 Fujifilm Corporation Magnetic tape including characterized magnetic layer, tape cartridge, recording and reproducing device, and method of manufacturing
US10529368B2 (en) 2016-08-31 2020-01-07 Fujifilm Corporation Magnetic tape having characterized magnetic layer and back coating layer
US10540996B2 (en) 2015-09-30 2020-01-21 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10546605B2 (en) 2017-03-29 2020-01-28 Fujifilm Corporation Head tracking servo method for magnetic tape recording device
US10546602B2 (en) 2017-02-20 2020-01-28 Fujifilm Corporation Magnetic tape device and reproducing method employing TMR reproducing head and tape with characterized XRD intensity ratio
US10573341B2 (en) 2015-12-25 2020-02-25 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US10573338B2 (en) 2017-02-20 2020-02-25 Fujifilm Corporation Magnetic tape device and magnetic reproducting method employing TMR head and tape with characterized magnetic layer
US10692522B2 (en) 2016-09-16 2020-06-23 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and method for manufacturing same
US20200211592A1 (en) 2018-12-28 2020-07-02 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US10714139B2 (en) 2017-07-19 2020-07-14 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10770105B2 (en) 2017-07-19 2020-09-08 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10839850B2 (en) 2017-07-19 2020-11-17 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10839851B2 (en) 2017-07-19 2020-11-17 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10839849B2 (en) 2017-07-19 2020-11-17 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10854229B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10854228B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10854233B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10854226B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10854232B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10854234B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10854231B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10854230B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10854227B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10861491B2 (en) 2016-02-29 2020-12-08 Fujifilm Corporation Magnetic tape
US10896692B2 (en) 2016-02-29 2021-01-19 Fujifilm Corporation Magnetic tape
US10910009B2 (en) 2015-08-21 2021-02-02 Fujifilm Corporation Magnetic tape having a characterized magnetic layer and method of manufacturing the same
US10937456B2 (en) 2016-02-29 2021-03-02 Fujifilm Corporation Magnetic tape
US10978105B2 (en) 2017-09-29 2021-04-13 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US11361793B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11361792B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11373680B2 (en) 2017-09-29 2022-06-28 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11417358B2 (en) 2019-01-31 2022-08-16 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11417357B2 (en) 2018-07-27 2022-08-16 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11417359B2 (en) 2019-09-17 2022-08-16 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US11430478B2 (en) 2018-12-28 2022-08-30 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11468911B2 (en) 2018-10-22 2022-10-11 Fujifilm Corporation Magnetic tape having characterized magnetic layer, magnetic tape cartridge, and magnetic tape apparatus
US11475915B2 (en) 2017-06-23 2022-10-18 Fujifilm Corporation Magnetic recording medium
US11501799B2 (en) 2017-09-29 2022-11-15 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11514944B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11514943B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10910009B2 (en) 2015-08-21 2021-02-02 Fujifilm Corporation Magnetic tape having a characterized magnetic layer and method of manufacturing the same
US10540996B2 (en) 2015-09-30 2020-01-21 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10403319B2 (en) 2015-12-16 2019-09-03 Fujifilm Corporation Magnetic tape having characterized magnetic layer, tape cartridge, and recording and reproducing device
US10522180B2 (en) 2015-12-16 2019-12-31 Fujifilm Corporation Magnetic tape including characterized magnetic layer, tape cartridge, recording and reproducing device, and method of manufacturing
JP2017117505A (en) * 2015-12-25 2017-06-29 富士フイルム株式会社 Magnetic tape and magnetic tape unit
US10573341B2 (en) 2015-12-25 2020-02-25 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US10475481B2 (en) 2016-02-03 2019-11-12 Fujifilm Corporation Magnetic tape having characterized backcoat layer and method of manufacturing the same
US10347279B2 (en) 2016-02-03 2019-07-09 Fujifilm Corporation Magnetic tape having characterized backcoat layer and method of manufacturing the same
US10937456B2 (en) 2016-02-29 2021-03-02 Fujifilm Corporation Magnetic tape
US10861491B2 (en) 2016-02-29 2020-12-08 Fujifilm Corporation Magnetic tape
US10896692B2 (en) 2016-02-29 2021-01-19 Fujifilm Corporation Magnetic tape
US10431248B2 (en) 2016-06-10 2019-10-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10497389B2 (en) 2016-06-13 2019-12-03 Fujifilm Corporation Magnetic tape and magnetic tape device
US10679660B2 (en) 2016-06-13 2020-06-09 Fujifilm Corporation Magnetic tape and magnetic tape device
US10477072B2 (en) 2016-06-22 2019-11-12 Fujifilm Corporation Magnetic tape having characterized magnetic layer and hexagonal ferrite powder
US10515660B2 (en) 2016-06-22 2019-12-24 Fujifilm Corporation Magnetic tape having controlled surface properties of the back coating layer and magnetic layer
US10504546B2 (en) 2016-06-23 2019-12-10 Fujifilm Corporation Magnetic tape having characterized magnetic particles and magnetic tape device
US10497388B2 (en) 2016-06-23 2019-12-03 Fujifilm Corporation Magnetic tape including characterized magnetic layer
US10522171B2 (en) 2016-06-23 2019-12-31 Fujifilm Corporation Magnetic tape having controlled surface properties of the magnetic layer
US10431249B2 (en) 2016-06-23 2019-10-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10510368B2 (en) 2016-06-23 2019-12-17 Fujifilm Corporation Magnetic tape including characterized magnetic layer and magnetic tape device
US10510370B2 (en) 2016-06-23 2019-12-17 Fujifilm Corporation Magnetic tape including characterized magnetic layer and magnetic tape device
US10510369B2 (en) 2016-06-23 2019-12-17 Fujifilm Corporation Magnetic tape having characterized magnetic particles and magnetic tape device
US10347280B2 (en) 2016-06-23 2019-07-09 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10403318B2 (en) 2016-06-24 2019-09-03 Fujifilm Corporation Magnetic tape having characterized back coating layer
US10522179B2 (en) 2016-08-31 2019-12-31 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10529368B2 (en) 2016-08-31 2020-01-07 Fujifilm Corporation Magnetic tape having characterized magnetic layer and back coating layer
US10692522B2 (en) 2016-09-16 2020-06-23 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and method for manufacturing same
US10438628B2 (en) 2016-12-27 2019-10-08 Fujifilm Corporation Magnetic tape device with magnetic tape having particular C-H derived C concentration and magnetic reproducing method
US10510366B2 (en) 2016-12-27 2019-12-17 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10403320B2 (en) 2016-12-27 2019-09-03 Fujifilm Corporation Magnetic tape device with TMR head and specific logarithmic decrement and magnetic reproducing method
US10482915B2 (en) 2016-12-27 2019-11-19 Fujifilm Corporation Magnetic tape device and magnetic reproducing method employing TMR head and magnetic tape having characterized magnetic layer
US10373633B2 (en) 2016-12-27 2019-08-06 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10438621B2 (en) 2017-02-20 2019-10-08 Fujifilm Corporation Magnetic tape having characterized back coating layer
US10431250B2 (en) 2017-02-20 2019-10-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10573338B2 (en) 2017-02-20 2020-02-25 Fujifilm Corporation Magnetic tape device and magnetic reproducting method employing TMR head and tape with characterized magnetic layer
US10475480B2 (en) 2017-02-20 2019-11-12 Fujifilm Corporation Magnetic tape having characterized back coating and magnetic layers
US10403314B2 (en) 2017-02-20 2019-09-03 Fujifilm Corporation Magnetic tape device employing TMR head and magnetic tape with characterized magnetic layer, and head tracking servo method
US10497384B2 (en) 2017-02-20 2019-12-03 Fujifilm Corporation Magnetic tape device and reproducing method employing TMR reproducing head and magnetic tape with characterized magnetic layer
US10460756B2 (en) 2017-02-20 2019-10-29 Fujifilm Corporation Magnetic tape device and head tracking servo method employing TMR element servo head and magnetic tape with characterized magnetic layer
US10453488B2 (en) 2017-02-20 2019-10-22 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10438625B2 (en) 2017-02-20 2019-10-08 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10438624B2 (en) 2017-02-20 2019-10-08 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10438622B2 (en) 2017-02-20 2019-10-08 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10546602B2 (en) 2017-02-20 2020-01-28 Fujifilm Corporation Magnetic tape device and reproducing method employing TMR reproducing head and tape with characterized XRD intensity ratio
US10424330B2 (en) 2017-02-20 2019-09-24 Fujifilm Corporation Magnetic tape having characterized back coating layer
US10482913B2 (en) 2017-02-20 2019-11-19 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10497386B2 (en) 2017-03-29 2019-12-03 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10546605B2 (en) 2017-03-29 2020-01-28 Fujifilm Corporation Head tracking servo method for magnetic tape recording device
US10431251B2 (en) 2017-03-29 2019-10-01 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10410665B2 (en) 2017-03-29 2019-09-10 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10515661B2 (en) 2017-03-29 2019-12-24 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10403317B2 (en) 2017-03-29 2019-09-03 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10395685B2 (en) 2017-03-29 2019-08-27 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10438623B2 (en) 2017-03-29 2019-10-08 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10410666B2 (en) 2017-03-29 2019-09-10 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10490220B2 (en) 2017-03-29 2019-11-26 Fujifilm Corporation Magnetic tape device, magnetic reproducing method, and head tracking servo method
US10373639B2 (en) 2017-03-29 2019-08-06 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10403312B2 (en) 2017-03-29 2019-09-03 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10360937B2 (en) 2017-03-29 2019-07-23 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10366721B2 (en) 2017-06-23 2019-07-30 Fujifilm Corporation Head positioning of timing-based servo system for magnetic tape recording device
US11475915B2 (en) 2017-06-23 2022-10-18 Fujifilm Corporation Magnetic recording medium
US11631427B2 (en) 2017-06-23 2023-04-18 Fujifilm Corporation Magnetic recording medium
US10854228B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10854230B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10854229B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10839851B2 (en) 2017-07-19 2020-11-17 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10403316B2 (en) 2017-07-19 2019-09-03 Fujifilm Corporation Magnetic tape having characterized magnetic layer with servo pattern and magnetic tape device
US10854226B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10854232B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10839849B2 (en) 2017-07-19 2020-11-17 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10714139B2 (en) 2017-07-19 2020-07-14 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10770105B2 (en) 2017-07-19 2020-09-08 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10854227B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10839850B2 (en) 2017-07-19 2020-11-17 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US11462242B2 (en) 2017-09-29 2022-10-04 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US10854231B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10515657B2 (en) 2017-09-29 2019-12-24 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US10978105B2 (en) 2017-09-29 2021-04-13 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US11501799B2 (en) 2017-09-29 2022-11-15 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US10854234B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US11373680B2 (en) 2017-09-29 2022-06-28 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US10854233B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US11361792B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11361793B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11581015B2 (en) 2018-03-23 2023-02-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11551716B2 (en) 2018-03-23 2023-01-10 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11514943B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11514944B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11417357B2 (en) 2018-07-27 2022-08-16 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11430475B2 (en) 2018-07-27 2022-08-30 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11468911B2 (en) 2018-10-22 2022-10-11 Fujifilm Corporation Magnetic tape having characterized magnetic layer, magnetic tape cartridge, and magnetic tape apparatus
US11443766B2 (en) 2018-12-28 2022-09-13 Fujifilm Corporation Magnetic tape with particular refractive index characteristics, magnetic tape cartridge, and magnetic tape apparatus
US11430478B2 (en) 2018-12-28 2022-08-30 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11423935B2 (en) 2018-12-28 2022-08-23 Fujifilm Corporation Magnetic tape with particular refractive index characteristics, magnetic tape cartridge, and magnetic tape apparatus
US20200211592A1 (en) 2018-12-28 2020-07-02 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11417358B2 (en) 2019-01-31 2022-08-16 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11437063B2 (en) 2019-01-31 2022-09-06 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11417359B2 (en) 2019-09-17 2022-08-16 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device

Similar Documents

Publication Publication Date Title
JP2006092672A (en) Magnetic tape
JP3886968B2 (en) Magnetic recording medium and magnetic recording cartridge
US6964811B2 (en) Magnetic powder, method for producing the same and magnetic recording medium comprising the same
US20060068232A1 (en) Magnetic tape
US6517934B1 (en) Magnetic recording medium containing nanometer-size substantially spherical or ellipsoidal fe-b-re magnetic powder and method for producing magnetic powder
JP2010040778A (en) Iron-nitride magnetic powder and magnetic recording medium using the same
JP2008159259A (en) Magnetic recording medium
JP2004005891A (en) Magnetic tape and magnetic tape cartridge
JP2010147079A (en) Method of producing iron nitride-based magnetic powder, and iron nitride-based magnetic powder
JP2002056518A (en) Magnetic recording medium, magnetic powder used for the same and method for manufacturing the magnetic powder
JP2001181754A (en) Magnetic recording medium, rare earth-iron-boron series magnetic powder used therfor and method for producing the magnetic powder
JP3752575B2 (en) Magnetic tape
JP2006202445A (en) Magnetic tape
JP2011096312A (en) Iron nitride magnetic powder and magnetic recording medium using the same
JP4268629B2 (en) Magnetic recording medium and magnetic recording cartridge
JP2009223970A (en) Magnetic recording medium and manufacturing method therefor
JP2006216178A (en) Magnetic tape
JP4146769B2 (en) Magnetic recording medium
JP2006196115A (en) Magnetic tape and magnetic powder
JP2011227974A (en) Iron nitride based magnetic powder and magnetic recording medium using the same
JP2006120239A (en) Magnetic tape
JP4162536B2 (en) Magnetic recording medium
JP4268628B2 (en) Magnetic recording medium and magnetic recording cartridge
JP5755778B2 (en) Magnetic recording medium
JP5608786B2 (en) Magnetic recording medium

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204