JPH0785297B2 - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0785297B2
JPH0785297B2 JP60138916A JP13891685A JPH0785297B2 JP H0785297 B2 JPH0785297 B2 JP H0785297B2 JP 60138916 A JP60138916 A JP 60138916A JP 13891685 A JP13891685 A JP 13891685A JP H0785297 B2 JPH0785297 B2 JP H0785297B2
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
magnetic recording
hexagonal ferrite
ferrite powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60138916A
Other languages
Japanese (ja)
Other versions
JPS621113A (en
Inventor
俊治 栗栖
寿彦 小口
忠 井戸
弘毅 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60138916A priority Critical patent/JPH0785297B2/en
Publication of JPS621113A publication Critical patent/JPS621113A/en
Publication of JPH0785297B2 publication Critical patent/JPH0785297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、磁気記録媒体に関し、特に六方晶系フェライ
ト粉を用いた塗布型の高密度磁気記録媒体に係る。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a magnetic recording medium, and more particularly to a coating type high density magnetic recording medium using hexagonal ferrite powder.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

磁気記録媒体は、ポリエチレンテレフタレートなどの非
磁性支持体とその上に設けられた磁性体微粒子とバイン
ダを主成分とする磁性層で構成されている。磁性体微粒
子としては従来、γFe2O3,CrO2,金属Feなどの針状の磁
性粒子が広く用いられており、、磁気記録は面内長手方
向の磁化を用いる方式によっている。この面内長手方向
の磁化による記録媒体の製造にあたっては、磁性層表面
に荒れを生じさせることなく磁性粒子を面内長手方向に
配向させることができ、またその配向により面内長手方
向の磁性粒子の充填率を高めることができる。しかし、
この面内長手方向の磁化のみを用いる記録方式にあって
は、高周波域における記録再生の向上、すなわち記録の
高密度化を図ろうとすると、記録媒体内の減磁界が増加
するため、記録密度をそれ程向上させることはできな
い。
The magnetic recording medium is composed of a non-magnetic support such as polyethylene terephthalate, magnetic fine particles provided thereon, and a magnetic layer containing a binder as a main component. Conventionally, needle-shaped magnetic particles such as γFe 2 O 3 , CrO 2 , and metallic Fe have been widely used as the magnetic fine particles, and the magnetic recording is based on the method using magnetization in the in-plane longitudinal direction. In manufacturing a recording medium by magnetization in the in-plane longitudinal direction, the magnetic particles can be oriented in the in-plane longitudinal direction without causing roughness on the surface of the magnetic layer. The filling rate can be increased. But,
In the recording method using only the magnetization in the in-plane longitudinal direction, when an attempt is made to improve recording / reproduction in a high frequency region, that is, to increase the recording density, the demagnetizing field in the recording medium increases, so that the recording density is increased. It cannot be improved so much.

そこで、このような不具合を解消するために近年、記録
媒体の表面と垂直な方向の磁化を用いる垂直磁気記録方
式が提案されている。垂直磁気記録方式では記録密度が
高まるほど、記録媒体中の減磁界が減少するので、本質
的に高密度記録に適した記録方式と云える。
Therefore, in order to solve such a problem, a perpendicular magnetic recording system has recently been proposed which uses magnetization in a direction perpendicular to the surface of the recording medium. In the perpendicular magnetic recording method, the higher the recording density, the smaller the demagnetizing field in the recording medium, so it can be said that the recording method is essentially suitable for high-density recording.

このような垂直記録方式に適した記録媒体として、記録
媒体の表面と垂直な方向に磁化容易軸を向け易い六方晶
系フェライト粉を使用した塗布型の記録媒体が研究され
ている。
As a recording medium suitable for such a perpendicular recording system, a coating type recording medium using hexagonal ferrite powder in which an easy axis of magnetization is easily oriented in a direction perpendicular to the surface of the recording medium has been studied.

ところで、記録媒体を磁性粒子の塗布層で形成するもの
にあっては、次のような製造方法が考えられる。すなわ
ち、磁性粒子としてたとえばBaFe12O19の六方晶系フェ
ライト粉を用いる。六方晶系フェライト粉を用いる理由
は、このフェライトは平板状をなしており、しかも磁化
容易軸が板面に垂直であるため、磁場配向処理もしくは
機械的配向処理によって容易に垂直配向を行ない得るか
らである。このような六方晶系フェライト粉の磁性粒子
とバインダとを混合し、これを非磁性支持体の表面に塗
布した後、この塗布層を磁場中にその表面が磁界の方向
と直交するように配置することによって各磁性粒子の磁
化容易軸を磁界の方向に一致させて配列させた後、塗料
を乾燥させれば、垂直磁気記録に適した記録媒体を得る
ことができる。
By the way, in the case where the recording medium is formed of a coating layer of magnetic particles, the following manufacturing method can be considered. That is, for example, BaFe 12 O 19 hexagonal ferrite powder is used as the magnetic particles. The reason for using hexagonal ferrite powder is that this ferrite has a flat plate shape, and since the axis of easy magnetization is perpendicular to the plate surface, vertical orientation can be easily performed by magnetic field orientation processing or mechanical orientation processing. Is. After mixing magnetic particles of such hexagonal ferrite powder with a binder and coating the mixture on the surface of a non-magnetic support, the coating layer is placed in a magnetic field so that the surface is orthogonal to the direction of the magnetic field. By doing so, the easy axis of magnetization of each magnetic particle is aligned with the direction of the magnetic field, and the coating material is dried, whereby a recording medium suitable for perpendicular magnetic recording can be obtained.

しかしながら、磁場配向により垂直磁気記録媒体を得よ
うとすると、磁場中での乾燥のタイミングをとり難く、
再現性良く垂直配向塗膜を得ることが困難である。また
配向磁場下で磁性粒子が自由に回転・移動しうる時間が
長いと粒子同志の磁気凝集を生じ、塗膜面を粗にするの
で、記録再生時のノイズを大きくするという問題点があ
る。
However, when trying to obtain a perpendicular magnetic recording medium by magnetic field orientation, it is difficult to set the timing of drying in a magnetic field,
It is difficult to obtain a vertically aligned coating film with good reproducibility. Further, if the magnetic particles are allowed to freely rotate and move under an orienting magnetic field for a long time, magnetic agglomeration of the particles occurs, and the coating film surface is roughened, which causes a problem of increasing noise during recording and reproduction.

〔発明の目的〕[Object of the Invention]

本発明は、上記の問題点を解決すべくなされたものであ
って、六方晶系フェライト粉を用いた塗布型磁気記録媒
体において、垂直・両面磁化成分の双方の同時利用によ
り有効な磁気記録ができ、かつ表面平滑性にすぐれた磁
気記録媒体を提供することを目的とするものである。
The present invention has been made to solve the above problems, and in a coating type magnetic recording medium using hexagonal ferrite powder, effective magnetic recording is achieved by using both perpendicular and double-sided magnetization components simultaneously. It is an object of the present invention to provide a magnetic recording medium that can be formed and has excellent surface smoothness.

〔発明の概要〕[Outline of Invention]

本発明に係る磁気記録媒体は、基体上に六方晶系フェラ
イト粉を含有する磁性層を設けてなる磁気記録媒体にお
いて、該磁性粉が表面では垂直方向、内部では面内方向
に配向して、面内長手方向および磁性層に垂直な方向の
角形比が0.5より大きく、かつ両内長手方向と直角な面
内方向の角形比が面内長手方向の角形比より小であるこ
とを特徴とするものである。
The magnetic recording medium according to the present invention is a magnetic recording medium comprising a magnetic layer containing hexagonal ferrite powder on a substrate, wherein the magnetic powder is oriented in the vertical direction on the surface and in the in-plane direction inside, The squareness ratio in the in-plane longitudinal direction and the direction perpendicular to the magnetic layer is larger than 0.5, and the squareness ratio in the in-plane direction perpendicular to both in-plane longitudinal directions is smaller than the squareness ratio in the in-plane longitudinal direction. It is a thing.

以下、本発明を更に詳細に説明する。Hereinafter, the present invention will be described in more detail.

本発明における磁性粉は六方晶系フェライト粉で、特に
好ましいものとしてFeの一部が置換されたもので、これ
はMAO・n(Fe1-XMBX2O3の一般式で表わされるもので
ある。式中MAはBa,Sr,Pb,MBはIn,Co,Ti,Ni,Mn,Cu,Zn,G
e,Nb,Zr,V,Ta,Al,Cr,Sb等の少なくとも1種以上の元素
を表わし、これは保磁力を制御するものである。また、
nは5.0〜6.0、xは0〜0.2の範囲が好ましく、さらに
六方晶フェライト粉の平均粒径は、0.01〜0.3μm、粒
径と厚さの比は2:1以上のものが好ましい。六角板面の
対角線の長さである。
The magnetic powder in the present invention is a hexagonal ferrite powder, in which a part of Fe is substituted as a particularly preferable powder, which has a general formula of M A O · n (Fe 1-X M BX ) 2 O 3. It is represented. Where M A is Ba, Sr, Pb, M B is In, Co, Ti, Ni, Mn, Cu, Zn, G
Represents at least one element such as e, Nb, Zr, V, Ta, Al, Cr, and Sb, which controls the coercive force. Also,
It is preferable that n is in the range of 5.0 to 6.0, x is in the range of 0 to 0.2, and the hexagonal ferrite powder has an average particle size of 0.01 to 0.3 μm and a particle size to thickness ratio of 2: 1 or more. It is the length of the diagonal line of the hexagonal plate surface.

本発明で用いる六方晶系フェライト粉の製造方法はとく
に限定されないが、例えば次の方法が使用できる。すな
わち塩化鉄,塩化バリウムまたは塩化ストロンチウム及
び必要に応じて置換元素の塩化物などの金属イオン水溶
液とNaOHなどのアルカリ溶液を接触させ金属イオンの沈
澱を生成させ、水洗乾燥後この金属イオンを高温にて結
晶化させる共沈法、上記金属イオンを含む水溶液を高温
高圧容器中にて金属イオンを結晶化させ、必要に応じて
高温にて加熱する水熱合成法(特開昭56−160328号公
報)、NaCl,BaCl2などの融剤とに鉄やバリウムまたはス
トロニチウム、鉛を含む化合物を高温にて結晶化後融剤
を除去して磁性粒子を得する融剤法、BaOやB2O3,SiO2
どのガラス形成物質と鉄やバリウムまたはストロニチウ
ム、鉛と必要に応じて置換元素を含む化合物とからガラ
スを作成し高温にて結晶化後ガラス形成物質を除去して
磁性粒子を得るガラス結晶化法(特開昭56−67904号公
報)などがある。
The method for producing the hexagonal ferrite powder used in the present invention is not particularly limited, but the following method can be used, for example. That is, iron chloride, barium chloride or strontium chloride and, if necessary, an aqueous solution of a metal ion such as chloride of a substituting element is contacted with an alkaline solution such as NaOH to form a precipitate of the metal ion, which is washed with water and dried, and then heated to a high temperature. Co-precipitation method in which the metal ions are crystallized by a hydrothermal synthesis method in which the metal ions are crystallized from an aqueous solution containing the above metal ions in a high temperature and high pressure vessel and heated at a high temperature if necessary (JP-A-56-160328). ), A fluxing method such as NaCl, BaCl 2 or the like, in which a compound containing iron, barium, strontium, or lead is crystallized at high temperature and then the fluxing agent is removed to obtain magnetic particles, BaO or B 2 O 3 , A glass-forming material that obtains magnetic particles by forming a glass from a glass-forming substance such as SiO 2 and a compound containing iron, barium or strontium, lead and optionally a substituting element, and crystallizing at high temperature to remove the glass-forming substance Crystallization method (JP-A-56-67904).

しかして、本発明の磁気記録媒体は以下のようにして製
造しうる。すなわち上記の製造方法により得られた磁性
粒子、もしくは異なる製造方法から得られた磁性粒子の
混合体をバインダなどとともに塗料化し、基体上に塗布
し、ソレノイドまたは反発磁界中を通過させることによ
り、磁性粒子を面内長手方向に配向させた塗膜を先ず得
る。次いで、この塗膜が乾燥する前にスムーザなどによ
り機械的にシェアをかけ、表面付近の磁性粒子を表面に
垂直に配向させる。ここで面内長手方向に配向させるた
めの磁界の強さは、500エールステッド以上で、好まし
くは800〜3000エールステッドが良い。また垂直方向に
配向させるためのシェアの強さは、500〜10Kdyne/cm
2で、好ましくは1000〜5000dyne/cm2が良い。
Thus, the magnetic recording medium of the present invention can be manufactured as follows. That is, the magnetic particles obtained by the above manufacturing method, or a mixture of magnetic particles obtained by a different manufacturing method is made into a paint together with a binder or the like, coated on a substrate, and passed through a solenoid or a repulsive magnetic field to obtain magnetic properties. First, a coating film in which the particles are oriented in the in-plane longitudinal direction is obtained. Next, before this coating film is dried, it is mechanically sheared by a smoother or the like to orient the magnetic particles near the surface perpendicularly to the surface. The strength of the magnetic field for orienting in the in-plane longitudinal direction is 500 Oersted or more, preferably 800 to 3000 Oersted. Also, the shear strength for orienting in the vertical direction is 500 to 10 Kdyne / cm.
2 , preferably 1000 to 5000 dyne / cm 2 .

本発明で機械的にシェアをかける方法は特に限定され
ず、磁性粒子を面内長手方向に配向させた後、塗膜が乾
燥する前に塗膜面にロールをかけたり、双ロールの間を
通過させるなどの方向でもよい。また、塗膜が乾燥して
しまった後でも、塗料化に用いた溶剤にて塗膜表面を溶
かした後、機械的にシェアをかけて、表面付近の磁性粒
子を表面に垂直に配向させてもよい。また、さらには面
内長手方向に配向させた後、塗膜を乾燥する。次いで、
同じ塗料又は磁性粒子の物性以外は同じ組成の塗料をそ
の塗膜の上に重ね塗りする。そして同様に機械的にシェ
アをかけて表面付近の磁性粒子を表面に垂直に配向させ
る。または、重ね塗りをおこなう際は、磁場配向により
磁性粒子を表面に垂直に配向させてもよい。なお、重ね
塗りの際の垂直配向用の塗膜厚は、記録再生ヘッドギャ
ップ巾と同程度の厚さかその半分くらいまでがよい。
The method of mechanically shearing in the present invention is not particularly limited, and after orienting the magnetic particles in the in-plane longitudinal direction, a roll is applied to the coating surface before the coating is dried, or between twin rolls. It may be a direction such as passing it. Also, even after the coating film has dried, after melting the coating film surface with the solvent used for coating, mechanically shearing it and aligning the magnetic particles near the surface vertically to the surface. Good. Further, after further orienting in the in-plane longitudinal direction, the coating film is dried. Then
The same paint or a paint having the same composition except for the physical properties of the magnetic particles is applied over the coating film. Then, similarly, mechanical shear is applied to orient the magnetic particles near the surface perpendicularly to the surface. Alternatively, when performing overcoating, the magnetic particles may be oriented perpendicular to the surface by magnetic field orientation. In addition, the thickness of the coating film for vertical orientation in the multi-coating is preferably about the same as the recording / reproducing head gap width or about half thereof.

本発明に使用されるバインダは特に制限されず従来より
使用されている各種熱可塑性樹脂、熱硬化性樹脂、反応
性樹脂およびそれらの混合物が使用できる。また本発明
の磁性層には酸化アルミニウム、酸化クロムなどの研磨
材、各種脂肪酸および脂肪酸エステル,シリコーンオイ
ル,フルオロカーボンなどの潤滑剤などを必要に応じて
含むことができる。
The binder used in the present invention is not particularly limited and various conventionally used thermoplastic resins, thermosetting resins, reactive resins and mixtures thereof can be used. Further, the magnetic layer of the present invention may contain abrasives such as aluminum oxide and chromium oxide, various fatty acids and fatty acid esters, lubricants such as silicone oil and fluorocarbon, etc., if necessary.

また本発明に用いる基体としては、ポリエチレンテレフ
タレートのような可撓性基体のほか非磁性金属基体など
各種の基体が使用できる。
Further, as the substrate used in the present invention, various substrates such as a flexible substrate such as polyethylene terephthalate and a non-magnetic metal substrate can be used.

〔発明の効果〕〔The invention's effect〕

以上の様にして得られた磁気記録媒体は、磁性層下部に
面内配向部分が設けられていることで長手方向すなわち
磁気記録方向の磁性粒子充填率があがり、また垂直配向
を磁性層の基体面から表面全体に渡っておこなわないた
め面の平滑性も良くなり、表面に垂直配向部分があるこ
とによって高域における記録再生出力の向上をも計れ、
また面内配向部分と垂直配向部分で記録媒体中の磁気回
路がうまくできあがることで、電磁変換特性の向上を計
れるものである。
In the magnetic recording medium obtained as described above, the in-plane orientation portion is provided in the lower portion of the magnetic layer, so that the packing ratio of magnetic particles in the longitudinal direction, that is, the magnetic recording direction is increased, and the perpendicular orientation is applied to the magnetic layer. Since it is not performed from the body surface to the entire surface, the smoothness of the surface is also improved, and the vertical alignment portion on the surface also improves the recording / reproducing output in the high range,
In addition, the magnetic circuit in the recording medium is well formed in the in-plane orientation portion and the vertical orientation portion, so that the electromagnetic conversion characteristics can be improved.

〔発明の実施例〕Example of Invention

以下に本発明を実施例によりより詳しく説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples.

実施例1 磁性粒子としてガラス結晶化法により製造されたCo−Ti
で置換したバリウムフェライト磁性粉(平均粒径580
Å、粒径と厚さの比4.5:1、保磁力780Qe、飽和磁化54em
u/g)を使用した。
Example 1 Co-Ti produced by a glass crystallization method as magnetic particles
Barium ferrite magnetic powder (average particle size 580
Å, particle size to thickness ratio 4.5: 1, coercive force 780Qe, saturation magnetization 54em
u / g) was used.

このバリウムフェライト磁性粉を用いて下の組成比につ
いてよく混練を行ない塗料化した。
The barium ferrite magnetic powder was used to make a paint by thoroughly kneading the composition ratio below.

バリウムフェライト磁性粒子 100 重量部 塩化ビニル一酢酸ビニル共重合体 5 重量部 ポリウレタン 10 重量部 酸化クロム微粉末 3 重量部 潤滑剤 1.5重量部 分散剤 4 重量部 メチルエチルケトン 40 重量部 トルエン 40 重量部 シクロヘキサン 40 重量部 この磁性塗料に硬化剤6重量部を加え、15μm厚のポリ
エチレンテレフタレートフィルム上に塗布し、1300Qeの
反撥磁界中を通過させ、磁性粒子を面内配向させた。次
に塗膜が乾燥する前にスムーザにて2000dyne/cm2のシェ
アをかけ、塗膜表面の磁性粒子を垂直配向させた。その
後、乾燥させ表面平滑化処理をおこなった。塗膜をよく
硬化させた後このフィルムを1/2インチ幅にスリットレ
磁気テープを作製した。
Barium ferrite magnetic particles 100 parts by weight Vinyl chloride monovinyl acetate copolymer 5 parts by weight Polyurethane 10 parts by weight Chromium oxide fine powder 3 parts by weight Lubricant 1.5 parts by weight Dispersant 4 parts by weight Methyl ethyl ketone 40 parts by weight Toluene 40 parts by weight Cyclohexane 40 parts by weight 6 parts by weight of a curing agent was added to this magnetic paint, and the composition was applied onto a polyethylene terephthalate film having a thickness of 15 μm and passed through a repulsive magnetic field of 1300 Qe to orient the magnetic particles in the plane. Next, before the coating film was dried, a shear of 2000 dyne / cm 2 was applied by a smoother to vertically orient the magnetic particles on the surface of the coating film. Then, it was dried and subjected to surface smoothing treatment. After the coating film was hardened well, this film was made into a 1/2 inch width slit slit magnetic tape.

得られた磁気テープの面内長手方向、それと面内で直角
な方向、磁性層膜に垂直な方向の3方向について、振動
試料型磁力計を用いて角形比を測定した。また、得られ
たテープの表面平滑性を触針式表面粗さ計にて、さらに
ビデオ帯域の記録再生特性を調べた。結果は、他の実施
例・比較例とともに後述する。
The squareness ratio was measured using a vibrating sample magnetometer in the in-plane longitudinal direction of the obtained magnetic tape, the direction perpendicular to the in-plane direction, and the direction perpendicular to the magnetic layer film. Further, the surface smoothness of the obtained tape was examined by a stylus type surface roughness meter, and the recording and reproducing characteristics in the video band were further examined. The results will be described later together with other examples and comparative examples.

実施例2 水熱合成法により製造されたCo−Nbで置換したバリウム
フェライト磁性粉(平均粒径800Å、粒径と厚さの比3.
7:1、保磁力1100Qe、飽和磁化57emu/g)を使用した。
Example 2 Co-Nb-substituted barium ferrite magnetic powder produced by hydrothermal synthesis method (average particle size 800Å, particle size to thickness ratio 3.
7: 1, coercive force 1100 Qe, saturation magnetization 57 emu / g) were used.

このバリウムフェライト磁性粉を用いて、実施例1と同
様の組成比についてよく混練を行ない塗料化した。この
磁性塗料に硬化剤6重量部を加え15μm厚のポリエチレ
ンテレフタレート上に塗布し、2100Qeのソレノイド中を
通過させ、磁性粒子を面内配向させた。
Using this barium ferrite magnetic powder, the same composition ratio as in Example 1 was thoroughly kneaded to form a paint. A curing agent (6 parts by weight) was added to this magnetic paint, which was applied onto polyethylene terephthalate having a thickness of 15 μm, and passed through a 2100 Qe solenoid to orient the magnetic particles in-plane.

次に塗膜が乾燥する前に、双ロール間を3500dyne/cm2
シェアをかけ、磁性粒子を垂直配向させた。その後、乾
燥させ表面平滑化処理をおこなった。塗膜をよく硬化さ
せた後、このフィルムを1/2インチ幅にスリットし磁気
テープを作製した。
Next, before the coating film was dried, a shear of 3500 dyne / cm 2 was applied between the twin rolls to vertically align the magnetic particles. Then, it was dried and subjected to surface smoothing treatment. After the coating film was cured well, this film was slit into a 1/2 inch width to prepare a magnetic tape.

得られたテープについて実施例1と同様の評価をおこな
った。
The same evaluation as in Example 1 was performed on the obtained tape.

比較例1 実施例1で使用した磁性塗料と同じものを、15μm厚の
ポリエチレンテレフタレート上に塗布し、磁性層面と直
交するように配置した磁場中を通過させ、磁性粒子を垂
直配向させた後、磁場中で乾燥させ垂直配向塗膜を作製
した、塗膜をよく硬化させた後このフィルムを1/2イン
チ幅にスリットし磁気テープを作製した。
Comparative Example 1 The same magnetic paint as used in Example 1 was applied onto polyethylene terephthalate having a thickness of 15 μm, passed through a magnetic field arranged so as to be orthogonal to the magnetic layer surface, and the magnetic particles were vertically aligned, A vertically oriented coating film was prepared by drying in a magnetic field. After the coating film was sufficiently cured, this film was slit into a 1/2 inch width to prepare a magnetic tape.

得られたテープについて実施例1と同様の評価をおこな
った。
The same evaluation as in Example 1 was performed on the obtained tape.

比較例2 実施例1で使用した磁性塗料と同じものを、15μm厚の
ポリエチレンテレフタレート上に塗布し、無配向状態の
ままで乾燥させた。塗膜をよく硬化させた後、このフィ
ルムを1/2インチ幅にスリットし磁気テープを作製し
た。
Comparative Example 2 The same magnetic coating material as used in Example 1 was coated on 15 μm thick polyethylene terephthalate and dried in the non-oriented state. After the coating film was cured well, this film was slit into a 1/2 inch width to prepare a magnetic tape.

得られたテープについて、実施例1と同様の評価をおこ
なった。以下に各例の結果を示す。
The same evaluation as in Example 1 was performed on the obtained tape. The results of each example are shown below.

結果にみるように、表面・磁性粒子の充填状態がよいた
め高い出力が得られ、特に低周波領域にも改善がみられ
ている。磁性層が長手方向に面内配向をしており、上部
が垂直配向をしてMrx/Ms>0.5,Mrz/Ms>0.5,Mrx/Ms>Mr
y/Msである効果がみられていることがわかった。
As can be seen from the results, a high output can be obtained because the surface and the magnetic particles are well packed, and the improvement is observed especially in the low frequency region. The magnetic layer has in-plane orientation in the longitudinal direction, and the upper portion has vertical orientation, and Mrx / Ms> 0.5, Mrz / Ms> 0.5, Mrx / Ms> Mr.
It was found that an effect of y / Ms was observed.

なお、ストロンチウムフェライト磁性粉、鉛フェライト
磁性粉においても面内長手方向および垂直方向の角形比
を0.5以上にし、面内長手方向と直角な面内方向の角形
比を面内長手方向の角形比より小さくすることで同様の
効果を得た。
Even in the strontium ferrite magnetic powder and the lead ferrite magnetic powder, the squareness ratio in the in-plane longitudinal direction and the vertical direction is 0.5 or more, and the squareness ratio in the in-plane direction perpendicular to the in-plane longitudinal direction is more than the squareness ratio in the in-plane longitudinal direction. Similar effects were obtained by reducing the size.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横山 弘毅 神奈川県川崎市幸区小向東芝町1 株式会 社東芝総合研究所内 (56)参考文献 特開 昭59−77628(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroki Yokoyama 1 Komukai Toshiba-cho, Kouki-ku, Kawasaki-shi, Kanagawa Toshiba Research Institute Ltd. (56) Reference JP-A-59-77628 (JP, A)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】基体上に六方晶系フェライト粉を含有する
磁性層を備えた磁気記録媒体において、 前記磁性層中の前記六方晶フェライト粉は前記磁性層の
内部側よりも表面側での垂直方向の配向の度合いが大き
く、 前記磁性層の面内長手方向および垂直方向の角形比が双
方とも0.5以上であり、かつ面内長手方向と直角な面内
方向の角形比が面内長手方向の角形比より小であること
を特徴とする磁気記録媒体。
1. A magnetic recording medium provided with a magnetic layer containing hexagonal ferrite powder on a substrate, wherein the hexagonal ferrite powder in the magnetic layer is perpendicular to the surface side of the magnetic layer rather than the inner side thereof. The degree of orientation in the direction is large, the in-plane longitudinal direction of the magnetic layer and the squareness ratio in the vertical direction are both 0.5 or more, and the squareness ratio in the in-plane direction perpendicular to the in-plane longitudinal direction is the in-plane longitudinal direction. A magnetic recording medium having a smaller squareness ratio.
【請求項2】六方晶系フェライト粉の平均粒子径が0.01
〜0.3μmである特許請求の範囲第1項記載の磁気記録
媒体。
2. The average particle size of hexagonal ferrite powder is 0.01.
The magnetic recording medium according to claim 1, wherein the magnetic recording medium has a thickness of 0.3 μm.
【請求項3】六方晶系フェライト粉の粒径と厚さの比が
2:1以上である特許請求の範囲第1項記載の磁気記録媒
体。
3. The ratio of grain size to thickness of hexagonal ferrite powder is
The magnetic recording medium according to claim 1, which is 2: 1 or more.
【請求項4】六方晶系フェライト粉の保磁力が200〜200
0エールステッドである特許請求の範囲第1項記載の磁
気記録媒体。
4. The coercive force of the hexagonal ferrite powder is 200 to 200.
The magnetic recording medium according to claim 1, which is 0 oersted.
【請求項5】保磁力制御用置換元素を有する六方晶系フ
ェライト粉が次の一般式で表されるものである特許請求
の範囲第1項記載の磁気記録媒体。 MA O・n(Fe1-XMB2O3 式中MAはBa,Sr,Pbのうち1種、MBはIn,Co,Ti,Ni,Mn,C
u,Zn,Nb,V,Ta,Sb,Al,Crのうち少なくとも1種、xは0
〜0.2、nは5.0〜6.0を表わす。
5. The magnetic recording medium according to claim 1, wherein the hexagonal ferrite powder having a substitution element for controlling coercive force is represented by the following general formula. MA O ・ n (Fe 1-X MB X ) 2 O 3 In the formula, MA is one of Ba, Sr, and Pb, and MB is In, Co, Ti, Ni, Mn, C.
At least one of u, Zn, Nb, V, Ta, Sb, Al, Cr, x is 0
.About.0.2, n represents 5.0 to 6.0.
JP60138916A 1985-06-27 1985-06-27 Magnetic recording medium Expired - Lifetime JPH0785297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60138916A JPH0785297B2 (en) 1985-06-27 1985-06-27 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60138916A JPH0785297B2 (en) 1985-06-27 1985-06-27 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS621113A JPS621113A (en) 1987-01-07
JPH0785297B2 true JPH0785297B2 (en) 1995-09-13

Family

ID=15233139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60138916A Expired - Lifetime JPH0785297B2 (en) 1985-06-27 1985-06-27 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0785297B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255817A (en) * 1987-04-13 1988-10-24 Matsushita Electric Ind Co Ltd Magnetic recording medium
JP2007267449A (en) * 2006-03-27 2007-10-11 Nsk Ltd Circuit and method for motor drive control
US20090046396A1 (en) * 2006-03-30 2009-02-19 Fujifilm Corporation Magnetic Recording Medium, Linear Magnetic Recording and Reproduction System and Magnetic Recording and Reproduction Method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5977628A (en) * 1982-10-25 1984-05-04 Ricoh Co Ltd Magnetic recording medium

Also Published As

Publication number Publication date
JPS621113A (en) 1987-01-07

Similar Documents

Publication Publication Date Title
US4636433A (en) Magnetic powders for magnetic recording media and magnetic recording media employing said magnetic powder therein
JP2644322B2 (en) Magnetic recording media
JPH05768B2 (en)
JPS6311762B2 (en)
JPH0785297B2 (en) Magnetic recording medium
JPH0127487B2 (en)
JPS60157719A (en) Magnetic recording medium and its manufacture
JPH03701B2 (en)
JPH05144615A (en) Magnetic recording magnetic powder and magnetic recording medium using the same
US5686137A (en) Method of providing hexagonal ferrite magnetic powder with enhanced coercive force stability
JPH0619829B2 (en) Magnetic recording medium
JP3975367B2 (en) Magnetic recording medium
JP3654917B2 (en) Method of manufacturing magnetic recording medium using hexagonal ferrite powder
JPH0362313A (en) Magnetic recording medium and its production
JP2835744B2 (en) Manufacturing method of magnetic recording medium
JPS59129935A (en) Magnetic recording medium
JPH036643B2 (en)
JPH0349024A (en) Magnetic recording medium
JPH0221049B2 (en)
JPH0766541B2 (en) Magnetic recording body
JPH0789410B2 (en) Magnetic recording medium
JPH05314466A (en) Magnetic recording medium
JPH11110734A (en) Magnetic recording medium
JPH0714151A (en) Magnetic recording medium and its production
JPH06290924A (en) Magnetic powder and high density magnetic recording medium made of same