JPS621113A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPS621113A
JPS621113A JP60138916A JP13891685A JPS621113A JP S621113 A JPS621113 A JP S621113A JP 60138916 A JP60138916 A JP 60138916A JP 13891685 A JP13891685 A JP 13891685A JP S621113 A JPS621113 A JP S621113A
Authority
JP
Japan
Prior art keywords
magnetic
longitudinal direction
intra
recording medium
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60138916A
Other languages
Japanese (ja)
Other versions
JPH0785297B2 (en
Inventor
Toshiharu Kurisu
俊治 栗栖
Toshihiko Oguchi
小口 寿彦
Tadashi Ido
井戸 忠
Koki Yokoyama
横山 弘毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60138916A priority Critical patent/JPH0785297B2/en
Publication of JPS621113A publication Critical patent/JPS621113A/en
Publication of JPH0785297B2 publication Critical patent/JPH0785297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a magnetic recording medium which can make effective magnetic recording by the simultaneous utilization of both of vertical and both-faces magnetization components and has excellent surface smoothness by using the magnetic powder of which the squareness ratios in the intra-surface longitudinal direction and perpendicular direction are both >=0.5 and the squareness ratio in the intra-surface direction perpendicular to the intra-surface longitudinal direction is made smaller than the squareness ratio in the intra-surface longitudinal direction. CONSTITUTION:The magnetic powder of the magnetic recording medium formed by providing a magnetic layer contg. hexagonal ferrite powder on a substrate is oriented in the perpendicular direction on the surface and in the intra-surface direction in the inside and the squareness ratios in the intra-surface longitudinal direction and the direction perpendicular to the magnetic layer are larger than 0.5; in addition the squareness ratio in the intra-surface direction perpendicular to the intra-surface longitudinal direction is smaller than the squareness ratio in the intra-surface longitudinal direction. The magnetic powder is the hexagonal ferrite powder which is expressed by the formula MAO.n(Fe1-xMBX)2O3. In the formula, MA denotes the element of at least >=1 kinds among Ba, Sr, Pb, Sb, etc. and controls the coercive force. (n) is preferably 5.0-6.0 and (x) is in a 0-0.2 range. The average grain size of the hexagonal ferrite powder is preferably 0.01-0.3mum and the ratio between the grain size and thickness is >=2:1.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、磁気記録媒体に関し、特に大方晶系フェライ
ト粉を用いた塗布型の高密度磁気記録媒体に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a magnetic recording medium, and particularly to a coated high-density magnetic recording medium using macrogonal ferrite powder.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

磁気記録媒体は、ポリエチレンテレフタレートなどの非
磁性支持体とその上に設けられた磁性体微粒子とバイン
ダを主成分とする磁性層で構成されている。磁性体微粒
子としては従来、r F e I Q s、0rOH,
金属Feなどの針状の磁性粒子が広く用いられておシ、
磁気記録は面内長手方向の磁化を用いる方式によってい
る。この面内長手方向の磁化による記録媒体の製造にあ
たっては、磁性層表面に荒れを生じさせることなく磁性
粒子を面内長手方向に配向させることができ、またその
配向により面内長手方向の磁性粒子の充填率を高めるこ
とができる。しかし、この面内長手方向の磁化のみを用
いる記録方式にあつては、高周波域における記録再生の
向上、すなわち記録の高密度化を図ろうとすると、記録
媒体内の減磁界が増加するため、記録密度をそれ稚内上
させることはできない。
A magnetic recording medium is composed of a nonmagnetic support such as polyethylene terephthalate and a magnetic layer provided thereon, the main components of which are magnetic fine particles and a binder. Conventionally, magnetic fine particles include r Fe I Q s, 0 rOH,
Acicular magnetic particles such as metal Fe are widely used.
Magnetic recording is based on a method that uses magnetization in the in-plane longitudinal direction. In manufacturing a recording medium using magnetization in the longitudinal direction of the plane, it is possible to orient the magnetic particles in the longitudinal direction of the plane without causing roughness on the surface of the magnetic layer. The filling rate can be increased. However, with this recording method that uses only magnetization in the in-plane longitudinal direction, when trying to improve recording and reproduction in the high frequency range, that is, to increase the recording density, the demagnetizing field within the recording medium increases, so the recording It is not possible to increase the density to Wakkanai.

そこで、このような不具合を解消するために近年、記録
媒体の表面と垂直な方向の磁化を用いる垂直磁気記録方
式が提案されている。垂直磁気記録方式では記録密度が
高まるほど、記録媒体中の減磁界が減少するので、本質
的に高密度記録に適した記録方式と云える。
In order to solve this problem, a perpendicular magnetic recording method has been proposed in recent years that uses magnetization in a direction perpendicular to the surface of a recording medium. In the perpendicular magnetic recording system, as the recording density increases, the demagnetizing field in the recording medium decreases, so it can be said to be a recording system that is essentially suitable for high-density recording.

このような垂直記録方式に適した記録媒体として、記録
媒体の表面と垂直な方向に磁化容易軸を向は易い大方晶
系フェライト粉を使用した塗布型の記録媒体が研究され
ている。
As a recording medium suitable for such a perpendicular recording method, a coated recording medium using macrogonal ferrite powder whose axis of easy magnetization is easily oriented in a direction perpendicular to the surface of the recording medium is being researched.

ところで、記録媒体を磁性粒子の塗布層で形成するもの
にあっては、次のような製造方法が考えられる。すなわ
ち、磁性粒子としてたとえばBaFe、 t o、・等
の六方晶系フェライト粉を用いる。六方晶系フーライト
粉を用いる理由は、このフェライトは平板状をなしてお
シ、シかも磁化容易軸が板面に垂直であるため、磁場配
向処理もしくは機械的配向処理によって容易に垂直配向
を行ない得るからである。このような六方晶系フェライ
ト粉の磁性粒子とバインダとを混合し、これを非磁性支
持体の表面に塗布した後、この塗布層を磁場中にその表
面が磁界の方向と直交するように配置することによって
各磁性粒子の磁化容易軸を磁界の方向に一致させて配列
させた後、塗料を乾燥させれば、垂直磁気記録に適した
記録媒体を得ることができる。
By the way, in the case of a recording medium formed of a coating layer of magnetic particles, the following manufacturing method can be considered. That is, hexagonal ferrite powder such as BaFe, to, etc. is used as the magnetic particles. The reason for using hexagonal fulrite powder is that this ferrite has a flat plate shape, and its axis of easy magnetization is perpendicular to the plate surface, so it can be easily vertically aligned by magnetic field alignment treatment or mechanical alignment treatment. Because you will get it. After mixing such magnetic particles of hexagonal ferrite powder with a binder and coating this on the surface of a non-magnetic support, this coated layer is placed in a magnetic field so that the surface is perpendicular to the direction of the magnetic field. By doing this, the easy axis of magnetization of each magnetic particle is aligned in the direction of the magnetic field, and then the paint is dried to obtain a recording medium suitable for perpendicular magnetic recording.

しかしながら、磁場配向により垂直磁気記録媒体を得よ
うとすると、磁場中での乾燥のタイミングがとシ難く、
再現性良く垂直配向塗膜、を得ることが困難である。ま
た配向磁場下で磁性粒子が自由に回転・移動しうる時間
が長いと粒子同志の磁気凝集を生じ、塗膜面を粗にする
ので、記録再生時のノイズを大きくするという問題点が
ある。
However, when trying to obtain a perpendicular magnetic recording medium by magnetic field orientation, it is difficult to control the timing of drying in the magnetic field.
It is difficult to obtain a vertically oriented coating film with good reproducibility. Furthermore, if the time during which the magnetic particles are allowed to freely rotate and move under an orienting magnetic field is long, magnetic aggregation of the particles will occur, which will make the coating surface rough, resulting in an increase in noise during recording and reproduction.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の問題点を解決すべくなされたものであ
って、大方晶系フェライト粉を用いた塗布型磁気記録媒
体において、垂直・両面磁化成分の双方の同時利用によ
り有効な磁気記録ができ、かつ表面平滑性にすぐれた磁
気記録媒体を提供することを目的とするものである。
The present invention has been made to solve the above problems, and enables effective magnetic recording by simultaneously using both perpendicular and double-sided magnetization components in a coated magnetic recording medium using macrogonal ferrite powder. The object of the present invention is to provide a magnetic recording medium that can be used as a magnetic recording medium and has excellent surface smoothness.

〔発明の概要〕[Summary of the invention]

本発明に係る磁気記録媒体は、基体上に六方晶系フェラ
イト粉を含有する磁性層を設けてなる磁気記録媒体にお
いて、該磁性粉が表面では垂直方向、内部では面内方向
に配向して、面内長手方向および磁性層に垂直な方向の
角形比が0.5より大きく、かり側内長手方向と直角な
面内方向の角形比が面内長手方向の角形比より小である
ことを特徴とするものである。
A magnetic recording medium according to the present invention is a magnetic recording medium comprising a magnetic layer containing hexagonal ferrite powder on a substrate, in which the magnetic powder is oriented perpendicularly on the surface and in the in-plane direction inside. The squareness ratio in the in-plane longitudinal direction and the direction perpendicular to the magnetic layer is larger than 0.5, and the squareness ratio in the in-plane direction perpendicular to the longitudinal direction on the side of the lever is smaller than the squareness ratio in the in-plane longitudinal direction. That is.

以下、本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明における磁性粉は六方晶系フェライト粉で、これ
はM^s・n(Fe1  zMBz)ton  の一般
式で表わされるものである。式中MムはBa、 Sr、
 Pb。
The magnetic powder in the present invention is a hexagonal ferrite powder, which is represented by the general formula M^s·n(Fe1 zMBz)ton. In the formula, M is Ba, Sr,
Pb.

MlはIn、 Co、 Ti、 Ni、 Mn、 Ou
、 Zn、 Ge、 Nb、 Zr。
Ml is In, Co, Ti, Ni, Mn, Ou
, Zn, Ge, Nb, Zr.

V、 Ta、 Al、 Or、 Sb等の少なくとも1
種以上ノ元素を表わし、これは保磁力を制御するもので
ある。
At least one of V, Ta, Al, Or, Sb, etc.
Represents more than one element, which controls the coercive force.

また、nは5.0〜6.O1XばO−0,2の範囲が好
ましく、さらに六方晶フェライト粉の平均粒径は、05
01〜0.3μm1粒径と厚さの比は2:1以上のもの
が好ましい。六角板面の対角線の長さである。
Also, n is 5.0 to 6. The range of O1X is preferably O-0.2, and the average particle size of the hexagonal ferrite powder is 0.5
The ratio of particle diameter to thickness of 01 to 0.3 μm is preferably 2:1 or more. It is the length of the diagonal line of the hexagonal plate surface.

本発明で用いる六方晶系フェライト粉の製造方法はとく
に限定されないが、例えば次の方法が使用できる。すな
わち塩化鉄、塩化バリウムまたは塩化ストロンチウム及
び必要に応じて置換元素の塩化物などの金属イオン水溶
液とNaOHなどのアルカリ溶液を接触させ金属イオン
の沈澱を生成させ、水洗乾燥後との金属イオンを高温に
て結晶化させる共沈法、上記金属イオンを含む水溶液を
高温高圧容器中にて金属イオンを結晶化させ、必要に応
じて高温にて加熱する水熱合成法(特開昭56−160
328号公報) 、Na1l、 Ba1lff などの
融剤とに鉄やバリウムまたはストロニチウム、鉛を含む
化合物を高温にて結晶化機融剤を除去して磁性粒子を得
する融剤法、BaO+Bl OB t S io、  
などのガラス形成物質と鉄やバリウムまたはストロニチ
ウム、鉛と必要に応じて置換元素を含む化合物とからガ
ラスを作成し高温にて結晶化後ガラス形成物質を除去し
て磁性粒子を得るガラス結晶化法(特開昭56−679
04号公報)などがある。
Although the method for producing the hexagonal ferrite powder used in the present invention is not particularly limited, for example, the following method can be used. That is, an aqueous solution of metal ions such as iron chloride, barium chloride, or strontium chloride, and optionally a chloride of a substituent element, is brought into contact with an alkaline solution such as NaOH to form a precipitate of metal ions, and after washing with water and drying, the metal ions are heated at a high temperature. Co-precipitation method in which metal ions are crystallized in a high-temperature, high-pressure container in an aqueous solution containing the metal ions, and hydrothermal synthesis method in which metal ions are crystallized in a high-temperature, high-pressure container and heated at high temperatures as necessary (Japanese Patent Laid-Open No. 56-160
328 Publication), a flux method in which a compound containing iron, barium, stronitium, or lead is crystallized with a flux such as Na1l or Ba1lff at high temperature to remove the flux to obtain magnetic particles, BaO+Bl OB t Sio ,
A glass crystallization method in which glass is created from a glass-forming substance such as iron, barium, stronitium, or lead, and a compound containing a substituent element as required, and after crystallization at high temperature, the glass-forming substance is removed to obtain magnetic particles. (Unexamined Japanese Patent Publication No. 56-679
Publication No. 04).

しかして、本発明の磁気記録媒体は以下のようにして製
造しうる。すなわち上記の製造方法によυ得られた磁性
粒子、もしくは異なる製造方法から得られた磁性粒子の
混合体をバインダなどとともに塗料化し、゛基体上に塗
布し、ソレノイドまたは反発磁界中を通過させることに
より、磁性粒子を面内長手方向に配向させた塗膜を先ず
得る。次いで、この塗膜が乾燥する前にスムーザなどに
より機械的にシー7をかけ、表面付近の磁性粒子を表面
に垂直に配向させる。ここで面内長手方向く配向させる
ための磁界の強さは、500工−ルステツド以上で、好
ましくは800−3000エールステッドが良い。また
垂直方向に配向させるためのシー7の強さは、500S
−10Kdyne/c++!ffl、好ましくは100
0−5000 dyne /cr/lが良い。
Therefore, the magnetic recording medium of the present invention can be manufactured as follows. That is, the magnetic particles obtained by the above production method or a mixture of magnetic particles obtained by different production methods are made into a paint together with a binder, etc., and applied onto a substrate and passed through a solenoid or a repulsive magnetic field. First, a coating film in which magnetic particles are oriented in the in-plane longitudinal direction is obtained. Next, before this coating film dries, it is mechanically coated with a sear 7 using a smoother or the like to orient the magnetic particles near the surface perpendicularly to the surface. The strength of the magnetic field for orientation in the in-plane longitudinal direction is 500 Oersted or more, preferably 800-3000 Oersted. The strength of the sea 7 for vertical orientation is 500S.
-10Kdyne/c++! ffl, preferably 100
0-5000 dyne/cr/l is good.

本発明で機械的にシー7をかける方法は特に限定されず
、磁性粒子を面内長手方向に配向させた後、塗膜が乾燥
する前に塗膜面にロールをかけたシ、双ロールの間を通
過させるなどの方向でもよい。また、塗膜が乾燥してし
まった後でも、塗料化に用いた溶剤にて塗膜表面を溶か
した後、機械的にシへアをかけて、表面付近の磁性粒子
を表面に垂直に配向させてもよい。また、さらには面内
長手方向に配向させた後、塗膜を乾燥する。次いで、同
じ塗料又は磁性粒子の物性以外は同じ組成の塗料をその
塗膜の上に重ね塗りする。そして同様に機械的にシー7
をかけて表面付近の磁性粒子を表面に垂直に配向させる
。または、重ね塗膜をおこなう際は、磁場配向により磁
性粒子を表面に垂直に配向させてもよい。なお、重ね塗
膜の際の垂直配向用の塗膜厚は、記録再生へラドギャッ
プ巾と同程度の厚さかその半分くらいまでがよい。
In the present invention, there are no particular limitations on the method of mechanically applying the sheet 7. After orienting the magnetic particles in the in-plane longitudinal direction, the sheet 7 is applied with a roll on the coating surface before the coating film dries. It may also be possible to pass through the space. In addition, even after the paint film has dried, the surface of the paint film is dissolved with the solvent used to form the paint, and then mechanically sheared to orient the magnetic particles near the surface perpendicularly to the surface. You may let them. Further, after being oriented in the in-plane longitudinal direction, the coating film is dried. Next, the same paint or a paint having the same composition except for the physical properties of the magnetic particles is overcoated on top of that coating. And similarly mechanically Sea 7
is applied to orient the magnetic particles near the surface perpendicularly to the surface. Alternatively, when performing multiple coatings, the magnetic particles may be oriented perpendicularly to the surface by magnetic field orientation. The thickness of the coating film for vertical alignment in the case of overlapping coatings is preferably about the same thickness as the rad gap width for recording and reproduction, or up to about half that thickness.

本発明に使用さ′れるバインダは特に制限されず従来よ
り使用されている各種熱可塑性樹脂、熱硬化性−脂、反
応性樹脂およびそれらの混合物が使用できる。また本発
明の磁性層には酸化アルミニウム、酸化クロムなどの研
磨材、各種脂肪酸およヒ脂肪酸エステル、シリコーンオ
イル、フルオロカーボンなどの潤滑剤などを必要に応じ
て含むことができる。
The binder used in the present invention is not particularly limited, and various conventionally used thermoplastic resins, thermosetting resins, reactive resins, and mixtures thereof can be used. Further, the magnetic layer of the present invention may contain abrasives such as aluminum oxide and chromium oxide, lubricants such as various fatty acids and arsenic fatty acid esters, silicone oil, and fluorocarbons, etc., as necessary.

また本発明に用いる基体としては、ポリエチレンテレフ
タレートのような可撓性基体のほか非磁性金属基体など
各種の基体が使用できる。
Further, as the substrate used in the present invention, various substrates such as a flexible substrate such as polyethylene terephthalate and a non-magnetic metal substrate can be used.

〔発明の効果〕〔Effect of the invention〕

以上の様にして得られた磁気記録媒体は、磁性層下部に
面内配向部分が設けられていることで長手方向すなわち
磁気記録方向の磁性粒子充填率があがシ、また垂直配向
を磁性層の基体面から表面全体に渡っておこなわないた
め面の平滑性も良くな)、表面に垂直配向部分があるこ
とによりて高域における記録再生出力の向上をも計れ、
また面内配向部分と垂直配向部分で記録媒体中の磁気回
路がうまくできあがることで、電磁変換特性の向上を計
れるものである。
The magnetic recording medium obtained as described above has an in-plane oriented portion at the bottom of the magnetic layer, which increases the magnetic particle filling rate in the longitudinal direction, that is, the magnetic recording direction, and also increases the vertical orientation in the magnetic layer. The smoothness of the surface is also good because it is not carried out from the substrate surface to the entire surface), and the vertically oriented portion on the surface improves the recording and reproducing output in high frequencies.
Furthermore, by successfully forming a magnetic circuit in the recording medium between the in-plane oriented portion and the perpendicularly oriented portion, it is possible to improve electromagnetic conversion characteristics.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明を実施例によりより詳しく説明する。 The present invention will be explained in more detail below with reference to Examples.

実施例1 磁性粒子としてガラス結晶化法により製造されり0o−
T、iで置換したバリウムフェライト磁性粉(平均粒径
580^、粒径と厚さの比4.5:1、保磁カフ 80
Qe、飽和磁化54 emu/g )を使用した。
Example 1 Magnetic particles were produced by glass crystallization method.
Barium ferrite magnetic powder substituted with T, i (average particle size 580^, particle size to thickness ratio 4.5:1, coercive cuff 80
Qe, saturation magnetization 54 emu/g) was used.

このバリウム7へライト磁性粉を用いて下の組成比につ
いてよく混練を行ない塗料化した。
Using this Barium 7 Helite magnetic powder, the following composition ratio was thoroughly kneaded to form a paint.

バリウムフェライト磁性粒子  100重量部塩化ビニ
ル−酢酸ビニル共重合体   5Iポリウレタン   
       10 l酸化クロム微粉末      
  3I潤滑剤            1.51分散
剤             4Iメチルエチルケトン
       40 1トルエン          
  40 Iシクロヘキサン        40重量
部この磁性塗料に硬化剤6重量部を加え、15縄厚のポ
リエチレンテレフタレートフィルム上に塗布し、130
0Qeの反撥磁界中を通過させ、磁性粒子を面内配向さ
せた。次に塗膜が乾燥する前にスムーザにて2000 
dyne /crAのシー7をかけ、塗膜表面の磁性粒
子を垂直配向させた。その後、乾燥させ表面平滑化処理
をおこなった。塗膜をよく硬化させた後このフィルムを
%インチ幅にスリットレ磁気テープを作製した。
Barium ferrite magnetic particles 100 parts by weight Vinyl chloride-vinyl acetate copolymer 5I polyurethane
10 l chromium oxide fine powder
3I Lubricant 1.51 Dispersant 4I Methyl Ethyl Ketone 40 1 Toluene
40 I cyclohexane 40 parts by weight Add 6 parts by weight of a curing agent to this magnetic paint, apply it on a 15 rope thick polyethylene terephthalate film,
The magnetic particles were passed through a repulsive magnetic field of 0Qe to align them in the plane. Next, before the paint film dries, apply 2000 coats with a smoother.
dyne/crA C7 was applied to vertically align the magnetic particles on the surface of the coating film. Thereafter, it was dried and subjected to surface smoothing treatment. After the coating film was well cured, a slitted magnetic tape with a width of 50% inch was prepared from this film.

得られ−た磁気テープの面内長手方向、それと面内で直
角な方向、磁性層膜に垂直な方向の3方向について、振
動試料型磁力計を用いて角形比を測定した。また、得ら
れたテープの表面平滑性を触針式表面粗さ計にて、石ら
にビデオ帯域の記録再生特性を調べた。結果は、他の実
施例・比較例とともに後述する。
The squareness ratio of the obtained magnetic tape was measured using a vibrating sample magnetometer in three directions: the longitudinal direction in the plane, the direction perpendicular to the longitudinal direction in the plane, and the direction perpendicular to the magnetic layer. In addition, the surface smoothness of the obtained tape was measured using a stylus type surface roughness meter, and the recording and playback characteristics in the video band were examined. The results will be described later along with other examples and comparative examples.

実施例2 水熱合成法によりm造されたO o −N bで置換し
たバリウムフェライト磁性粉(平均粒径800k、粒径
と厚さの比3.7 : 1 、保磁力1100Qe、飽
和磁化57emu/g)を使用した。
Example 2 Barium ferrite magnetic powder substituted with O o -N b produced by hydrothermal synthesis method (average particle size 800k, particle size to thickness ratio 3.7:1, coercive force 1100Qe, saturation magnetization 57emu) /g) was used.

このバリウムフ=ライト磁性粉を用いて、実施例1と同
様の組成比についてよく混練を行ない塗料化した。この
磁性塗料に硬化剤6重量部を加え15縄厚のポリエチレ
ンテレフタレート上に塗布し、2100Qeのソレノイ
ド中を通過させ、磁性粒子を面内配向させた。
Using this barium fluorite magnetic powder, the same composition ratio as in Example 1 was thoroughly kneaded to form a paint. 6 parts by weight of a curing agent was added to this magnetic paint, which was applied onto a 15 rope thick polyethylene terephthalate plate, and passed through a 2100Qe solenoid to orient the magnetic particles in-plane.

次に塗膜が乾燥する前に、双ロール間を3500dyn
e/cdのシー7を蜘け、磁性粒子を垂直配向させた。
Next, before the coating film dries, 3500 dyn was applied between the twin rolls.
The e/cd sheet 7 was used to vertically align the magnetic particles.

その後、乾燥させ表面平滑化処理をおこなった。塗膜を
よく硬化させ死後、このフィルムを%インチ幅にスリッ
トし磁気テープを作製した。
Thereafter, it was dried and subjected to surface smoothing treatment. After the coating film was well cured and post-mortem, the film was slit to a width of 1.5 inches to produce a magnetic tape.

得られたテープについて実施例1と同様の評価をおこな
った。
The obtained tape was evaluated in the same manner as in Example 1.

比較例1 実施例1で使用した磁性塗料と同じものを、15細厚の
ポリエチレンテレフタレート上に塗布し、磁性層面と直
交するように配置した磁場中を通過させ、磁性粒子を垂
直配向させた後、磁場中で乾燥させ垂直配向塗膜を作製
した。塗膜をよく硬化させた後このフィルムを%インチ
幅にスリットし磁気テープを作製した。
Comparative Example 1 The same magnetic paint used in Example 1 was applied onto polyethylene terephthalate with a thickness of 15 mm, and the magnetic particles were vertically aligned by passing through a magnetic field arranged perpendicular to the magnetic layer surface. A vertically oriented coating film was prepared by drying in a magnetic field. After the coating film was well cured, the film was slit to a width of 50% inch to produce a magnetic tape.

得られたテープについて実施例1と同様の評価をおこな
つた。
The obtained tape was evaluated in the same manner as in Example 1.

比較例2 実施例1で使用した磁性塗料と同じものを、15廁厚の
ポリエチレンテレフタレート上に塗布し、無配向状態の
!!まで乾燥させた。塗膜をよく硬化させた後、このフ
ィルムを%インチ幅(スリットし磁気テープを作製した
Comparative Example 2 The same magnetic paint used in Example 1 was applied onto a 15-layer thick polyethylene terephthalate plate, and a non-oriented coating was applied! ! dried until. After the coating film was well cured, the film was slit to a width of % inch to produce a magnetic tape.

得られたテープについて、実施例1と同様の評価をおこ
なった。以下に各側の結果を示す。
The obtained tape was evaluated in the same manner as in Example 1. The results for each side are shown below.

ここで、Mrx  面内長手方向の残留磁化Mry  
x軸と面内で直角な方向の残留磁化 Mrz  磁性層膜に垂直な方向の残留磁化 結果にみるように1表面・磁性粒子の充填状態がよいた
め高い出力が得られ、特に低周波領域にも改善がみられ
ている。磁性層が長手方向に面内配向をしておシ、上部
が垂直配向をしてM r x/M s>o、st Mr
 z/Ms>0.5p MrX/Ms>MYy/Mar
ある効果がみられていることがわかった。
Here, Mrx In-plane longitudinal residual magnetization Mry
Residual magnetization in the direction perpendicular to the x-axis in the plane Mrz As seen in the results of the residual magnetization in the direction perpendicular to the magnetic layer film, high output can be obtained due to the good filling condition of the surface and magnetic particles, especially in the low frequency region. Improvements have also been seen. The magnetic layer has in-plane orientation in the longitudinal direction, and the upper part has vertical orientation, so that Mr x/M s>o, st Mr
z/Ms>0.5p MrX/Ms>MYy/Mar
It was found that some effects were observed.

なお、ストロンチウムフェライト磁性粉、鉛フーライト
磁性粉においても面内長手方向および垂直方向の角形比
を0.5以上KL、面内長手方向と直角な面内方向の角
形比を面内長手方向の角形比より小さくすることで同様
の効果を得た。
In addition, for strontium ferrite magnetic powder and lead fluorite magnetic powder, the squareness ratio in the in-plane longitudinal direction and the vertical direction is 0.5 or more KL, and the squareness ratio in the in-plane direction perpendicular to the in-plane longitudinal direction is the squareness in the in-plane longitudinal direction. A similar effect was obtained by making the ratio smaller than the ratio.

Claims (5)

【特許請求の範囲】[Claims] (1)基体上に六方晶系フェライト粉含有する磁性層を
塗布してなる磁気記録媒体において、面内長手方向およ
び垂直方向の角形比が双方とも0.5以上であり、かつ
面内長手方向と直角な面内方向の角形比が面内長手方向
の角形比より小であることを特徴とする磁気記録媒体。
(1) In a magnetic recording medium formed by coating a magnetic layer containing hexagonal ferrite powder on a substrate, the squareness ratio in both the in-plane longitudinal direction and the perpendicular direction is 0.5 or more, and the in-plane longitudinal direction A magnetic recording medium characterized in that a squareness ratio in an in-plane direction perpendicular to is smaller than a squareness ratio in an in-plane longitudinal direction.
(2)六方晶系フェライト粉の平均粒径が0.01〜0
.3μmである特許請求の範囲第1項記載の磁気記録媒
体。
(2) The average particle size of hexagonal ferrite powder is 0.01 to 0.
.. The magnetic recording medium according to claim 1, which has a thickness of 3 μm.
(3)六方晶系フェライト粉の粒径と厚さの比が2:1
以上である特許請求の範囲第1項記載の磁気記録媒体。
(3) The ratio of particle size and thickness of hexagonal ferrite powder is 2:1
The magnetic recording medium according to claim 1, which is the above.
(4)六方晶系フェライト粉の保磁力が200〜200
0エールステッドである特許請求の範囲第1項記載の磁
気記録媒体。
(4) Coercive force of hexagonal ferrite powder is 200-200
0 Oersted.
(5)保磁力制御用置換元素を有する六方晶系フェライ
ト粉が次の一般式で表わされるものである特許請求の範
囲第1項記載の磁気記録媒体。 M_AO・n(Fe_1_−_xM_B_x)_2O_
3式中M_AはBa、Sr、Pbのうち1種、M_Bは
Ir、Co、Ti、Ni、Mr、Cn、Zr、Nb、V
、Ta、Sb、Al、Crのうち少なくとも1種、xは
0〜0.2、nは5.0〜6.0を表わす。
(5) The magnetic recording medium according to claim 1, wherein the hexagonal ferrite powder having a substitution element for controlling coercive force is represented by the following general formula. M_AO・n(Fe_1_−_xM_B_x)_2O_
In formula 3, M_A is one of Ba, Sr, and Pb, and M_B is Ir, Co, Ti, Ni, Mr, Cn, Zr, Nb, and V.
, Ta, Sb, Al, and Cr, x represents 0 to 0.2, and n represents 5.0 to 6.0.
JP60138916A 1985-06-27 1985-06-27 Magnetic recording medium Expired - Lifetime JPH0785297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60138916A JPH0785297B2 (en) 1985-06-27 1985-06-27 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60138916A JPH0785297B2 (en) 1985-06-27 1985-06-27 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS621113A true JPS621113A (en) 1987-01-07
JPH0785297B2 JPH0785297B2 (en) 1995-09-13

Family

ID=15233139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60138916A Expired - Lifetime JPH0785297B2 (en) 1985-06-27 1985-06-27 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0785297B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255817A (en) * 1987-04-13 1988-10-24 Matsushita Electric Ind Co Ltd Magnetic recording medium
JP2007267449A (en) * 2006-03-27 2007-10-11 Nsk Ltd Circuit and method for motor drive control
WO2007114394A1 (en) * 2006-03-30 2007-10-11 Fujifilm Corporation Magnetic recording medium, linear magnetic recording/reproducing system and magnetic recording/reproducing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5977628A (en) * 1982-10-25 1984-05-04 Ricoh Co Ltd Magnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5977628A (en) * 1982-10-25 1984-05-04 Ricoh Co Ltd Magnetic recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255817A (en) * 1987-04-13 1988-10-24 Matsushita Electric Ind Co Ltd Magnetic recording medium
JP2007267449A (en) * 2006-03-27 2007-10-11 Nsk Ltd Circuit and method for motor drive control
WO2007114394A1 (en) * 2006-03-30 2007-10-11 Fujifilm Corporation Magnetic recording medium, linear magnetic recording/reproducing system and magnetic recording/reproducing method

Also Published As

Publication number Publication date
JPH0785297B2 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
JPH0624062B2 (en) Magnetic recording medium
JP2644322B2 (en) Magnetic recording media
JPS6311762B2 (en)
JPS621113A (en) Magnetic recording medium
JPH0127487B2 (en)
JPH09134522A (en) Magnetic recording medium
US5686137A (en) Method of providing hexagonal ferrite magnetic powder with enhanced coercive force stability
JPH0221050B2 (en)
JPH10124866A (en) Apparatus for production of magnetic recording medium
JP3975367B2 (en) Magnetic recording medium
JPH0619829B2 (en) Magnetic recording medium
JP2822212B2 (en) Oblique orientation method and oblique orientation device
JPS6066321A (en) Magnetic recording medium
JPS63275027A (en) Magnetic recording medium
JP2709955B2 (en) Magnetic recording media
JPS59129935A (en) Magnetic recording medium
JP3012190B2 (en) Magnetic recording media
JPH05314466A (en) Magnetic recording medium
JPH07121861A (en) Magnetic recording medium
JPH0221049B2 (en)
JPH0714151A (en) Magnetic recording medium and its production
JPS58159238A (en) Magnetic recording medium
JPH0362313A (en) Magnetic recording medium and its production
JPH1173641A (en) Magnetic recording medium
JPH0349032A (en) Magnetic recording medium