JP2822212B2 - Oblique orientation method and oblique orientation device - Google Patents

Oblique orientation method and oblique orientation device

Info

Publication number
JP2822212B2
JP2822212B2 JP16881789A JP16881789A JP2822212B2 JP 2822212 B2 JP2822212 B2 JP 2822212B2 JP 16881789 A JP16881789 A JP 16881789A JP 16881789 A JP16881789 A JP 16881789A JP 2822212 B2 JP2822212 B2 JP 2822212B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
oblique
magnet
magnetic coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16881789A
Other languages
Japanese (ja)
Other versions
JPH0335420A (en
Inventor
政志 目黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP16881789A priority Critical patent/JP2822212B2/en
Publication of JPH0335420A publication Critical patent/JPH0335420A/en
Application granted granted Critical
Publication of JP2822212B2 publication Critical patent/JP2822212B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁性塗膜中に含まれる磁性粉を磁性塗膜面
に対して斜めに配向する斜め配向方法及び斜め配向装置
に関するものである。
Description: TECHNICAL FIELD The present invention relates to an oblique orientation method and an oblique orientation apparatus for obliquely orienting a magnetic powder contained in a magnetic coating film with respect to the surface of the magnetic coating film. .

〔本発明の概要〕(Summary of the present invention)

本発明は、磁性塗膜中に含まれる磁性粉を磁性塗膜面
に対して斜めに配向される斜め配向方法において、磁性
塗膜面と略垂直な磁界成分と磁性塗膜面と略平行な磁界
成分とを同時に印加することにより、これら各磁界成分
のベクトルの和による斜め方向の磁界で当該磁性粉を斜
め配向しようとするものである。
The present invention provides an oblique orientation method in which the magnetic powder contained in the magnetic coating is obliquely oriented with respect to the magnetic coating surface, wherein a magnetic field component substantially perpendicular to the magnetic coating surface and a magnetic field component substantially parallel to the magnetic coating surface are provided. By applying a magnetic field component at the same time, the magnetic powder is to be obliquely oriented by a magnetic field in an oblique direction due to the sum of the vectors of these magnetic field components.

さらに本発明は、磁性塗膜中に含まれる磁性粉を磁性
塗膜面に対して斜めに配向される斜め配向装置におい
て、磁性塗膜面に略垂直な磁界成分を印加するマグネッ
トと磁性塗膜面に略平行な磁界成分を印加するマグネッ
トとの共働によって磁性塗膜面に対して斜め方向の磁界
を発生せしめ、この斜め方向の磁界の傾きを低角度側に
亘って精度よく制御しようとするものである。
Further, the present invention relates to a magnet and a magnetic coating, which apply a magnetic field component substantially perpendicular to the surface of the magnetic coating in an oblique orientation device in which the magnetic powder contained in the magnetic coating is obliquely oriented with respect to the surface of the magnetic coating. By cooperating with a magnet that applies a magnetic field component that is substantially parallel to the surface, a magnetic field that is oblique to the magnetic coating surface is generated, and the inclination of the magnetic field in the oblique direction is precisely controlled over a low angle. Is what you do.

〔従来の技術〕[Conventional technology]

磁気記録は一般に磁気記録媒体の面内長手方向の磁化
を用いる方式が主流である。しかし、この方式で記録密
度のより一層の向上を図ろうとすると、媒体内の減磁界
が増加するため記録密度に限界を生じ、それ程記録密度
を向上させることができない。すなわちこの方式では、
長波長域での特性は向上するものの、短波長域での特性
が劣るという欠点を有する。
In general, magnetic recording uses a method using magnetization in a longitudinal direction in a plane of a magnetic recording medium. However, if the recording density is to be further improved by this method, the recording density is limited due to an increase in the demagnetizing field in the medium, and the recording density cannot be improved so much. That is, in this method,
Although the characteristics in the long wavelength region are improved, there is a disadvantage that the characteristics in the short wavelength region are inferior.

このため従来、磁気記録媒体の磁気記録層の厚さ方向
の磁化により記録を行う垂直磁気記録方式が提案されて
いる。垂直磁気記録方式によれば、記録密度が高密度に
なるに従い減磁界が小さくなることから、特に高密度記
録,短波長記録において上述の面内長手方向磁化による
記録よりも優れていることが知られている。
For this reason, a perpendicular magnetic recording system in which recording is performed by magnetization in the thickness direction of a magnetic recording layer of a magnetic recording medium has been conventionally proposed. According to the perpendicular magnetic recording method, since the demagnetizing field decreases as the recording density increases, it is known that the recording is superior to the recording by the in-plane longitudinal magnetization especially in high-density recording and short-wavelength recording. Have been.

ところが、針状の磁性粉末等を磁気記録層に対して垂
直方向に配向させた場合には、短波長域での特性は向上
するが、長波長域での特性が落ちてしまうという欠点が
ある。
However, when a needle-like magnetic powder or the like is oriented in a direction perpendicular to the magnetic recording layer, the characteristics in the short wavelength region are improved, but the characteristics in the long wavelength region are reduced. .

そこで、これら面内長手記録方式と垂直磁気記録方式
の各欠点を改善して長波長域から短波長域に亘って高出
力を発揮せしめることが可能な斜め配向技術が提案され
ている。
Therefore, an oblique orientation technique has been proposed which can improve the drawbacks of the in-plane longitudinal recording method and the perpendicular magnetic recording method and exhibit a high output from a long wavelength range to a short wavelength range.

斜め配向技術は、塗布型の磁気記録媒体にあっては、
磁性粉を磁性塗膜面に対して斜め方向に配向させること
によって、電磁変換特性を向上せしめ、長波長域から短
波長域に亘って高出力を発揮させようとするものであ
る。また、塗布型の磁気記録媒体以外でも、Co−Cr等を
斜方から蒸着させることによって斜方蒸着膜を形成する
蒸着型の磁気記録媒体もあるが、斜方蒸着膜を形成する
には蒸着装置やスパッタリング装置等の装置を使用して
作成する必要があるため、製造コストがどうしても高く
なり、塗布型の磁気記録媒体に比べて不利である。した
がって、塗布型の磁気記録媒体で斜め配向したものが望
ましい。
The oblique orientation technique is applied to a coating type magnetic recording medium.
The magnetic powder is oriented obliquely with respect to the surface of the magnetic coating to improve the electromagnetic conversion characteristics and to exhibit high output from a long wavelength range to a short wavelength range. In addition to the coating type magnetic recording medium, there is also a deposition type magnetic recording medium in which an obliquely deposited film is formed by depositing Co-Cr or the like from an oblique direction. Since it is necessary to use an apparatus such as an apparatus or a sputtering apparatus, the manufacturing cost is inevitably increased, which is disadvantageous as compared with a coating type magnetic recording medium. Therefore, it is desirable that the coating type magnetic recording medium be obliquely oriented.

塗布型の磁気記録媒体に対して斜め配向をするには、
これまでは一対のマグネット磁性塗膜面に対して所定の
角度に傾けて斜めの磁界を発生させ、この磁界で磁性塗
膜中の磁性粉を当該磁性塗膜面に対して斜めに傾けるよ
うにして行われている。
To perform oblique orientation with respect to the coating type magnetic recording medium,
Until now, a pair of magnets was inclined at a predetermined angle to the magnetic coating surface to generate an oblique magnetic field, and this magnetic field was used to tilt the magnetic powder in the magnetic coating film obliquely to the magnetic coating surface. Has been done.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところが、このようにした場合には、低角度側の磁界
(磁性塗膜の面内方向を0度,垂直方向を90度とした場
合、低角度とは0度〜30度程度をさす。)が発生し難い
ばかりでなく、所望の角度に応じて媒体を挾んで配設さ
れる一対のマグネットの傾きを変える必要があるため
に、装置が大型になってしまうという問題がある。ま
た、マグネットを傾けて使用するため、実質的に磁性粉
を配向させる領域が狭くなってしまうという問題もあ
る。
However, in such a case, the magnetic field on the low angle side (when the in-plane direction of the magnetic coating film is 0 ° and the vertical direction is 90 °, the low angle means about 0 ° to 30 °). In addition to the above, the inclination of a pair of magnets disposed across the medium needs to be changed in accordance with a desired angle, resulting in a problem that the apparatus becomes large. In addition, since the magnet is used in an inclined state, there is a problem that a region in which the magnetic powder is oriented substantially becomes narrow.

そこで本発明は、かかる従来の実情の鑑みて提案され
たものであって、低角度側の磁界発生を容易ならしせめ
ることが可能な斜め配向方法を提供しようとするもので
ある。
Therefore, the present invention has been proposed in view of such conventional circumstances, and an object of the present invention is to provide an oblique orientation method capable of easily generating a magnetic field on a low angle side.

さらに本発明は、低角度側の磁界発生を容易ならしめ
るとともに、斜め方向に発生する磁界の傾きを広範囲に
亘って精度よく制御することができ、且つ装置の小型化
が図れ、しかも磁性粉を配向させる領域が確保できる斜
め配向装置を提供しようとするものである。
Further, the present invention facilitates the generation of the magnetic field on the low angle side, and can control the inclination of the magnetic field generated in the oblique direction with high accuracy over a wide range, and can reduce the size of the device and further reduce the magnetic powder. An object of the present invention is to provide an oblique alignment device capable of securing a region for alignment.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の斜め配向方法は、上記の目的を達成するため
に提案されたものであって、磁性塗膜面に略垂直な磁界
成分と磁性塗膜面に略平行な磁界成分を同時に印加し、
当該磁性塗膜に含まれる磁性粉を前記磁性塗膜面に対し
て斜めに配向させることを特徴とするものである。
The oblique alignment method of the present invention is proposed to achieve the above object, and simultaneously applies a magnetic field component substantially perpendicular to the magnetic coating surface and a magnetic field component substantially parallel to the magnetic coating surface,
The magnetic powder contained in the magnetic coating is oriented obliquely to the magnetic coating surface.

さらに本発明の斜め配向装置は、磁性塗膜面に略垂直
な磁界成分を印加する第1のマグネットと、磁性塗膜面
に略平行な磁界成分を印加する第2のマグネットを有し
てなり、これらマグネットの共働によって当該磁性塗膜
に含まれる磁性粉を前記磁性塗膜面に対して斜めに配向
することを特徴とするものである。
Further, the oblique orientation device of the present invention has a first magnet for applying a magnetic field component substantially perpendicular to the magnetic coating surface, and a second magnet for applying a magnetic field component substantially parallel to the magnetic coating surface. The magnetic powders contained in the magnetic coating film are oriented obliquely to the surface of the magnetic coating film by the cooperation of the magnets.

本発明においては、磁性塗膜面に略垂直な磁界成分と
磁性塗膜面に略平行な磁界成分を同時に印加し、これら
磁界成分のベクトルの和によって前記磁性塗膜面に対し
て斜め方向の磁界を発生させ、この斜め方向の磁界によ
り磁性塗膜中の磁性粉を当該磁性塗膜面に対して斜め方
向に配向させようとするものである。したがって、配向
装置としては磁性塗膜面に略垂直な磁界成分を印加させ
るマグネットと、磁性塗膜面に略平行な磁界成分を印加
させるマグネットの二つを組み合わせて使用する。これ
ら二つのマグネットの配置位置は、少なくとも略垂直な
磁界成分と略平行な磁界成分とのベクトルの和によって
磁性塗膜面に対して斜め方向に磁界が発生する必要があ
ることから、垂直な磁界成分を印加するマグネットの間
に平行な磁界成分を印加するマグネットが配置された構
成が望ましい。もちろん、これとは逆に平行な磁界成分
を印加するマグネットの間に垂直な磁界成分を印加する
マグネットを配置するようにしてもよい。
In the present invention, a magnetic field component substantially perpendicular to the magnetic coating surface and a magnetic field component substantially parallel to the magnetic coating surface are simultaneously applied, and the sum of the vectors of these magnetic field components causes the magnetic component in a direction oblique to the magnetic coating surface. A magnetic field is generated, and the magnetic powder in the magnetic coating is oriented obliquely with respect to the surface of the magnetic coating by the magnetic field in the oblique direction. Therefore, a magnet that applies a magnetic field component substantially perpendicular to the magnetic coating surface and a magnet that applies a magnetic field component substantially parallel to the magnetic coating surface are used in combination as the orientation device. The position of these two magnets is determined by the fact that a magnetic field must be generated obliquely to the magnetic coating surface by at least the sum of the vector of the substantially perpendicular magnetic field component and the substantially parallel magnetic field component. It is desirable that a magnet for applying a parallel magnetic field component is disposed between the magnets for applying the components. Of course, on the contrary, a magnet for applying a perpendicular magnetic field component may be arranged between magnets for applying a parallel magnetic field component.

上記磁性塗膜面に略垂直な磁界成分を印加させるマグ
ネットには、例えば電磁石や永久磁石等が使用できる。
一方、磁性塗膜面に略平行な磁界成分を印加するマグネ
ットには、ソレノイドコイルや永久磁石等が使用でき
る。
For example, an electromagnet or a permanent magnet can be used as the magnet for applying a magnetic field component substantially perpendicular to the surface of the magnetic coating film.
On the other hand, as a magnet that applies a magnetic field component substantially parallel to the magnetic coating surface, a solenoid coil, a permanent magnet, or the like can be used.

また、本発明が適用される磁界記録媒体としては、塗
布型の磁気記録媒体であり、非磁性支持体上に塗布され
る磁性塗膜中の磁性粉は従来公知のものがいずれも適用
でき何ら限定されるものではない。例示するとすれば、
γ−Fe2O3,Fe3O4,γ−Fe2O3とFe3O4とのベルトライド化
合物、Co含有γ−Fe2O3、Co含有Fe3O4、Coを含有するγ
−Fe2O3とFe3O4とのベルトライド化合物、CrO2に1種又
はそれ以上の金属元素,例えばTe,Sb,Fe,Bi等を含有さ
せた酸化物、Fe,Co,Ni等の金属、Fe−Co,Fe−Ni,Fe−Co
−Ni,Fe−Co−B,Fe−Co−Cr−B,Mn−Bi,Mn−Al,Fe−Co
−V等の合金、窒化鉄等の針状微粒子等が挙げられる。
Further, the magnetic field recording medium to which the present invention is applied is a coating type magnetic recording medium, and any conventionally known magnetic powder can be used as the magnetic powder in the magnetic coating film applied on the non-magnetic support. It is not limited. To illustrate,
γ-Fe 2 O 3 , Fe 3 O 4 , Belt compound of γ-Fe 2 O 3 and Fe 3 O 4 , Co-containing γ-Fe 2 O 3 , Co-containing Fe 3 O 4 , Co-containing γ
A beltride compound of Fe 2 O 3 and Fe 3 O 4 , an oxide of CrO 2 containing one or more metal elements, such as Te, Sb, Fe, Bi, Fe, Co, Ni, etc. Metal, Fe-Co, Fe-Ni, Fe-Co
-Ni, Fe-Co-B, Fe-Co-Cr-B, Mn-Bi, Mn-Al, Fe-Co
Alloys such as -V and needle-like fine particles such as iron nitride.

〔作用〕[Action]

本発明においては、磁性塗膜面に略垂直な磁界成分と
磁性塗膜面に略平行な磁界成分を同時に印加させると、
これら各磁界成分のベクトルの和によって磁性塗膜面に
対して斜め方向の磁界が発生する。
In the present invention, when a magnetic field component substantially perpendicular to the magnetic coating surface and a magnetic field component substantially parallel to the magnetic coating surface are simultaneously applied,
The sum of the vectors of these magnetic field components generates a magnetic field oblique to the magnetic coating surface.

また本発明においては、磁性塗膜面に略垂直な磁界成
分を印加する第1のマグネットと、磁性塗膜面に略平行
な磁界成分を印加する第2のマグネットの共働によって
磁性塗膜中に含まれる磁性粉を前記磁性塗膜面に対して
斜めに配向させるものであるので、これら各マグネット
で発生する磁界の強さを適宜選択して発生させると、斜
め方向の磁界の傾きがこれに応じて低角度側より高角度
側あるいはこれと逆に高角度側より低角度側に亘って変
化する。
Further, in the present invention, the first magnet that applies a magnetic field component substantially perpendicular to the magnetic coating surface and the second magnet that applies a magnetic field component substantially parallel to the magnetic coating surface cooperate with the magnetic coating film. The magnetic powder contained in the magnet is oriented obliquely to the surface of the magnetic coating film. Therefore, if the intensity of the magnetic field generated by each of these magnets is appropriately selected and generated, the inclination of the magnetic field in the oblique direction becomes Changes from the low angle side to the high angle side or vice versa.

〔実施例〕〔Example〕

以下、本発明を適用した斜め配向方法及び斜め配向装
置の具体的な実施例について説明する。
Hereinafter, specific examples of the oblique alignment method and the oblique alignment apparatus to which the present invention is applied will be described.

先ず、本実施例の斜め配向装置について図面を参照し
ながら説明する。
First, the oblique alignment device of the present embodiment will be described with reference to the drawings.

本実施例の斜め配向装置は、第1図に示すように、長
尺状の磁気記録媒体(1)を挾んで上下方向に配設され
る第1のマグネット(2),(3)と、上記第1のマグ
ネット(2),(3)間に配設される第2のマグネット
(4)から構成されている。
As shown in FIG. 1, the oblique orientation device of the present embodiment includes first magnets (2) and (3) vertically arranged with a long magnetic recording medium (1) interposed therebetween. It comprises a second magnet (4) disposed between the first magnets (2) and (3).

上記第1のマグネット(2),(3)は、前記磁気記
録媒体(1)の磁性塗膜面(1a)と媒体裏面(1b)にそ
れぞれ対向して直交配置される一対の磁性コア(5),
(6)からなっている。これら磁性コア(5),(6)
は、例えば側面形状が矩形状とされた鉄心等からなり、
対向面長さが少なくのともこの間を通る間に磁性粉の配
向が完了し得る程度の長さとされている。上記磁性コア
(5),(6)には、それぞれコイル(7),(8)が
所定数巻回され、該コイル(7),(8)の両端に共通
電源として直流電源(9)が接続されている。なお、上
記直流電源(9)は、各磁性コア(5),(6)に巻回
されるコイル(7),(8)にそれぞれ別個に接続する
ようにしてもよい。この結果、上記一対の磁性コア
(5),(6)間には、上記直流電源(9)より供給さ
れる電流によって磁性塗膜面(1a)に略直交する磁界が
発生する。なお本実施例では、媒体裏面(1b)側に配設
される一方のマグネット(3)よりこれに対向して配設
される他方のマグネット(2)へ向かう磁界を発生させ
る。
The first magnets (2) and (3) are composed of a pair of magnetic cores (5) that are orthogonally arranged to face the magnetic coating surface (1a) and the back surface (1b) of the magnetic recording medium (1), respectively. ),
(6). These magnetic cores (5), (6)
Consists of, for example, an iron core whose side shape is rectangular,
The length of the facing surface is at least such that the orientation of the magnetic powder can be completed during the passage therebetween. A predetermined number of coils (7) and (8) are wound around the magnetic cores (5) and (6), respectively. A DC power supply (9) is provided as a common power supply at both ends of the coils (7) and (8). It is connected. The DC power supply (9) may be separately connected to the coils (7) and (8) wound around the magnetic cores (5) and (6). As a result, a magnetic field substantially perpendicular to the magnetic coating surface (1a) is generated between the pair of magnetic cores (5) and (6) by the current supplied from the DC power supply (9). In this embodiment, a magnetic field is generated from one magnet (3) disposed on the back surface (1b) of the medium to the other magnet (2) disposed opposite thereto.

一方、第2のマグネット(4)は、磁気記録媒体走行
方向(図中矢印a方向)にコイルが延在するように複数
巻回されてなるソレノイドコイル(10)よりなってい
る。上記ソレノイドコイル(10)は、前記第1のマグネ
ット(2),(3)間に配設され、当該コイルの延在方
向を上記第1のマグネット(2),(3)と直交させて
いる。また、上記ソレノイドコイル(10)は、前記磁気
記録媒体(1)をその内部に走行させ得る大きさとなさ
れるとともに、先の第1のマグネット(2),(3)と
同様当該コイル(10)中を走行する間に磁性粉の配向が
完了し得る長さとなされている。さらに上記ソレノイド
コイル(10)の両端には、当該ソレノイドコイル(10)
に直流電流を供給するための直流電源(11)が接続され
ている。したがって、上記ソレノイドコイル(10)に所
定の大きさの電流が供給されると、当該ソレノイドコイ
ル(10)の中心軸方向、すなわち磁性塗膜面(1a)と略
平行な磁界が発生する。なお本実施例では、磁気記録媒
体走行方向へ向かう磁界を発生させる。
On the other hand, the second magnet (4) is composed of a solenoid coil (10) that is wound a plurality of times so that the coil extends in the direction of travel of the magnetic recording medium (the direction of arrow a in the figure). The solenoid coil (10) is disposed between the first magnets (2) and (3), and the extending direction of the coil is orthogonal to the first magnets (2) and (3). . The solenoid coil (10) is sized to allow the magnetic recording medium (1) to run inside it, and the coil (10) is similar to the first magnets (2) and (3). The length is set so that the orientation of the magnetic powder can be completed while traveling through the inside. Further, the solenoid coil (10) is provided at both ends of the solenoid coil (10).
A DC power supply (11) for supplying a DC current is connected. Therefore, when a current of a predetermined magnitude is supplied to the solenoid coil (10), a magnetic field is generated in the direction of the central axis of the solenoid coil (10), that is, substantially parallel to the magnetic coating surface (1a). In this embodiment, a magnetic field heading in the direction in which the magnetic recording medium runs is generated.

このように構成される斜め配向装置において、第1の
マグネット(2),(3)と第2のマグネット(4)に
よってそれぞれ同時に磁性塗膜面(1a)に略垂直な磁界
と磁性塗膜面(1a)に略平行な磁界を発生させると、第
2図に示すように、これら垂直な磁界成分H1と平行な磁
界成分H2のベクトルの和として磁性塗膜面(1a)に対し
て斜め方向に磁界H3が発生する。この斜め方向の磁界H3
の傾き〔すなわち、磁性塗膜面(1a)と斜め方向の磁界
H3とのなす角度θ〕は、磁性塗膜面(1a)に略垂直な磁
界成分H1大きさと、磁性塗膜面(1a)に略平行な磁界成
分H2の大きさによって変化する。すなわち、磁性塗膜面
(1a)に垂直な磁界成分H1を磁性塗膜面(1a)に平行な
磁界成分H2に対して大きくすれば、これらベクトルの和
として発生する斜め方向の磁界H3の傾むきは大きくな
る。すなわち、磁性塗膜面(1a)に対して垂直方向に傾
く。逆に、磁性塗膜面(1a)と略平行な磁界成分H2を磁
性塗膜面(1a)に略垂直な磁界成分H1に対して大きくす
れば、今度は斜め方向の磁界H3の傾きは小さくなり、磁
性塗膜面(1a)と平行な方向に傾く。
In the oblique orientation device configured as described above, the first magnets (2) and (3) and the second magnet (4) simultaneously apply a magnetic field substantially perpendicular to the magnetic coating surface (1a) and the magnetic coating surface. When generating the substantially parallel magnetic field (1a), as shown in FIG. 2, with respect to the magnetic coating film surface as the sum of these vertical magnetic field vector components H 1 and magnetic field components parallel H 2 (1a) magnetic field H 3 generated in an oblique direction. This oblique magnetic field H 3
Of the magnetic coating surface (1a) and the magnetic field in the oblique direction
Angle θ] with H 3 changes substantially perpendicular magnetic field components H 1 magnitude magnetic coated surface (1a), by approximately the magnitude of the magnetic field component parallel H 2 in the magnetic coating film surface (1a). That is, if the magnetic field component H 1 perpendicular to the magnetic coating surface (1a) is made larger than the magnetic field component H 2 parallel to the magnetic coating surface (1a), the oblique magnetic field H generated as the sum of these vectors The inclination of 3 becomes big. That is, it is inclined in a direction perpendicular to the magnetic coating surface (1a). Conversely, by increasing the magnetic coated surface substantially parallel magnetic field component between H 2 (1a) with respect to a substantially perpendicular magnetic field component H 1 in the magnetic coating film surface (1a), the magnetic field H 3 in an oblique direction in turn The inclination becomes small, and it inclines in a direction parallel to the magnetic coating surface (1a).

したがって、本実施例の装置によれば、第1のマグネ
ット(2),(3)と第2のマグネット(4)に供給す
る電流の大きさを適宜選択して供給すれば、各方向の磁
界成分の大きさを変えることができ、結果として斜め方
向の磁界H3の傾きを低角度側から高角度側に亘り広範囲
に変化させることが可能となる。もちろん、これら第1
のマグネット(2),(3)と第2のマグネット(4)
に供給する電流の向きを変え、それぞれに供給する電流
の大きさを変えれば、斜め方向の磁界H3の傾きを0度〜
360度の範囲で変化されることも可能である。
Therefore, according to the device of the present embodiment, if the magnitude of the current supplied to the first magnets (2) and (3) and the second magnet (4) is appropriately selected and supplied, the magnetic field in each direction is obtained. You can change the size of the components, as a result, it becomes possible to widely change over the inclination of the magnetic field H 3 in an oblique direction from the lower angle side to the high angle side. Of course, these first
Magnets (2), (3) and second magnet (4)
Changing the direction of the current supplied to, if changing the magnitude of the current supplied to each, the inclination of the magnetic field H 3 in an oblique direction 0 ° -
It can be changed in a range of 360 degrees.

また、本実施例の装置においては、装置を動かさなく
とも斜め方向の磁界H3の傾きを変化させることができる
ので、当該装置の小型化が図れ、しかも斜め配向する領
域が広くとれる。
Further, in the apparatus of the present embodiment, it is possible to change the inclination of the magnetic field H 3 in an oblique direction without moving the device, downsizing of the apparatus, moreover take wide region obliquely oriented.

なお、本発明においては、第1のマグネット(2),
(3)と第2のマグネット(4)でそれぞれ発生する磁
界成分のベクトルの和によって斜め方向に磁界を発生さ
せることができれば、上記の例に限定される必要はな
い。例えば、磁性塗膜面(1a)に略平行な磁界成分を印
加する第2のマグネット(4)、すなわちソレノイドコ
イル(10)内に前記第1のマグネット(2),(3)を
収容するようにしてもよい。もちろん、この場合におい
ても同様に磁性塗膜面(1a)に対して斜め方向の磁界を
発生させることができる。
In the present invention, the first magnet (2),
There is no need to be limited to the above example as long as a magnetic field can be generated in an oblique direction by the sum of vectors of magnetic field components generated by (3) and the second magnet (4). For example, the first magnets (2) and (3) may be accommodated in a second magnet (4) for applying a magnetic field component substantially parallel to the magnetic coating surface (1a), that is, a solenoid coil (10). It may be. Of course, also in this case, a magnetic field oblique to the magnetic coating surface (1a) can be similarly generated.

次に、本実施例の斜め配向方法について説明する。な
お、本実施例では先の斜め配向装置を使用して磁性粉を
磁性塗膜面に対して斜めに配向した例として説明する。
Next, the oblique alignment method of this embodiment will be described. In this embodiment, an example in which the magnetic powder is obliquely oriented with respect to the surface of the magnetic coating film using the above oblique orientation apparatus will be described.

先ず、第1のマグネット(2),(3)と第2のマグ
ネット(4)にそれぞれ所定の大きさの電流を供給して
磁性塗膜面(1a)に略垂直な磁界と、磁性塗膜面(1a)
に略平行な磁界を発生させる。
First, a current of a predetermined magnitude is supplied to each of the first magnets (2) and (3) and the second magnet (4) to generate a magnetic field substantially perpendicular to the magnetic coating surface (1a). Surface (1a)
Generates a magnetic field substantially parallel to.

次いで、磁性粉を含んだ磁性塗膜が形成されてなる磁
気記録媒体(1)を磁性塗膜が未だ乾燥する前の流動し
得る状態のときに、先の第2のマグネット(4)のソレ
ノイドコイル(10)内へ挿入し、第1図中a方向に走行
させる。
Next, when the magnetic recording medium (1) on which the magnetic coating film containing the magnetic powder is formed is in a flowable state before the magnetic coating film has been dried, the solenoid of the second magnet (4) is used. It is inserted into the coil (10) and is run in the direction a in FIG.

すると、磁性粉はこれら磁性塗膜面(1a)と略垂直な
磁界成分H1と磁性塗膜面(1a)と略平行な磁界成分H2
両方の磁界を受ける。この結果、上記磁性粉はこれら垂
直な磁界成分H1と平行な磁界成分H2のベクトルの和によ
って、当該合成ベクトル方向へ配向される。本実施例で
は、磁性塗膜面(1a)となす角度θの傾きに応じて磁性
塗膜面(1a)上に配設されるマグネット(2)側へ向か
って斜め向きに配向される。
Then, the magnetic powder is subjected to magnetic fields of both of these magnetic coated surface (1a) substantially perpendicular magnetic field component and H 1 and the magnetic coated surface (1a) and substantially parallel to the magnetic field component H 2. As a result, the magnetic powder by the sum of these vertical magnetic field components H 1 and magnetic field components parallel H 2 vector is oriented to the combined vector direction. In the present embodiment, the magnet is oriented obliquely toward the magnet (2) disposed on the magnetic coating surface (1a) according to the inclination of the angle θ formed with the magnetic coating surface (1a).

この後、一連の工程中で乾燥を行えば斜め配向された
磁気記録媒体が得られる。
Thereafter, if drying is performed in a series of steps, an obliquely oriented magnetic recording medium is obtained.

次に、前述の斜め配向装置を用いて実際に斜め配向を
行い、磁気記録媒体を作製した。
Next, the oblique orientation was actually performed using the above-described oblique orientation apparatus, thereby producing a magnetic recording medium.

実験例 磁性塗料の組成 Fe 100重量部 ポリウレタン樹脂 10重量部 塩化ビニル系樹脂 10重量部 アルミナ 6重量部 カーボン 3重量部 硬化剤(商品名コロネートL) 4重量部 溶剤 250重量部 以上の原材料をボールミルにて48時間混合した後、フ
ィルターを通して磁性塗膜とした。この磁性塗料をロー
ルコーターによりポリエチレンテレフタレートフィルム
に塗布し先の第1図に示す斜め配向装置を用いて斜め配
向した。そして、カレンダー処理を施した後硬化させ、
さらにバックコート層を形成して所定幅に裁断しサンプ
ルテープとした。
Experimental Example Composition of magnetic paint 100 parts by weight Fe 10 parts by weight Polyurethane resin 10 parts by weight Vinyl resin 10 parts by weight Alumina 6 parts by weight Carbon 3 parts by weight Hardener (brand name Coronate L) 4 parts by weight Solvent 250 parts by weight After mixing for 48 hours, a magnetic coating film was formed through a filter. This magnetic paint was applied to a polyethylene terephthalate film by a roll coater, and was obliquely oriented using the oblique orientation apparatus shown in FIG. Then, after applying a calendar treatment, it is cured,
Further, a back coat layer was formed and cut into a predetermined width to obtain a sample tape.

なお、本実験例では磁性粉を磁性塗膜面より垂直方向
へ30度傾けて配向した。
In this experimental example, the magnetic powder was oriented at an angle of 30 degrees in the vertical direction from the surface of the magnetic coating film.

比較例1 磁性塗料は実験例と同じものを使用し、この磁性塗料
を塗布したテープに対して長手配向を行った。
Comparative Example 1 The same magnetic paint as that used in the experimental example was used, and the tape coated with the magnetic paint was oriented in the longitudinal direction.

長手配向は、電磁石による磁界を媒体長手方向に印加
することで行った。
The longitudinal orientation was performed by applying a magnetic field by an electromagnet in the longitudinal direction of the medium.

比較例2 磁性塗料は実験例と同じものを使用し、この磁性塗料
を塗布したテープに対して垂直配向を行った。
Comparative Example 2 The same magnetic paint as that used in the experimental example was used, and the tape coated with the magnetic paint was vertically oriented.

垂直配向は、永久磁石に巻回されたコイルに直流電流
を供給して発生する磁界を媒体垂直方向に印加すること
で行った。なお、垂直磁界の強さは5KGaussとした。
The vertical orientation was performed by applying a magnetic field generated by supplying a direct current to a coil wound around a permanent magnet in a direction perpendicular to the medium. Note that the intensity of the vertical magnetic field was set to 5 kgauss.

そして、上記実験例及び比較例1,比較例2で得られた
サンプルテープの電磁変換特性(再生出力特性)を測定
した。その結果を第3図に示す。なお第3図中、実線は
実験例を、破線は比較例1を、一点鎖線は比較例2をそ
れぞれ示す。
Then, the electromagnetic conversion characteristics (reproduced output characteristics) of the sample tapes obtained in the above experimental example, comparative examples 1 and 2 were measured. FIG. 3 shows the results. In FIG. 3, the solid line indicates the experimental example, the broken line indicates the comparative example 1, and the dashed line indicates the comparative example 2, respectively.

この結果からわかるように、長手配向を行ったサンプ
ルテープでは長波長域での再生出力特性は優れるものの
短波長域では再生出力特性が劣化していることがわか
る。一方、垂直配向を行ったサンプルテープでは短波長
域での再生出力特性は優れるが長波長域での再生出力特
性に劣化がみられる。他方、斜め配向を行ったサンプル
テープでは、長波長域より短波長域に亘って広範囲に高
出力が得られていることがわかる。したがって、斜め配
向を行えば再生出力特性を長波長域から短波長域に亘っ
て高出力化することができ、またC/N比も向上させるこ
とができる。
As can be seen from the results, the sample tape having the longitudinal orientation has excellent reproduction output characteristics in a long wavelength region, but has a deteriorated reproduction output characteristic in a short wavelength region. On the other hand, the sample tape which has been subjected to the vertical alignment has excellent reproduction output characteristics in the short wavelength region, but shows deterioration in the reproduction output characteristics in the long wavelength region. On the other hand, it can be seen that in the sample tape subjected to the oblique orientation, a high output is obtained over a wider range over a shorter wavelength range than a longer wavelength range. Therefore, by performing the oblique orientation, it is possible to increase the reproduction output characteristics from a long wavelength region to a short wavelength region, and to improve the C / N ratio.

〔発明の効果〕〔The invention's effect〕

以上の説明からも明らかなように、本発明の方法にお
いては、磁性塗膜面に略垂直な磁界成分と磁性塗膜面に
略平行な磁界成分とを同時に印加するので、これら各磁
界成分のベクトルの和によって磁性塗膜中に含まれる磁
性粉を前記磁性塗膜面に対して斜めに配向することがで
きる。
As is clear from the above description, in the method of the present invention, a magnetic field component substantially perpendicular to the magnetic coating surface and a magnetic field component substantially parallel to the magnetic coating surface are simultaneously applied. The magnetic powder contained in the magnetic coating film can be oriented obliquely with respect to the surface of the magnetic coating film by the sum of the vectors.

また、これら磁界成分の大きさを適宜選択して発生さ
せれば、低角度側の磁界を容易に発生させることができ
る。
If the magnitude of these magnetic field components is appropriately selected and generated, a magnetic field on the low angle side can be easily generated.

また、本発明の装置においては、磁性塗膜面に略垂直
な磁界成分を印加するマグネットと磁性塗膜面に略平行
な磁界成分を印加するマグネットと共働によって斜め方
向の磁界を発生せしめることができるので、両磁界成分
の大きさを適宜選択して発生させれば、斜め方向の磁界
の傾きを低角度側により高角度側に亘って精度よく制御
することができる。
Further, in the apparatus of the present invention, an oblique magnetic field is generated by cooperating with a magnet for applying a magnetic field component substantially perpendicular to the magnetic coating surface and a magnet for applying a magnetic field component substantially parallel to the magnetic coating surface. Therefore, if the magnitudes of the two magnetic field components are appropriately selected and generated, the inclination of the magnetic field in the oblique direction can be controlled more accurately from the low angle side to the high angle side.

また、本発明の装置においては、斜め方向の磁界の傾
きを各磁界成分の大きさを変化させることのみで変える
ことができるので、いちいち装置を動かす必要はない。
したがって、装置自体の小型化を図ることができ、しか
も斜め配向する領域を十分確保することができる。
Further, in the apparatus according to the present invention, the inclination of the magnetic field in the oblique direction can be changed only by changing the magnitude of each magnetic field component, so that it is not necessary to move the apparatus every time.
Therefore, the size of the device itself can be reduced, and a region for oblique orientation can be sufficiently secured.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明を適用した斜め配向装置の一実施例を示
す模式図、第2図はその装置で発生する磁界の状態を示
す模式図である。 第3図は記録波長に対する再生出力依存性を示す特性図
である。 1……磁気記録媒体 2,3……第1のマグネット 4……第2のマグネット
FIG. 1 is a schematic diagram showing one embodiment of an oblique orientation device to which the present invention is applied, and FIG. 2 is a schematic diagram showing a state of a magnetic field generated by the device. FIG. 3 is a characteristic diagram showing the reproduction output dependency on the recording wavelength. 1 ... magnetic recording medium 2,3 ... first magnet 4 ... second magnet

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】磁性塗膜面に略垂直な磁界成分と磁性塗膜
面に略平行な磁界成分を同時に印加し、当該磁性塗膜に
含まれる磁性粉を前記磁性塗膜面に対して斜めに配向さ
せることを特徴とする斜め配向方法。
A magnetic field component substantially perpendicular to the magnetic coating surface and a magnetic field component substantially parallel to the magnetic coating surface are simultaneously applied, and the magnetic powder contained in the magnetic coating film is inclined with respect to the magnetic coating surface. An oblique alignment method, which comprises:
【請求項2】磁性塗膜面に略垂直な磁界成分を印加する
第1のマグネットと、磁性塗膜面に略平行な磁界成分を
印加する第2のマグネットを有してなり、 これらマグネットの共働によって当該磁性塗膜に含まれ
る磁性粉を前記磁性塗膜面に対して斜めに配向すること
を特徴とする斜め配向装置。
A first magnet for applying a magnetic field component substantially perpendicular to the surface of the magnetic coating film, and a second magnet for applying a magnetic field component substantially parallel to the surface of the magnetic coating film. An oblique alignment device, wherein a magnetic powder contained in the magnetic coating film is aligned obliquely to a surface of the magnetic coating film by cooperation.
JP16881789A 1989-06-30 1989-06-30 Oblique orientation method and oblique orientation device Expired - Fee Related JP2822212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16881789A JP2822212B2 (en) 1989-06-30 1989-06-30 Oblique orientation method and oblique orientation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16881789A JP2822212B2 (en) 1989-06-30 1989-06-30 Oblique orientation method and oblique orientation device

Publications (2)

Publication Number Publication Date
JPH0335420A JPH0335420A (en) 1991-02-15
JP2822212B2 true JP2822212B2 (en) 1998-11-11

Family

ID=15875055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16881789A Expired - Fee Related JP2822212B2 (en) 1989-06-30 1989-06-30 Oblique orientation method and oblique orientation device

Country Status (1)

Country Link
JP (1) JP2822212B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08212546A (en) 1995-02-01 1996-08-20 Fuji Photo Film Co Ltd Production of magnetic recording medium and apparatus therefor

Also Published As

Publication number Publication date
JPH0335420A (en) 1991-02-15

Similar Documents

Publication Publication Date Title
JP2644322B2 (en) Magnetic recording media
JP2822212B2 (en) Oblique orientation method and oblique orientation device
GB2175013A (en) Perpendicular magnetic recording medium
JPS6343811B2 (en)
JP2821622B2 (en) Oblique orientation device
US4400444A (en) Magnetic recording media and process of producing them
JP2561455B2 (en) Magnetic recording / reproducing device
JPS5826328A (en) Magnetic tape transferring system
JPH0620274A (en) Method and apparatus for producing magnetic recording medium
JPS5812140A (en) Magnetic tape transcribing system
JP3158294B2 (en) Manufacturing method of magnetic recording medium
JPH05197954A (en) Diagonal orientation method for magnetic recording medium and diagonal orienting device thereof
JPS58150120A (en) Vertical magnetic recording head
JPH0349025A (en) Magnetic recording medium
JP2000030238A (en) Magnetic recording medium, magnetic powder and magnetic recording medium in which transfer magnetic field is recorded
JPH07105525A (en) Magnetic recording medium
JP2843342B2 (en) Manufacturing method of magnetic recording medium
JPH10255261A (en) Orientation method of magnetic recording medium
JPS63275103A (en) Magnetic recording medium
JPH0354721A (en) Magnetic tape and its production
JPS6093628A (en) Magnetic recording medium and its production
JPH06131649A (en) Magnetic tape
JPH0349024A (en) Magnetic recording medium
JPH0520603A (en) Magnetic recording and reproducing system
JPH06309661A (en) Orienting method of magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees