JPH0354721A - Magnetic tape and its production - Google Patents
Magnetic tape and its productionInfo
- Publication number
- JPH0354721A JPH0354721A JP19099489A JP19099489A JPH0354721A JP H0354721 A JPH0354721 A JP H0354721A JP 19099489 A JP19099489 A JP 19099489A JP 19099489 A JP19099489 A JP 19099489A JP H0354721 A JPH0354721 A JP H0354721A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- tape
- longitudinal direction
- ratio
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 230000004907 flux Effects 0.000 claims abstract description 17
- 230000005415 magnetization Effects 0.000 claims abstract description 12
- 239000000843 powder Substances 0.000 claims abstract description 11
- 239000011248 coating agent Substances 0.000 claims abstract description 8
- 238000000576 coating method Methods 0.000 claims abstract description 8
- 239000006247 magnetic powder Substances 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 11
- 239000003973 paint Substances 0.000 claims description 10
- 229920006395 saturated elastomer Polymers 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 8
- 229910000859 α-Fe Inorganic materials 0.000 claims description 7
- 229910052788 barium Inorganic materials 0.000 claims description 4
- 229910052745 lead Inorganic materials 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 229910001567 cementite Inorganic materials 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 3
- 229910052596 spinel Inorganic materials 0.000 claims 2
- 239000011029 spinel Substances 0.000 claims 2
- 229910052712 strontium Inorganic materials 0.000 claims 2
- 229910020517 Co—Ti Inorganic materials 0.000 claims 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims 1
- 229910052738 indium Inorganic materials 0.000 claims 1
- 229910052742 iron Inorganic materials 0.000 claims 1
- 230000005389 magnetism Effects 0.000 claims 1
- 229910052758 niobium Inorganic materials 0.000 claims 1
- 229910052720 vanadium Inorganic materials 0.000 claims 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 abstract description 22
- 230000006866 deterioration Effects 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000002184 metal Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- AJCDFVKYMIUXCR-UHFFFAOYSA-N oxobarium;oxo(oxoferriooxy)iron Chemical compound [Ba]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O AJCDFVKYMIUXCR-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Paints Or Removers (AREA)
- Magnetic Record Carriers (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、高密度記録を必要とするビデオ機器等乙こ使
用される磁気テープと磁気テープの製造方法に関するも
のであって、とりわけ従来使われてきた針状酸化鉄テー
プに対する互換性を可能な限り意識し、短波長領域での
特性は従来の針状酸化鉄テープよりはるかに良好な磁気
テープと磁気テープの製造方法に関するものである.
従来の技術
磁気記録は、従来より磁気記録媒体の面内方向の磁化を
用いる長手磁気記録方弐によって発展してきた。現在使
われている磁気テープの大部分は、この長手記録方式に
よる磁気テープである。[Detailed Description of the Invention] Industrial Application Field The present invention relates to a magnetic tape used in video equipment and the like requiring high-density recording, and a method of manufacturing the magnetic tape. This paper focuses on compatibility with acicular iron oxide tapes as much as possible, and relates to magnetic tapes and magnetic tape manufacturing methods that have much better characteristics in the short wavelength region than conventional acicular iron oxide tapes. BACKGROUND OF THE INVENTION Magnetic recording has traditionally been developed using longitudinal magnetic recording methods that utilize in-plane magnetization of a magnetic recording medium. Most of the magnetic tapes currently in use use this longitudinal recording method.
媒体を構成する磁性材料としては、現在のところ針状酸
化鉄やノタルの磁性粉が主流であり、さらに塗膜強度の
増大と磁気ヘッドの研磨を図るためアルミナを、電気抵
抗を下げて走行性を向1二するためのカーボンを、走行
性と耐久性を向上させるための潤滑剤を添加し、これら
の材料を有機バインダー中で均一に分散させ磁性膜を得
ている。Currently, acicular iron oxide and Notal magnetic powder are the mainstream as magnetic materials constituting the media.Also, alumina is used to increase coating strength and polish the magnetic head, and to lower electrical resistance and runnability. A magnetic film is obtained by adding carbon to stabilize the magnetic flux and a lubricant to improve runnability and durability, and then uniformly dispersing these materials in an organic binder.
出力の面からみると、メタル磁性粉を用いたテープは、
磁性粉の飽和磁化の大きさを反映して針状酸化鉄を用い
たテープよりも有利である.ところが、メタル磁性粉は
、そのままでは反応性が高く環境変化を起こして、特性
が劣化する。そのため乙こ(R性粉表面には保護層が設
けられている。針状酸化鉄を用いたテープとメタル粉を
用いたテープとは保磁力の違いに起因する入出力特性の
違いがあり、従って各々のテープを用いたビデオ機器の
問Sこは■換性がないということになる。一方、S−V
HSビデオデンキがかなり昔及し始めているが、これ乙
こ使用される磁気テープは、従来のV }i Sテープ
に用いられてきた針状酸化鉄が用いらhている.ただし
、CN比の改善のために、磁性粉の微拉子化と磁性扮表
層にコバルトをドーブして高保{n力化が図られている
。S 一V H Sでは上{(i亙換が保たれており、
従来のV I{ Sデ,キで録画したテープは、S−V
HSデッキで再生することができる。この上位互換によ
るユーザーは大きな混乱もな< S−VHSに移行しつ
つあるようである。これには、より特性の優れた上位互
換テープの存在が大きく寄与しているものと判断される
。In terms of output, tapes using metal magnetic powder are
This is more advantageous than tapes using acicular iron oxide, reflecting the magnitude of the saturation magnetization of magnetic powder. However, metal magnetic powder is highly reactive if left as it is, and its characteristics deteriorate as a result of environmental changes. Therefore, a protective layer is provided on the surface of the R-type powder.There is a difference in input/output characteristics between tapes using acicular iron oxide and tapes using metal powder due to the difference in coercive force. Therefore, the question of video equipment using each tape is that there is no compatibility.On the other hand, S-V
HS video cameras have been around for quite some time now, but the magnetic tape they use now uses acicular iron oxide, which has been used in conventional V}iS tapes. However, in order to improve the C/N ratio, high coercivity has been achieved by making the magnetic powder finer and doping the magnetic surface layer with cobalt. In S 1 V H S, the upper {(i 亙 conversion is maintained,
Tapes recorded with conventional V
Can be played on HS deck. Thanks to this upward compatibility, users seem to be migrating to S-VHS without any major confusion. It is considered that the existence of upwardly compatible tapes with better characteristics has greatly contributed to this.
上記の例のように、ユーザーにとって次世代のVTRデ
ノキの現行機種への上位互換性はかなり重要な因子と思
われ、我々としてはVTRの上位互換を可能にするよう
な磁気テープの開発に?.+ .tを払いつつ開発を行
ってきた。As in the example above, the upward compatibility of next-generation VTRs with current models seems to be a very important factor for users, and we are interested in developing magnetic tape that will enable upward compatibility with VTRs. .. +. We have carried out development while paying t.
一Cに長手記録では出力の増大をレ1るために、塗膜中
の磁性粉はヘソドー媒体の走行方向に配向していること
が要求さる。ところで上位互換性を維持しつつ、更に特
性の優れたテープを作ることを考える時、現在使われて
いる針状酸化鉄を使ったテープのCN比の向とは限界に
近づきつつあると思われる.また、メタルテーブでは出
力では問題ないものの、高保磁力のため電流特性が異な
り、S−VHSテープとの互換を取ることが難しい。In longitudinal recording, the magnetic powder in the coating film is required to be oriented in the running direction of the recording medium in order to reduce the increase in output. By the way, when thinking about creating tapes with even better characteristics while maintaining upward compatibility, it seems that the C/N ratio of tapes using acicular iron oxide currently in use is approaching its limit. .. Furthermore, although there is no problem with the output of metal tapes, their current characteristics are different due to their high coercive force, making it difficult to be compatible with S-VHS tapes.
この互換性を維持しつつ、高密度記録時に良好なCN比
を得て、かつ耐久性・耐環境性にも優れたテープを作る
ことが要求されている。There is a need to create a tape that maintains this compatibility, provides a good CN ratio during high-density recording, and has excellent durability and environmental resistance.
一方、記録密度を飛躍的に高めるために原理的に優れた
垂直磁気記録方式が提案されている。例えば文献として
は、岩埼による日経エレクトロニクス1978年8月7
日号p 100〜111がある。On the other hand, a perpendicular magnetic recording system which is excellent in principle has been proposed in order to dramatically increase the recording density. For example, as a literature, Nikkei Electronics by Iwasaki August 7, 1978
There are day numbers p 100-111.
この乗直記録方式を利用し高密度記録を達威する手段と
して、六方晶フェライト微粉末を用いることが特開昭6
0−149105号公報,特開昭60−149106号
公報に開示されている.バリウムフェライト磁性粉は垂
直磁気記録方式の原理を利用し、短波長記録で良好な出
力,CN比を得ることができるとされている。たとえば
、文献としては横山他による東芝レビュー(40巻13
号)P1111〜1114がある.発明が解決しようと
する課題
ところが、文献で示されたバリウムフェライト磁性粉を
用いると、短波長領域での出力はメタル粉塗布テープに
比して遜色ないものの、長波長領域では出力の劣化が顕
著であった。As a means to achieve high-density recording using this rectangular recording method, the use of hexagonal ferrite fine powder was published in Japanese Patent Application Laid-Open No. 6
This method is disclosed in JP-A No. 0-149105 and Japanese Patent Application Laid-open No. 149106-1983. Barium ferrite magnetic powder is said to be able to obtain good output and CN ratio in short wavelength recording by utilizing the principle of perpendicular magnetic recording. For example, the literature includes Toshiba Review by Yokoyama et al. (vol. 40, 13).
No.) There are P1111-1114. Problem to be Solved by the Invention However, when using the barium ferrite magnetic powder shown in the literature, although the output in the short wavelength region is comparable to that of metal powder coated tape, the output deteriorates significantly in the long wavelength region. Met.
また従来の長手配向処理を行っても(第2図参照、第2
図中6は永久磁石による配向装置を表す.その他の横或
については第1図と同様の構成は説明を略している.)
、配向戻りを生しるため履歴曲線から得られる角型比は
0.6程度と良好でないのが現状であった.従って、従
来の針状酸化鉄使用テープに対し長波長領域での出力に
課題を有していた。Furthermore, even if conventional longitudinal direction processing is performed (see Figure 2,
6 in the figure represents an orientation device using permanent magnets. Regarding other horizontal sections, explanations of the same configurations as in Figure 1 are omitted. )
At present, the squareness ratio obtained from the hysteresis curve is about 0.6, which is not good because the orientation returns. Therefore, compared to conventional tapes using acicular iron oxide, there was a problem in output in the long wavelength region.
課題を解決するための手段
上記問題点を解決するために、本発明の磁気記録媒体は
、板状の形状を有する磁性粉を用いて磁性塗料を作製し
、基体を走行させて上記塗料を基体上に塗布した後塗料
中の磁性粉の磁化容易輔を基体の走行方向に配向させて
、磁気テープのテープ長手方向の残留磁束密度Brと飽
和磁束密度Bmとの比B r / B mが0.80以
上であり、かつテープ長手方向の飽和磁気履歴曲線より
得られる保磁力Hcと保磁力近傍での飽和磁気履歴曲線
の微分曲線の半値幅dHcより計算される比dHc/
H cの値が0.3以下である磁気テープとするもので
ある.
上記問題点を解決するために本発明の磁気テープの製造
方法は、非磁性基体上に磁性膜を形成した後、ソレノイ
ド,コイルにより発生させた磁気テープの長手力向に平
行な配向磁界中を磁性膜が未乾燥の状態で通過させるこ
とにより、テープ長手方向の残留磁束密度Brと飽和磁
束密度Bmとの比B r / B mが0.80以上で
あり、かつテープ長手方向の飽和磁気H歴曲線より得ら
れる保磁力Hcと保磁力近傍での飽和磁気履歴曲線の微
分曲線の半値幅dHcより計算される比d H c /
H cの値が0.3以下である磁気テープの製造方法
を提供するという構成を備えたものである.作用
本発明の磁気テープは上記した構成によって、長波長側
では長手方向の残留磁束密度を高めてSVHSテーブの
出力をカバーし、また短波長領域ではエネルギーのロス
が小さいという磁性粉の特徴を利用しS−VHSテープ
の出力を凌駕しメタル塗布テープの出力に匹敵する磁気
テープを得る,本発明の磁気テープの製造方法は、上記
した構成によって磁性粉の磁化容易軸の配向戻りを抑制
し、板状磁性粉の使用においても、高い角型比、低いd
H c / H cの磁気テープを得る製造方法を提
供する.
実施例
以下、本発明の磁気テープと磁気テープの製造方法の一
実施例について図面を参照しながら説明する.第1図は
、本発明の磁気テープの製造方法の要部拡大縦断面図で
ある。lは非磁性基体、2はガイドポール,3は塗工部
,4はソレノイドコイル、5は乾燥部である。第1図中
、4のソレノイドコイルにより、板状磁性粉を用いても
配向戻りのない効果的な長手配向を行えるように構成し
てある,以下実施例に使用した磁性粉について説明する
.(実施例1に使用した磁性粉)
マグネトプランバイト型構造を有し、磁化容易軸が粒子
の板面に垂直方向であるヘキサゴナルフェライトとスビ
ネル型フェライトを複合化した磁性粉体で、かつ粉体を
構戒する元素において、Fe(鉄)/Ba(バリウム)
の比が、I2より大きいもの
平均粒径
平均粒径/平均厚み
粉体保磁力
飽和磁化
窒素吸着量
0・06μm
5
8000e
6 0 e m u / g
40ボ/g
(実施例2に使用したfR性粉)
MO nFe203 (ただし、MはBa,Pb,S
「より選ばれるいずれか一種の元素、nは5〜6)で示
されるマグネトプランバイト型構造で表される・\キサ
ゴナルフェライトにスビ不ル型フエ−ラ・イトを二1−
ティングしたもの
平均粒径 0,07μm平均拉径/平均
厚み 5
扮体保磁力 8200e
飽和磁化 63emu/g窒素吸着星
38n{/g(実施例3に使用した磁性粉
)
BaFe lO.6CoO.7Ti0.7019の組成
であるもの
V均粒径 0,05μm平均粒径/平均
厚み 3
粉体保磁力 8000e
飽和磁化 5 5 e m 11 /
g窒素吸着盪 35rI{/g(実施例4
に使用した磁性粉)
炭化鉄を含有する磁性粉
平均粒径 o.07μm平均粒径/平均
厚み 5
粉体保磁力 7900e
飽和磁化 90emu/g窒素吸着量
35ボ/g
上記磁性粉を用いて、二一グーを用いた硬練りの後、サ
ンドミルを用いて磁性塗料を作製した。Means for Solving the Problems In order to solve the above-mentioned problems, the magnetic recording medium of the present invention uses magnetic powder having a plate-like shape to prepare a magnetic paint, and runs a substrate to apply the paint to the substrate. After coating the magnetic powder on top, the easily magnetized magnetic powder in the paint is oriented in the running direction of the substrate, so that the ratio of the residual magnetic flux density Br in the longitudinal direction of the magnetic tape to the saturated magnetic flux density Bm is 0. .80 or more, and the ratio dHc/ is calculated from the coercive force Hc obtained from the saturation magnetic hysteresis curve in the longitudinal direction of the tape and the half-value width dHc of the differential curve of the saturated magnetic hysteresis curve near the coercive force.
The magnetic tape shall have an H c value of 0.3 or less. In order to solve the above-mentioned problems, the method for manufacturing a magnetic tape of the present invention involves forming a magnetic film on a non-magnetic substrate, and then inserting the magnetic tape into an oriented magnetic field parallel to the longitudinal direction of the magnetic tape generated by a solenoid or coil. By passing the magnetic film in an undried state, the ratio B r / B m between the residual magnetic flux density Br in the longitudinal direction of the tape and the saturation magnetic flux density Bm is 0.80 or more, and the saturated magnetic flux H in the longitudinal direction of the tape is The ratio d H c / calculated from the coercive force Hc obtained from the hysteresis curve and the half-width dHc of the differential curve of the saturated magnetic hysteresis curve near the coercive force.
The present invention is configured to provide a method for manufacturing a magnetic tape having an H c value of 0.3 or less. Function: The magnetic tape of the present invention has the above-described configuration, which increases the residual magnetic flux density in the longitudinal direction on the long wavelength side to cover the output of the SVHS tape, and utilizes the characteristics of magnetic powder that energy loss is small in the short wavelength region. The method for manufacturing a magnetic tape of the present invention, which obtains a magnetic tape that exceeds the output of S-VHS tape and is comparable to the output of metal-coated tape, suppresses the reorientation of the axis of easy magnetization of the magnetic powder by the above-described structure, Even when using plate-shaped magnetic powder, high squareness ratio and low d
A manufacturing method for obtaining an Hc/Hc magnetic tape is provided. EXAMPLE Hereinafter, an example of the magnetic tape and method for manufacturing the magnetic tape of the present invention will be described with reference to the drawings. FIG. 1 is an enlarged longitudinal cross-sectional view of a main part of the method for manufacturing a magnetic tape of the present invention. 1 is a non-magnetic substrate, 2 is a guide pole, 3 is a coating section, 4 is a solenoid coil, and 5 is a drying section. In Fig. 1, solenoid coil 4 is configured so that effective longitudinal orientation without reorientation can be achieved even when plate-shaped magnetic powder is used.The magnetic powder used in the examples will be described below. (Magnetic powder used in Example 1) Magnetic powder is a composite of hexagonal ferrite and Subinel type ferrite, which has a magnetoplumbite type structure and whose axis of easy magnetization is perpendicular to the plate surface of the particle, and is a powder. Among the elements that take care of
The ratio is larger than I2 Average particle diameter Average particle diameter/average thickness Powder coercive force Saturation magnetization Nitrogen adsorption amount 0.06 μm 5 8000e 6 0 e mu / g 40 bo/g (fR used in Example 2 powder) MO nFe203 (M is Ba, Pb, S
"Represented by a magnetoplumbite structure represented by any one element selected from the following, where n is 5 to 6).
Average grain size of 0.07 μm Average diameter/average thickness 5 Coercive force 8200e Saturation magnetization 63 emu/g Nitrogen adsorption star
38n{/g (magnetic powder used in Example 3) BaFe IO. 6CoO. 7Ti0.7019 composition V Average particle size 0.05 μm Average particle size/average thickness 3 Powder coercive force 8000e Saturation magnetization 5 5 e m 11 /
g Nitrogen adsorption 35rI{/g (Example 4
(Magnetic powder used for) Average particle size of magnetic powder containing iron carbide o. 07μm Average particle size/average thickness 5 Powder coercive force 7900e Saturation magnetization 90emu/g Nitrogen adsorption amount
35 Bo/g Using the above magnetic powder, a magnetic paint was produced using a sand mill after hard kneading using Niichi Gu.
塗料組或を以下に示す。The paint combination is shown below.
・磁性粉 ・・・・・・ 200部・
塩化ビニル重合体 ・・・・・・ 15部・ポ
リウレタン ・・・・・・ 15部カーボ
ン ・・・・・・ 6部・アルミナ
・・・・・・ 8部潤滑剤
・・・・・ 2部・溶剤 トルエン
・・・・・・ 180部・ンクロヘキサノン
・・・・・・ 180部・硬化剤
・旧・・ 12部得られた塗料を薙過したのち、ブ
レードと非磁性基体との間隔35μmのブレードコータ
ーを用いて塗工した。非磁性基体には、厚さ14μmの
ポリエチレンテレフタレートフィルムを用いた。・Magnetic powder ・・・・・・ 200 parts・
Vinyl chloride polymer: 15 parts, polyurethane: 15 parts, carbon: 6 parts, alumina: 8 parts Lubricant
・・・・・・ 2 parts/solvent toluene
・・・・・・ 180 parts・Nclohexanone
・・・・・・ 180 parts/hardening agent
- Old... 12 parts of the obtained paint was milled and coated using a blade coater with a spacing of 35 μm between the blade and the non-magnetic substrate. A polyethylene terephthalate film with a thickness of 14 μm was used as the nonmagnetic substrate.
塗工tk’l膜が乾燥するまでに、ソレノイドコイルに
よる長手磁場配向処理を行った.塗膜の乾燥後テープを
巻取り、カレンダー処理(80゜C.35kg/ cm
)を行った。その後20特間硬化処理を行って実施例
1〜4を得た。実施例の磁気テープの磁気測定を振動試
料型磁力計(最大磁場LOKOe)にて測定した。また
電磁変換特性を相対速度5.8m/sec.フLライト
ヘノド(ギャンブ長0.25μm、トラノク幅48μm
,巻線数18回)を用いて行った。測定周波数は2 5
0MHz. 4.2MHz,7Mllzの3点である
。Before the coated TK'L film was dry, a longitudinal magnetic field orientation treatment using a solenoid coil was performed. After the paint film dries, the tape is wound up and calendered (80°C.35kg/cm
) was carried out. Thereafter, 20 special hardening treatments were performed to obtain Examples 1 to 4. The magnetic tape of the example was measured using a vibrating sample magnetometer (maximum magnetic field LOKOe). In addition, the electromagnetic conversion characteristics were measured at a relative speed of 5.8 m/sec. Flight L light henode (gamble length 0.25μm, trunk width 48μm
, 18 windings). The measurement frequency is 2 5
0MHz. There are three points: 4.2MHz and 7Mllz.
比較例1〜4は、実施例1〜4と同様の磁性塗t4を用
いて、配向処理をしないサンプルを作製した。その後、
実施例と同様の評価を行った。In Comparative Examples 1 to 4, samples without orientation treatment were prepared using the same magnetic coating T4 as in Examples 1 to 4. after that,
Evaluations similar to those in Examples were performed.
比較例5としては、当社製S − V H S用市販テ
ープとした.
磁気特性の測定結果及びテープ表面の測定結果をまとめ
て第1表に示す。Comparative Example 5 was a commercially available tape for S-VHS made by our company. Table 1 summarizes the measurement results of the magnetic properties and the tape surface.
長手方向の磁気特性の差が顕著である。なお、〃は媒体
の長手方向、 は媒体の厚み方向を表している。出力は
、比較例5の最適記録Tj.?JLでの値を示し、比較
例5の出力をOデシベルとした相対値で示している.(
第2表)
第2表
第2表より明らかなように本発明の磁気記録媒体は、S
−VHSテープに対し上位互換がとれているものと判断
される。The difference in magnetic properties in the longitudinal direction is remarkable. Note that 〃 represents the longitudinal direction of the medium, and represents the thickness direction of the medium. The output is the optimum recording Tj. of Comparative Example 5. ? The values are shown at JL, and the relative values are shown with the output of Comparative Example 5 set to O decibels. (
Table 2) As is clear from Table 2, the magnetic recording medium of the present invention has S
- It is determined that the tape is upwardly compatible with VHS tapes.
以上述べてきたように、本発明の磁気テープと磁気テー
プの製造方法により、短波長出力では従来の針状酸化鉄
テープよりはるかに良好で、長波長出力でも同等の出力
を示す磁気テープを得ることができる.
発明の効果
以上のように、本発明の磁気テープと磁気テブの製造方
法は、非磁性基体上に磁性膜を形或した後、ソレノイド
,コイルにより発生させた磁気テープの長手方向に平行
な配向磁界中を磁性膜が未乾燥の状態で通過させること
により、テープ長手方向の残留磁束密度Brと飽和磁束
密度Bmとの比B r / B mが0.80以上であ
り、かつテープ長手方向の飽和磁気履歴曲線より得られ
る保磁力Hcと保磁力近傍での飽和磁気履歴曲線の微分
曲線の半値幅dHcより計算される比d H c /
H cの値が0.3以下である磁気テープを得るもので
ある。As described above, by using the magnetic tape and magnetic tape manufacturing method of the present invention, it is possible to obtain a magnetic tape that is much better in short wavelength output than the conventional acicular iron oxide tape and has an equivalent output in long wavelength output. be able to. Effects of the Invention As described above, the method for manufacturing magnetic tape and magnetic tape of the present invention is to form a magnetic film on a non-magnetic substrate, and then generate a magnetic film parallel to the longitudinal direction of the magnetic tape generated by a solenoid or a coil. By passing the magnetic film in an undried state through an alignment magnetic field, the ratio B r / B m between the residual magnetic flux density Br in the longitudinal direction of the tape and the saturation magnetic flux density Bm is 0.80 or more, and The ratio d H c / calculated from the coercive force Hc obtained from the saturation magnetic hysteresis curve and the half-value width dHc of the differential curve of the saturated magnetic hysteresis curve near the coercive force.
A magnetic tape having an H c value of 0.3 or less is obtained.
本発明により、短波長出力では従来の針状酸化鉄テープ
よりはるかに良好で、長波長出力でも同等の出力を示す
磁気テープを作製することができ、従来のVTRデッキ
との互換性を考慮しつつ、さらに高性能の新規なVTR
を創出することが可能になり、産業上きわめて有用な発
明である.According to the present invention, it is possible to produce a magnetic tape that is much better at short wavelength output than conventional acicular iron oxide tape and has an equivalent output at long wavelength output, and takes into account compatibility with conventional VTR decks. A new VTR with even higher performance
This is an extremely useful invention industrially.
第1図は本発明の実施例における磁気テープの製造方法
の要部縦断面図、第2図は従来例における磁気テープの
製造方法の要部縦断面図である.1・・・・・・非磁性
基体、2・・・・・・ガイドボーノレ、3・・・・・・
塗工部、4ソレノイドコイル、5・・・・・・乾燥部、
6・・・・・・永久磁石。FIG. 1 is a vertical cross-sectional view of a main part of a magnetic tape manufacturing method according to an embodiment of the present invention, and FIG. 2 is a vertical cross-sectional view of a main part of a conventional magnetic tape manufacturing method. 1...Nonmagnetic substrate, 2...Guide ball, 3...
Coating section, 4 solenoid coils, 5... drying section,
6...Permanent magnet.
Claims (1)
製し、基体を走行させて上記塗料を基体上に塗布した後
塗料中の磁性粉の磁化容易軸を基体の走行方向に配向さ
せて得る磁気テープにおいて、前記磁気テープのテープ
長手方向の残留磁束密度Brと飽和磁束密度Bmとの比
Br/Bmが0.80以上であり、かつテープ長手方向
の飽和磁気履歴曲線より得られる一保磁力Hcと保磁力
近傍での飽和磁気履歴曲線の微分曲線の半値幅dHcよ
り計算される比dHc/Hcの値が0.3以下であるこ
とを特徴とする磁気テープ。 (3)板状の形状を有する磁性粉が、マグネトプランバ
イト型構造を有し、磁化容易軸が粒子の板面に垂直方向
であるヘキサゴナルフェライトとスピネル型フェライト
を複合化した磁性粉体であり、かつ該粉体を構成する元
素において、Fe(鉄)/Ba(バリウム)の比が、1
2より大きい磁性粉であることを特徴とする請求項(1
)記載の磁気テープ。 (3)板状の形状を有する磁性粉が、Mo、nFe20
3(ただし、MはBa、Pb、Srより選ばれるいずれ
か一種の元素、nは5〜6)で示されるマグネトプラン
バイト型構造で表されるヘキサゴナルフェライトにスピ
ネル型フェライトをコーティングした磁性粉であること
を特徴とする請求項(1)記載の磁気テープ。 (4)板状の形状を有する磁性粉が AFe(12−X)MXO19 (ただし、AはBa、Sr、Pbから選ばれた1種以上
の元素を、MはIn、Zn−Ge、Zn−Nb、Zn−
V、Co−Ti、Co−Geの一種以上の元素または元
素の組合せを、またXは1から2.5の数をそれぞれ表
す)なる組成であることを特徴とする請求項(1)記載
の磁気テープ。 (5)板状の形状を有する磁性粉が、炭化鉄を含有する
ことを特徴とする請求項(1)記載の磁気テープ。 (6)非磁性基体上に磁性膜を形成した後、ソレノイド
、コイルにより発生させた磁気テープの長手方向に平行
な配向磁界中を磁性膜が未乾燥の状態で通過させること
により、テープ長手方向の残留磁束密度Brと飽和磁束
密度Bmとの比Br/Bmが0.80以上であり、かつ
テープ長手方向の飽和磁気履歴曲線より得られる保磁力
Hcと保磁力近傍での飽和磁気履歴曲線の微分曲線の半
値幅dHcより計算される比dHc/Hcの値が0.3
以下である磁気テープの製造方法。[Scope of Claims] (1) A magnetic paint is prepared using magnetic powder having a plate-like shape, and after the paint is coated on the base by running the base, the axis of easy magnetization of the magnetic powder in the paint is determined. In a magnetic tape obtained by oriented in the running direction of the substrate, the ratio Br/Bm of the residual magnetic flux density Br in the tape longitudinal direction to the saturated magnetic flux density Bm of the magnetic tape is 0.80 or more, and the saturation in the tape longitudinal direction A magnetism characterized in that the value of the ratio dHc/Hc calculated from the half-value width dHc of the differential curve of the coercive force Hc obtained from the magnetic hysteresis curve and the saturated magnetic hysteresis curve near the coercive force is 0.3 or less. tape. (3) The plate-shaped magnetic powder is a composite of hexagonal ferrite and spinel ferrite, which has a magnetoplumbite structure and whose axis of easy magnetization is perpendicular to the plate surface of the particle. , and in the elements constituting the powder, the ratio of Fe (iron)/Ba (barium) is 1
Claim (1) characterized in that the magnetic powder is larger than 2.
) magnetic tape. (3) The plate-shaped magnetic powder is Mo, nFe20
3 (where M is an element selected from Ba, Pb, and Sr, and n is 5 to 6) A magnetic powder made by coating hexagonal ferrite with a magnetoplumbite structure coated with spinel ferrite. The magnetic tape according to claim 1, characterized in that: (4) Magnetic powder having a plate-like shape is AFe(12-X)MXO19 (where A is one or more elements selected from Ba, Sr, and Pb, and M is In, Zn-Ge, and Zn- Nb, Zn-
The composition according to claim (1), characterized in that it has a composition of one or more elements or a combination of elements of V, Co-Ti, and Co-Ge, and X represents a number from 1 to 2.5, respectively. Magnetic tape. (5) The magnetic tape according to claim (1), wherein the plate-shaped magnetic powder contains iron carbide. (6) After forming a magnetic film on a non-magnetic substrate, the magnetic film is passed in an undried state through an oriented magnetic field parallel to the longitudinal direction of the magnetic tape generated by a solenoid or coil. The ratio Br/Bm between the residual magnetic flux density Br and the saturated magnetic flux density Bm is 0.80 or more, and the coercive force Hc obtained from the saturation magnetic hysteresis curve in the longitudinal direction of the tape and the saturated magnetic hysteresis curve near the coercive force The value of the ratio dHc/Hc calculated from the half-width dHc of the differential curve is 0.3.
A method for manufacturing a magnetic tape as follows.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19099489A JPH0354721A (en) | 1989-07-24 | 1989-07-24 | Magnetic tape and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19099489A JPH0354721A (en) | 1989-07-24 | 1989-07-24 | Magnetic tape and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0354721A true JPH0354721A (en) | 1991-03-08 |
Family
ID=16267098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19099489A Pending JPH0354721A (en) | 1989-07-24 | 1989-07-24 | Magnetic tape and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0354721A (en) |
-
1989
- 1989-07-24 JP JP19099489A patent/JPH0354721A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mallinson | The foundations of magnetic recording | |
US4442159A (en) | Magnetic recording medium | |
US20060068232A1 (en) | Magnetic tape | |
JPH0354721A (en) | Magnetic tape and its production | |
JP2561455B2 (en) | Magnetic recording / reproducing device | |
WO2022211049A1 (en) | Magnetic head, servo pattern recording device, tape drive device, method for manufacturing magnetic tape, and recording method | |
JP2822212B2 (en) | Oblique orientation method and oblique orientation device | |
JPH0349025A (en) | Magnetic recording medium | |
JP2632943B2 (en) | Magnetic recording media | |
JP2843342B2 (en) | Manufacturing method of magnetic recording medium | |
JPH07105525A (en) | Magnetic recording medium | |
JP2006216178A (en) | Magnetic tape | |
JPS59167842A (en) | Vertical magnetic recording medium | |
JP2000030238A (en) | Magnetic recording medium, magnetic powder and magnetic recording medium in which transfer magnetic field is recorded | |
JPS61258322A (en) | Magneto-resistance effect head | |
JPH0349024A (en) | Magnetic recording medium | |
JPH0354725A (en) | Manufacture of magnetic tape | |
JP3012190B2 (en) | Magnetic recording media | |
JP3288136B2 (en) | Magnetic recording / reproducing method | |
JP2835744B2 (en) | Manufacturing method of magnetic recording medium | |
JP2709955B2 (en) | Magnetic recording media | |
JPH043325A (en) | Magnetic recording medium | |
JPS59129935A (en) | Magnetic recording medium | |
JPH03286420A (en) | Magnetic recording medium | |
JPH02165414A (en) | Magnetic recording medium |