JPH0349025A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0349025A
JPH0349025A JP1184073A JP18407389A JPH0349025A JP H0349025 A JPH0349025 A JP H0349025A JP 1184073 A JP1184073 A JP 1184073A JP 18407389 A JP18407389 A JP 18407389A JP H0349025 A JPH0349025 A JP H0349025A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
magnetic recording
ratio
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1184073A
Other languages
Japanese (ja)
Inventor
Nobuyuki Aoki
青木 延之
Hideaki Komoda
英明 菰田
Keiichi Ochiai
落合 圭一
Ikuo Ota
大田 伊久雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1184073A priority Critical patent/JPH0349025A/en
Publication of JPH0349025A publication Critical patent/JPH0349025A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve output and C/N in submicron region by specifying the ratio of the half width of differential curve to the coercive force of the saturation magnetization hysteresis curve, the squareness ratio in the same direction as that of head traveling, the ratio of particle size to particle thickness, and the particle size of the magnetic powder. CONSTITUTION:A magnetic coating material is prepared by kneading the magnetic powder with additives and an org. binder, and then applied on a nonmagnetic body to obtain the magnetic recording medium. The ratio dHc/Hc, wherein Hc is the coercive force determined by the saturation magnetization hysteresis curve of this magnetic recording medium and dHc is the half width of the differential curve of the saturation magnetization hysteresis curve at H=Hc, is specified to <0.5, and the squareness ratio of the saturation magnetization hysteresis curve in the same direction as that of the traveling direction of a head is specified to >0.7. The particle size to thickness ratio of the magnetic powder particles is specified to 1-5 and the particle size to 300-700 A. The magnetic powder of plate-type particles above described is used for the magnetic recording layer.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、サブミクロン領星での高密度記録を必要とす
るビデオ・フロンピーディスク等に使用するための、特
にC/ N (h優れた塗布型磁気記録媒体に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is particularly suited for use in video floppy disks, etc., which require high-density recording in the submicron region. The present invention relates to type magnetic recording media.

従来の技術 磁気記録は、従来より磁気記録媒体の面内方向の磁化を
用いる長手磁気記録方式によ、って発展してきた。現在
使われている磁気テープの大部分は、この長手記録万代
による磁気テープである。
BACKGROUND OF THE INVENTION Magnetic recording has traditionally been developed using a longitudinal magnetic recording method that uses in-plane magnetization of a magnetic recording medium. Most of the magnetic tapes currently in use are magnetic tapes based on this longitudinal recording method.

媒体を構成する磁性材料としては、現在のところ針状酸
化鉄やメタルの磁性粉が主流であり、さらに塗膜強度の
増大と磁気ヘッドの研磨を回るためアルミナを、電気抵
抗を下げて走行性を向上するためのカーボンを、走行性
と耐久性を向上させるための潤滑剤を添加し、これらの
材料を有機バインダー中で均一に分散させ磁性膜を得て
いる。
At present, magnetic materials such as acicular iron oxide and metal are mainstream as magnetic materials constituting the media, and alumina is used to increase coating strength and polish the magnetic head, and to lower electrical resistance and runnability. Carbon is added to improve running performance and lubricant is added to improve runnability and durability, and these materials are uniformly dispersed in an organic binder to obtain a magnetic film.

−aに長手記録では出力の増大を図るために、塗膜中の
磁性粉はヘッド−媒体の走行方向に配向していることが
要求される。長手記録方式では、塗膜中の磁性粉の長手
配向の程度が大きいほど、高密度記録時でのC/Nは増
大することから、長手配向度の増大が試みられている先
行開示技術としては、例えば特開昭62−172533
号公報、特開昭62−219332号公報、特開昭62
−298927号公報に示されている。
-a. In longitudinal recording, in order to increase the output, the magnetic powder in the coating film is required to be oriented in the head-medium traveling direction. In the longitudinal recording method, the C/N increases during high-density recording as the degree of longitudinal orientation of the magnetic powder in the coating film increases, so the prior disclosed technology attempts to increase the longitudinal orientation. For example, JP-A-62-172533
No. 1, JP-A-62-219332, JP-A-62
-298927.

しかしながら、高密度記録時に長手記録方式は、自己減
磁損失に打ち勝って記録しなければならないために媒体
の高保磁力化が高密度記録の必須の条件であることが知
られている。ところが、現行の針状酸化鉄もメタル磁性
粉もこれ以上の高保磁力化は技術的に困難な状況にあり
、高保磁力の媒体を十分書き込むヘッドの方にも課題が
生じているのが現状である。
However, it is known that the longitudinal recording method must overcome self-demagnetization loss during high-density recording, and therefore increasing the coercive force of the medium is an essential condition for high-density recording. However, it is technically difficult to increase the coercive force of the current acicular iron oxide and metal magnetic powder even higher than this, and there are also issues with the heads that can write sufficiently on high coercive force media. be.

この長手記録の課題を解決する方法として、垂直磁気方
式が提唱されていることはよく知られている0例えば、
文献としては、白木・中村・岩崎、日本応用磁気学会誌
11巻(1987) P2O3−114がある。垂直記
録では、高密度記録になればなるほど自己減磁損失が小
さくなり、究極の磁気記録方式として実用研究が各所で
行われている。先行開示技術としては、特開昭60−1
32183号公報等がある。
It is well known that a perpendicular magnetic system has been proposed as a method to solve this problem of longitudinal recording. For example,
Literature includes Shiraki, Nakamura, and Iwasaki, Journal of the Japanese Society of Applied Magnetics, Vol. 11 (1987) P2O3-114. In perpendicular recording, the higher the density of recording, the smaller the self-demagnetization loss, and practical research is being conducted in various places as the ultimate magnetic recording method. As prior disclosed technology, Japanese Patent Application Laid-Open No. 60-1
There are publications such as No. 32183.

また、六角板状のバリウムフェライト磁性粉を利用して
垂直記録方式に適用した技術報告もある。
There is also a technical report that uses hexagonal plate-shaped barium ferrite magnetic powder and applies it to a perpendicular recording system.

例えば、特開昭60−211628号公報、特開昭60
−209928号公報、特開昭60−212817号公
報、特開昭61−230621号公報、特開昭62〜6
0122号公報がある。
For example, JP-A-60-211628, JP-A-60
-209928, JP 60-212817, JP 61-230621, JP 62-6
There is a publication No. 0122.

発明が解決しようとする課題 しかし、現在塗布型の磁気記録媒体の開発において、先
行技術で開示されたように単に板状の形状を有する磁性
粉を塗料化して塗布してもそのメディア特性は必ずしも
良好であるとは言いがたい。
Problems to be Solved by the Invention However, in the current development of coated magnetic recording media, it is not always possible to improve the media characteristics even if a plate-shaped magnetic powder is simply applied as a paint, as disclosed in the prior art. It is hard to say that it is good.

具体的には、市販のメタルテープのサブミクロンの記録
波長の出力、C/Nと比較して、必ずしも優位とは言え
ないという課題を有していた。
Specifically, it has had the problem that it cannot necessarily be said to be superior to the output and C/N of submicron recording wavelengths of commercially available metal tapes.

!題を解決するための手段 上記課題を解決するために、本発明の磁気記録媒体は、
磁気記録層に磁気記録媒体の飽和磁気履歴曲線より得ら
れる保磁力(Hc)とH−Hc近傍での飽和磁気履歴曲
線の微粉曲線の半値幅(dHc)より計算されるd H
c / Hcの値が0.5以下であり、磁気記録媒体と
磁気ヘッドの走行方向の飽和磁気履歴曲線におけるヘッ
ド走行方向と同方向の角型比が0.7以上であると同時
に粒径と粒子厚みの比が1〜5であり、粒径が300〜
700オングストロームの範囲にある板状磁性粉を磁気
記録層に具備することを特徴した構成を備えたものであ
る。
! Means for Solving the Problems In order to solve the above problems, the magnetic recording medium of the present invention has the following features:
dH calculated from the coercive force (Hc) obtained from the saturation magnetic hysteresis curve of the magnetic recording medium in the magnetic recording layer and the half-value width (dHc) of the fine powder curve of the saturation magnetic hysteresis curve near H-Hc.
The value of c/Hc is 0.5 or less, the squareness ratio in the same direction as the head running direction in the saturation magnetic hysteresis curve of the magnetic recording medium and the magnetic head in the running direction is 0.7 or more, and at the same time, the grain size and The ratio of particle thickness is 1 to 5, and the particle size is 300 to
The structure is characterized in that the magnetic recording layer is provided with plate-shaped magnetic powder having a thickness of 700 angstroms.

作用 本発明は上記した構成によって、サブミクロン領域での
出力、C/N共に良好で、現行の塗布型媒体とリングヘ
ッドの組合せでは実現不可能なC/Nを実現できるもの
である。その作用としては、上記した構成によって記録
媒体より発生するノイズを低減できること、かつ超微粒
子であることから磁性粉の堆積充填率が従来の塗布型媒
体よりも増大可能で実行の磁化量が向上できること、さ
らに磁化反転が一斉に生ずるため磁化の転移が急峻に起
こっていることが推定される。
Operation The present invention, with the above-described configuration, has good output and C/N in the submicron region, and can achieve a C/N that cannot be achieved with the current combination of a coating type medium and a ring head. As for its effects, the above-mentioned structure can reduce the noise generated by the recording medium, and since the particles are ultra-fine, the deposition filling rate of magnetic powder can be increased compared to conventional coated media, and the actual amount of magnetization can be improved. Furthermore, it is presumed that the magnetization transition occurs abruptly because the magnetization reversals occur all at once.

実施例 以下、本発明の一実施例の磁気記録媒体について説明す
る。
EXAMPLE A magnetic recording medium according to an example of the present invention will be described below.

実施例1 塗料組成として下記の成分を調整し、加圧型ニーダ−、
ダブルプラネタリ−ミキサー、デイスパー等を用いて、
混合分散を行い、磁性塗料を作製した。
Example 1 The following components were adjusted as a coating composition, and a pressure kneader,
Using a double planetary mixer, disper, etc.
Mixing and dispersion was performed to produce a magnetic paint.

・板状磁性粉(Co−Ti −Znを置換元素として含
む六方晶系の結晶構造を有すバリウムフェライト) (板径 370人、板厚140人、 保磁力9500e、飽和磁化63emu/g )200
部 ・塩化ビニル重合体       ・・・・・・ 15
部・ポリウレタン         ・・・・・・ 1
5部、カーボン           ・・・・・・ 
4部、アルミナ          ・・・・・・ 8
部・潤滑剤            ・・・・・・ 2
部・溶剤 トルエン        ・・・・・・18
0部MEK          ・・・・・・180部
・硬化剤            ・・・・・・ 12
部得られた塗料を濾過し7たのち、ブレードギャップ3
0μmのアプリケーターを用いて塗工した。なお、基体
には、厚さ14μmのポリエチレンテレフタレートフィ
ルムを用い、磁性塗料塗布直後に5000ガウスの磁束
を発すソレノイドコイルにより基体走行方向に配向処理
した。次に、カレンダー処理(80°C130kg/c
ボ)を行い、60°C124時間硬化処理を行った。得
られたサンプルの磁気測定を振動試料型磁力計(最大磁
場10KOe)にて測定した。
・Plate magnetic powder (barium ferrite with a hexagonal crystal structure containing Co-Ti-Zn as a substituent element) (Plate diameter 370 mm, plate thickness 140 mm, coercive force 9500e, saturation magnetization 63 emu/g) 200
Part/Vinyl chloride polymer ・・・・・・ 15
Part/Polyurethane 1
Part 5, carbon...
Part 4, alumina...8
Part/Lubricant 2
Part/Solvent Toluene...18
0 parts MEK 180 parts Hardening agent 12
After filtering the obtained paint, the blade gap 3
Coating was performed using a 0 μm applicator. A polyethylene terephthalate film with a thickness of 14 μm was used as the substrate, and immediately after the magnetic paint was applied, it was oriented in the running direction of the substrate using a solenoid coil that emits a magnetic flux of 5000 Gauss. Next, calender treatment (80°C 130kg/c
b), and a curing treatment was performed at 60°C for 124 hours. The magnetic field of the obtained sample was measured using a vibrating sample magnetometer (maximum magnetic field: 10 KOe).

実施例2 実施例2は、実施例1の板状磁性粉をバリウムフェライ
トを表面スピネルコートした磁性粉とし、同様に塗料作
製とテープ化を行った。該粒子は板径450人、板厚1
50人、保磁力9000e、飽和磁化68 emu/g
という特性であった。
Example 2 In Example 2, the plate-shaped magnetic powder of Example 1 was changed to magnetic powder whose surface was spinel-coated with barium ferrite, and the coating material and tape were prepared in the same manner. The particles have a plate diameter of 450 and a plate thickness of 1.
50 people, coercive force 9000e, saturation magnetization 68 emu/g
This was the characteristic.

比較例1 比較例1は、実施例1の板状磁性粉とは製造のロフトが
異なる六万晶系に属するバリウムフェライト磁性粉を用
いた以外は実施例1に従った。粒径は800人、板厚1
30人、保磁力9100e、飽和磁化64 emu/g
であった。
Comparative Example 1 Comparative Example 1 followed Example 1 except that barium ferrite magnetic powder belonging to the 60,000-crystal system was used, which had a manufacturing loft different from that of the plate-shaped magnetic powder of Example 1. Particle size is 800, plate thickness is 1
30 people, coercive force 9100e, saturation magnetization 64 emu/g
Met.

比較例2 比較例2は、実施例2の板径450人の粒子と製造のロ
フトが異なる、板径720人、板厚200人、保磁力8
500e、飽和磁化69 emu/gの磁性粉を用いた
以外は実施例2に従い、テープ化を行った。
Comparative Example 2 Comparative Example 2 has a plate diameter of 720 particles, a plate thickness of 200 particles, and a coercive force of 8 particles, which have a different manufacturing loft from the particles of Example 2 with a plate diameter of 450 particles.
500e and a saturation magnetization of 69 emu/g were used in accordance with Example 2 to form a tape.

比較例3,4 比較例3.4は、それぞれ実施例1.2において配向処
理をしない以外は同様にしてテープ化を行った。
Comparative Examples 3 and 4 Comparative Examples 3 and 4 were formed into tapes in the same manner as in Example 1 and 2, except that the orientation treatment was not performed.

比較例5.6 比較例5は、実施例1において、用いる板状磁性粉を板
径690人、板厚130人、保磁力9200e、飽和磁
化53 emu/gにした以外は同様にし、比較例6は
実施例2において、用いる板状磁性粉を板径680人、
板厚120人、保磁力8800e、飽和磁化61.9部
mu/gとした以外は実施例2に従い、テープ化を行っ
た。
Comparative Example 5.6 Comparative Example 5 was the same as in Example 1 except that the plate diameter was 690 mm, the plate thickness was 130 mm, the coercive force was 9200 e, and the saturation magnetization was 53 emu/g. 6 is the plate-shaped magnetic powder used in Example 2, with a plate diameter of 680,
A tape was produced in accordance with Example 2, except that the plate thickness was 120 mm, the coercive force was 8800 e, and the saturation magnetization was 61.9 parts mu/g.

比較例7.8 比較例7.8は、実施例1.2において用いる板状磁性
粉をそれぞれ板径1200人、板厚300人、保磁力9
150 e、飽和磁化62.2e+au/g 、板径i
oo。
Comparative Example 7.8 In Comparative Example 7.8, the plate-shaped magnetic powder used in Example 1.2 was prepared with a plate diameter of 1200 mm, a plate thickness of 300 mm, and a coercive force of 9 mm.
150 e, saturation magnetization 62.2e+au/g, plate diameter i
oo.

人、板厚200人、保磁力9150e、飽和磁化66.
8部mu/gとした以外は実施例1.2に従ってテープ
化を行った。
Person, board thickness 200 persons, coercive force 9150e, saturation magnetization 66.
Tape-forming was carried out according to Example 1.2 except that the amount was 8 parts mu/g.

比較例9 比較例9は、業務用のMII−MPテープとした。Comparative example 9 Comparative Example 9 was a commercial MII-MP tape.

このようにして得られたサンプルは1部2インチ幅にス
リットして、電磁変換特性を相対速度3.50m/se
c 、メタル積層型ヘッド(ギャップ長0.20μm、
トラック幅20μm、巻線数25回)を用いて測定した
。測定に要した記録周波数は0.5.1.2.3.5.
5.7.8MHzである。
One part of the sample obtained in this way was slit into a 2-inch width, and the electromagnetic conversion characteristics were measured at a relative speed of 3.50 m/sec.
c, metal laminated head (gap length 0.20 μm,
The measurement was performed using a track width of 20 μm and a number of windings of 25 times. The recording frequency required for measurement was 0.5.1.2.3.5.
It is 5.7.8MHz.

サンプルの磁気特性は、最大磁場10KOe、掃引速度
(3分/10KOe)で、測定した。またサンプルの表
面粗さは、短波長記録時の出力に大きく影響するため、
光学式非接触表面粗さ計を用いて測定た。
The magnetic properties of the samples were measured at a maximum magnetic field of 10 KOe and a sweep rate of 3 minutes/10 KOe. In addition, the surface roughness of the sample greatly affects the output during short wavelength recording, so
It was measured using an optical non-contact surface roughness meter.

これらの結果をまとめて第1表に示す。These results are summarized in Table 1.

以下余白 ffl+ 夷 再生信号のCN比は、最適記録電流での値を示し、比較
例9のCN比を基準とした相対値で示している。グは媒
体の長手方向、上は媒体の厚み方向を表している。
The CN ratio of the reproduced signal shows the value at the optimum recording current, and is shown as a relative value based on the CN ratio of Comparative Example 9. The arrow represents the longitudinal direction of the medium, and the upper represents the thickness direction of the medium.

第1表より明らかなように本発明の磁気記録媒体は、塗
布型メタルテープに対し、サブミクロンの記録波長にお
いて優れたテープ特性を示しており、高密度かつ大容量
の磁気メディアとして有用である。
As is clear from Table 1, the magnetic recording medium of the present invention exhibits superior tape characteristics at submicron recording wavelengths compared to coated metal tapes, and is useful as a high-density, large-capacity magnetic medium. .

なお、実施例では、板状磁性粉体をCo−Ti−Zn!
換のバリウムフェライトで行ったが、これに限定される
ものではなく、六方晶系に属するものであればよ(、ス
トロンチウムフェライト、鉛フェライトでも差し支えな
い。また、実施例2では、バリウムフェライトの表面に
過剰のスピネルフェライトをコートしたものを用いたが
、これに限定されるものではない。
In the examples, the plate-shaped magnetic powder was Co-Ti-Zn!
In Example 2, barium ferrite was used as the surface of barium ferrite. Although a material coated with an excessive amount of spinel ferrite was used, the present invention is not limited to this.

発明の効果 以上のように、本発明の磁気記録媒体は、磁気記録媒体
と磁気ヘッドとの走行方向の飽和磁気履歴曲線より得ら
れる保磁力(Hc)とH=Hc近傍での飽和磁気履歴曲
線の微分曲線の半値幅(dHc)より計算されるd H
c / Hcの値が0.5以下であり、磁気記録媒体と
磁気ヘッドの方向の飽和磁気履歴曲線における走行方向
と同方向の角型比が0.7以上であり、かつ粒計と粒子
厚みの比が1〜5で、粒計が300〜700ングストロ
ームである板状磁性粉体を磁気記録層に具備しているこ
とにより、市販のメタルテープのテープ特性を凌駕する
ことができる。本発明の磁気記録媒体は、低コスト・大
容量の情報記録に利用することが可能であり、ビデオ機
器並びにメモリー機器の高性能化に寄与するところ大で
あり、極めて有用な発明である。
Effects of the Invention As described above, the magnetic recording medium of the present invention has a coercive force (Hc) obtained from a saturation magnetic hysteresis curve in the running direction of the magnetic recording medium and a magnetic head, and a saturation magnetic hysteresis curve near H=Hc. d H calculated from the half width (dHc) of the differential curve of
The value of c/Hc is 0.5 or less, the squareness ratio in the same direction as the running direction in the saturation magnetic hysteresis curve in the direction of the magnetic recording medium and the magnetic head is 0.7 or more, and the particle size and particle thickness are By providing the magnetic recording layer with plate-shaped magnetic powder having a ratio of 1 to 5 and a grain size of 300 to 700 angstroms, the tape characteristics can be surpassed by commercially available metal tapes. The magnetic recording medium of the present invention can be used for low-cost, large-capacity information recording, and greatly contributes to improving the performance of video equipment and memory equipment, making it an extremely useful invention.

Claims (3)

【特許請求の範囲】[Claims] (1)板状の磁性粉と添加剤・有機バインダーを混練し
て磁性塗料を作製したのち、非磁性基体上に前記塗料を
塗布することによって得られる磁気記録媒体であって、
前記磁気記録媒体の飽和磁気履歴曲線より得られる保磁
力(Hc)とH=Hc近傍での飽和磁気履歴曲線の微粉
曲線の半値幅(dHc)より計算されるdHc/Hcの
値が0.5以下であり、磁気記録媒体と磁気ヘッドの走
行方向の飽和磁気履歴曲線におけるヘッド走行方向と同
方向の角型比が0.7以上であると同時に粒径と粒子厚
みの比が1〜5であり、粒径が300〜700オングス
トロームの範囲にある板状磁性粉を磁気記録層に具備す
ることを特徴とする磁気記録媒体。
(1) A magnetic recording medium obtained by preparing a magnetic paint by kneading plate-shaped magnetic powder and an additive/organic binder, and then applying the paint onto a non-magnetic substrate,
The value of dHc/Hc calculated from the coercive force (Hc) obtained from the saturation magnetic hysteresis curve of the magnetic recording medium and the half-value width (dHc) of the fine powder curve of the saturation magnetic hysteresis curve near H=Hc is 0.5. The squareness ratio in the same direction as the head running direction in the saturation magnetic hysteresis curve in the running direction of the magnetic recording medium and the magnetic head is 0.7 or more, and the ratio of grain size to grain thickness is 1 to 5. 1. A magnetic recording medium comprising, in a magnetic recording layer, plate-shaped magnetic powder having a particle size in the range of 300 to 700 angstroms.
(2)板状磁性粉が六万晶系に属する結晶構造を有する
ことを特徴とする請求項(1)記載の磁気記録媒体。
(2) The magnetic recording medium according to claim (1), wherein the plate-shaped magnetic powder has a crystal structure belonging to the 60,000 crystal system.
(3)板状磁性粉が、マグネトプランバイト型構造のR
ブロックとSブロックの規則的な積層以外に過剰なスピ
ネル構造を有することを特徴とする請求項(1)記載の
磁気記録媒体。
(3) The plate-shaped magnetic powder has a magnetoplumbite-type structure R
2. The magnetic recording medium according to claim 1, wherein the magnetic recording medium has an excessive spinel structure in addition to the regular stacking of blocks and S blocks.
JP1184073A 1989-07-17 1989-07-17 Magnetic recording medium Pending JPH0349025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1184073A JPH0349025A (en) 1989-07-17 1989-07-17 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1184073A JPH0349025A (en) 1989-07-17 1989-07-17 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0349025A true JPH0349025A (en) 1991-03-01

Family

ID=16146909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1184073A Pending JPH0349025A (en) 1989-07-17 1989-07-17 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0349025A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0710951A1 (en) 1994-10-14 1996-05-08 Fuji Photo Film Co., Ltd. Magnetic recording medium
JP2007117542A (en) * 2005-10-31 2007-05-17 Tostem Corp Vertically movable worktable
KR101646525B1 (en) * 2015-02-05 2016-08-08 한국기술교육대학교 산학협력단 Drying device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0710951A1 (en) 1994-10-14 1996-05-08 Fuji Photo Film Co., Ltd. Magnetic recording medium
JP2007117542A (en) * 2005-10-31 2007-05-17 Tostem Corp Vertically movable worktable
KR101646525B1 (en) * 2015-02-05 2016-08-08 한국기술교육대학교 산학협력단 Drying device

Similar Documents

Publication Publication Date Title
JPH09190623A (en) Magnetic recording medium
JP2644322B2 (en) Magnetic recording media
KR930004444B1 (en) Magnetic recording medium
JPH0349025A (en) Magnetic recording medium
JP2561455B2 (en) Magnetic recording / reproducing device
JPH0467424A (en) Magnetic recording medium
JP3288136B2 (en) Magnetic recording / reproducing method
JP2632943B2 (en) Magnetic recording media
JPH0349024A (en) Magnetic recording medium
JPH0322212A (en) Magnetic recording medium
JP2843342B2 (en) Manufacturing method of magnetic recording medium
JPH07105525A (en) Magnetic recording medium
JPH0562152A (en) Magnetic tape
JP3012190B2 (en) Magnetic recording media
JP2000030238A (en) Magnetic recording medium, magnetic powder and magnetic recording medium in which transfer magnetic field is recorded
JPH03286420A (en) Magnetic recording medium
JPH04163715A (en) Magnetic tape and manufacture thereof
JPH06342515A (en) Magnetic recording and reproducing method
JPH0668451A (en) Magnetic recording medium
JPH11175959A (en) Magnetic recording medium
JPH0467684B2 (en)
JPH02165414A (en) Magnetic recording medium
JPH04360020A (en) Magnetic tape
JPH06131649A (en) Magnetic tape
JPH03288327A (en) Magnetic tape