JPH0467424A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0467424A
JPH0467424A JP2180062A JP18006290A JPH0467424A JP H0467424 A JPH0467424 A JP H0467424A JP 2180062 A JP2180062 A JP 2180062A JP 18006290 A JP18006290 A JP 18006290A JP H0467424 A JPH0467424 A JP H0467424A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
magnetic recording
curve
magnetization curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2180062A
Other languages
Japanese (ja)
Inventor
Nobuyuki Aoki
青木 延之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2180062A priority Critical patent/JPH0467424A/en
Publication of JPH0467424A publication Critical patent/JPH0467424A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To improve tape characteristics by specifying the ratio between the coercive force obtd. form the residual magnetization curve in a traveling direction and the half-value width of the differential curve of the residual magnetization curve to be <=0.5 and specifying the squareness ratio in the satd. magnetization curve measured in the traveling direction to be >=0.7. CONSTITUTION:The value of dHr/Hr calculated from the coercive force (Hr) obtd. from the residual magnetization curve of the magnetic recording medium in the magnetic recording layer and the half-value width (dHr) of the differential curve of the residual magnetization curve near H=Hr is <=0.5 and the square ness ratio in the same direction as the head traveling direction of the satd. magnetization curve in the traveling direction of the magnetic recording medium and the magnetic head is >=0.7. Then, the noises generated from the recording medium are decreased and since the magnetic powder is superfine particles, the volumetric packing rate of the magnetic powder can be increased to the value larger than that of the conventional coating type media and the effective magnetization quantity is improved. Further, magnetization inversion takes place simultaneously, the transfer of the magnetization takes place rapidly. The output in a submicron region is improved together with C/N in this way.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、サブミクロン領域での高密度記録を必要とす
るビデオ・フロンビーディスク等に使用するための、特
にC/Nの優れた塗布型磁気記録媒体に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a coating type magnetic material with particularly excellent C/N for use in video/Frombie disks that require high-density recording in the submicron region. It is related to recording media.

従来の技術 磁気記録は、従来より磁気記録媒体の面内方向の磁化を
用いる長手磁気記録方式によって発展してきた。現在使
われている磁気テープの大部分は、この長手記録方式に
よる磁気テープである。
BACKGROUND OF THE INVENTION Magnetic recording has traditionally been developed using a longitudinal magnetic recording method that uses in-plane magnetization of a magnetic recording medium. Most of the magnetic tapes currently in use use this longitudinal recording method.

媒体を構成する磁性材料としては、現在のところ針状酸
化鉄やメタルの磁性粉が主流であり、さらに塗膜強度の
増大と磁気ヘッドの研磨を図るためアルミナを、電気抵
抗を下げて走行性を向上するためのカーボンを、走行性
と耐久性を向上させるための潤滑剤を添加し、これらの
材料を有機バインダー中で均一に分散させ磁性膜を得て
いる。
At present, magnetic materials such as acicular iron oxide and metal are mainstream as the magnetic materials that make up the media.Also, alumina is used to increase coating strength and polish the magnetic head, and to lower electrical resistance and improve runnability. Carbon is added to improve running performance and lubricant is added to improve runnability and durability, and these materials are uniformly dispersed in an organic binder to obtain a magnetic film.

一般に長手記録では出力の増大を図るために、塗膜中の
磁性粉はヘッド−媒体の走行方向に配向していることが
要求される。長手記録方式では、塗膜中の磁性粉の長手
配向の程度が大きいほど、高密度記録時でのC/Nは増
大することから、長手配向度の増大が試みられている。
Generally, in longitudinal recording, in order to increase the output, it is required that the magnetic powder in the coating film be oriented in the head-medium running direction. In the longitudinal recording method, attempts have been made to increase the degree of longitudinal orientation because the greater the degree of longitudinal orientation of the magnetic powder in the coating film, the greater the C/N during high-density recording.

先行開示技術としては、特開昭62−172533号公
報、特開昭62−219332号公報、特開昭62−2
98927号公報等に示されている。しかしながら、高
密度記録時に長手記録方式は、自己減磁損失に打ち勝っ
て記録しなければならないために媒体の高保磁力化が高
密度記録の必須の条件であることが知られている。とこ
ろが、現行の針状酸化鉄もメタル磁性粉もこれ以上の高
保磁力化は技術的に困難な状況にあり、高保磁力の媒体
を十分書き込むヘッドの方にも問題が生じているのが現
状である。
Prior disclosed technologies include JP-A-62-172533, JP-A-62-219332, and JP-A-62-2.
This is shown in JP-A No. 98927 and the like. However, it is known that the longitudinal recording method must overcome self-demagnetization loss during high-density recording, and therefore increasing the coercive force of the medium is an essential condition for high-density recording. However, it is technically difficult to increase the coercive force of the current acicular iron oxide and metal magnetic powder even higher than this, and there are also problems with the heads that can write sufficiently on high coercive force media. be.

この長手記録の問題点を解決する方法としては、垂直磁
気記録方式が掃唱されていることはよく知られている。
It is well known that perpendicular magnetic recording has been proposed as a method for solving the problems of longitudinal recording.

例えば、文献としては、白木・中村・岩崎、日本応用磁
気学会誌11巻(1987)p109−114がある。
For example, the literature includes Shiraki, Nakamura, and Iwasaki, Journal of the Japan Society of Applied Magnetics, Vol. 11 (1987), p. 109-114.

垂直記録では、高密度記録になればなるほど自己減磁損
失が小さくなり、究極の磁気記録方式として実用研究が
各所で行われている。先行開示技術としては、特開昭6
0132183号公報等がある。
In perpendicular recording, the higher the density of recording, the smaller the self-demagnetization loss, and practical research is being conducted in various places as the ultimate magnetic recording method. As an earlier disclosed technology, Japanese Patent Application Laid-open No. 6
There are publications such as No. 0132183.

また、六角板状のバリウムフェライト磁性粉を利用して
垂直記録方式に適用した技術報告もある。
There is also a technical report that uses hexagonal plate-shaped barium ferrite magnetic powder and applies it to a perpendicular recording system.

例えば、特開昭60−211628号公報、特開昭60
−209928号公報、特開昭60−212817号公
報、特開昭61−230621号公報、特開昭62−6
0122号公報等がある。
For example, JP-A-60-211628, JP-A-60
-209928, JP 60-212817, JP 61-230621, JP 62-6
There are publications such as No. 0122.

発明が解決しようとする課題 しかし、現在塗布型の磁気記録媒体の開発において、先
行技術で開示されたように単に板状の形状を有する磁性
粉を塗料化して塗布してもそのメディア特性を必ずしも
良好であるとは言いがたい。
Problems to be Solved by the Invention However, in the current development of coating-type magnetic recording media, simply applying plate-shaped magnetic powder as a paint does not necessarily improve the media characteristics. It is hard to say that it is good.

具体的には、市販のメタルテープのサブミクロンの記録
波長の出力、C/Nと比較して、必ずしも優位とは言え
ないという問題点を有していた。
Specifically, it has a problem that it cannot necessarily be said to be superior to the output and C/N of submicron recording wavelengths of commercially available metal tapes.

課題を解決するための手段 上記問題点を解決するために、本発明の磁気記録媒体は
、磁気記録層に磁気記録媒体の残留磁化曲線より得られ
る保磁力(Hr)とH=Hr近傍での残留磁化曲線の微
分曲線の半値幅(dHr)より計算されるd Hr /
 Hrの値が0.5以下であり、磁気記録媒体と磁気ヘ
ッドの走行方向の飽和磁化曲線におけるヘッド走行方向
と同方向の角型比が0.7以上であることを特徴とした
構成を備えたものである。
Means for Solving the Problems In order to solve the above problems, the magnetic recording medium of the present invention has a magnetic recording layer with a coercive force (Hr) obtained from the residual magnetization curve of the magnetic recording medium and a coercive force (Hr) near H=Hr. d Hr / calculated from the half width (dHr) of the differential curve of the residual magnetization curve
Hr value is 0.5 or less, and the squareness ratio in the same direction as the head running direction in the saturation magnetization curve of the magnetic recording medium and the magnetic head in the running direction is 0.7 or more. It is something that

作用 本発明は上記した構成によって、サブミクロン領域での
出力、C/N共に良好で、現行の塗布型媒体とリングヘ
ンドの組合せでは実現不可能なC/Nを実現できるもの
である。その作用としては、上記した構成によって記録
媒体より発生するノイズを低減できること、かつ超微粒
子であることから磁性粉の体積充填率が従来の塗布型媒
体よりも増大可能で実効の磁化量が向上できること、さ
らに磁化反転が一斉に生ずるため磁化の転移が急峻に起
こっていることが推定される。
Operation The present invention has the above-described configuration, and is capable of achieving good output and C/N in the submicron region, and a C/N that cannot be achieved with the current combination of a coating type medium and a ring hend. As for its effects, the above-mentioned structure can reduce the noise generated by the recording medium, and since the particles are ultra-fine, the volumetric filling rate of the magnetic powder can be increased compared to conventional coated media, and the effective amount of magnetization can be improved. Furthermore, it is presumed that the magnetization transition occurs abruptly because the magnetization reversals occur all at once.

実施例 以下、本発明の一実施例の磁気記録媒体について説明す
る。
EXAMPLE A magnetic recording medium according to an example of the present invention will be described below.

実施例1 塗料組成として下記の成分を調整し、加圧型ニーダ−、
ダブルプラネタリ−ミキサー、デイスパー等を用いて、
混合分散を行ない、磁性塗料を作製した。
Example 1 The following components were adjusted as a coating composition, and a pressure kneader,
Using a double planetary mixer, disper, etc.
Mixing and dispersion was performed to prepare a magnetic paint.

・板状磁性粉(Co−Nb−Znを置換元素として含む
大方晶系の結晶構造を有すバリウムフェライト) (板径500人、板厚150人、保磁力9800e、飽
和磁化63emu/g)    ・・・・・・200部
・塩化ビニル重合体        ・・・・・・15
部・ポリウレタン         ・・・・・・15
部・カーボン             ・・・・・・
4部・アルミナ            ・・・・・・
8部・潤滑剤              ・・・・・
・2部・溶剤トルエン        ・・・・・・1
80部MEK        ・・・・・・180部・
硬化剤             ・・・・・・12部
得られた塗料を濾過したのち、ブレードギャップIOu
mのアプリケーターを用いて塗工した。
・Plate magnetic powder (barium ferrite with an orthogonal crystal structure containing Co-Nb-Zn as a substituent element) (plate diameter 500 mm, plate thickness 150 mm, coercive force 9800e, saturation magnetization 63 emu/g) ・...200 parts Vinyl chloride polymer ...15
Part/Polyurethane...15
Part/Carbon...
Part 4: Alumina...
Part 8: Lubricant...
・2 parts・Solvent toluene ・・・・・・1
80 copies MEK・・・・・・180 copies・
Curing agent: 12 parts After filtering the obtained paint, the blade gap IOu
It was applied using an applicator of m.

なお、基体には、厚さ10μmのポリエチレンテレフタ
レートフィルムを用い、磁性塗料塗布直後に4500ガ
ウスの磁束を発すソレノイドコイルにより基体走行方向
に配向処理した。次に、カレンダー処理(90°C15
0kg/d)を行い、60°C524時間硬化処理を行
った。得られたサンプルの磁気測定を振動試料型磁力計
(最大磁場10KOe)にて測定した。
A polyethylene terephthalate film with a thickness of 10 μm was used as the substrate, and immediately after the magnetic paint was applied, it was oriented in the running direction of the substrate using a solenoid coil that emits a magnetic flux of 4500 Gauss. Next, calender treatment (90°C15
0 kg/d), and a curing treatment was performed at 60°C for 524 hours. The magnetic field of the obtained sample was measured using a vibrating sample magnetometer (maximum magnetic field: 10 KOe).

実施例2 実施例2は、実施例1の板状磁性粉をバリウムフェライ
トを表面スピネルコートした磁性粉とし、実施例1と同
様に塗料作製とテープ化を行った。
Example 2 In Example 2, the plate-shaped magnetic powder of Example 1 was used as a magnetic powder whose surface was spinel-coated with barium ferrite, and paint preparation and tape production were carried out in the same manner as in Example 1.

塗料化に用いた磁性粉は、板径550人、板厚180人
、保磁力9000e、飽和磁化68emu/gという特
性であった。
The magnetic powder used for the paint had a plate diameter of 550 mm, a plate thickness of 180 mm, a coercive force of 9000 e, and a saturation magnetization of 68 emu/g.

実施例3および実施例4 実施例3.4は、塗料化に用いる磁性粉をそれぞれNi
−Ti−Znの置換元素を有するマグネトプランバイト
型のハIJウムフエライト磁性粉、S n −M gを
1換元素とするマグネトプランバイト型のバリウムフェ
ライト磁性粉とした以外は実施例1.2に従ってテープ
化を行った。
Examples 3 and 4 In Examples 3 and 4, the magnetic powder used for making paint was
- Example 1.2 except that magnetoplumbite type barium ferrite magnetic powder having a substituent element of Ti-Zn and magnetoplumbite type barium ferrite magnetic powder having Sn-Mg as a monomer element were used. I made it into a tape according to the following.

比較例1 比較例1は、置換元素がCo−Ti系である大方晶系に
属するバリウムフェライト磁性粉を用いた以外は実施例
1に従った。粒径は800人、板厚130人、保磁力9
100e、飽和磁化64e m u / gであった。
Comparative Example 1 Comparative Example 1 followed Example 1 except that barium ferrite magnetic powder belonging to an orthogonal system in which the substitutional element was Co--Ti was used. Particle size is 800 mm, plate thickness is 130 mm, coercive force is 9
100e, and the saturation magnetization was 64e mu/g.

比較例2 比較例2は、マグネトプランバイト型構造のバリウムフ
ェライトとスピネル型フェライトであるマグネタイトを
混合したブレンド磁性粉を用いた以外は実施例2に従い
、テープ化を行った。
Comparative Example 2 In Comparative Example 2, a tape was formed in accordance with Example 2, except that a blended magnetic powder obtained by mixing barium ferrite with a magnetoplumbite structure and magnetite, which is a spinel ferrite, was used.

比較例3および比較例4 比較例3,4は、それぞれ実施例1.2において配向処
理をしない以外は同様にしてテープ化を行った。
Comparative Example 3 and Comparative Example 4 In Comparative Examples 3 and 4, tapes were formed in the same manner as in Example 1.2 except that the orientation treatment was not performed.

比較例5 比較例5は、業務用のMII−MPテープとした。Comparative example 5 Comparative Example 5 was a commercial MII-MP tape.

このようにして得られたサンプルは1/2インチ幅にス
リットして、電磁変換特性を相対速度3.80m/se
c、メタル積層型へンド(ギャンプ長0.20μm、ト
ラック幅208m1巻線数25回)を用いて測定した。
The sample obtained in this way was slit into 1/2 inch width, and the electromagnetic conversion characteristics were measured at a relative speed of 3.80 m/sec.
c. Measured using a metal laminated head (gap length 0.20 μm, track width 208 m, number of turns 25).

測定に用いた記録周波数は0.5,1,2,3.5.5
.7.9MHzである。
The recording frequencies used for measurement were 0.5, 1, 2, 3.5.5
.. It is 7.9MHz.

サンプルの磁気特性は、最大磁場10KOe、掃引速度
(3分/10KOe)で、測定した。またサンプルの表
面粗さは、短波長記録時の出力に大きく影響するため、
光学式非接触表面粗さ計を用いて測定した。
The magnetic properties of the samples were measured at a maximum magnetic field of 10 KOe and a sweep rate of 3 minutes/10 KOe. In addition, the surface roughness of the sample greatly affects the output during short wavelength recording, so
It was measured using an optical non-contact surface roughness meter.

これらの結果をまとめて第1表に示す。These results are summarized in Table 1.

(以 下 余 白) 出力は、最適記録電流での値を示し、比較例5の出力を
基準とした相対値で示している。 は媒体の長手方向、
 は媒体の厚み方向を表している。
(Margin below) The output shows the value at the optimum recording current, and is shown as a relative value based on the output of Comparative Example 5. is the longitudinal direction of the medium,
represents the thickness direction of the medium.

第1表より明らかなように本発明の磁気記録媒体は、塗
布型メタルテープに対し、サブミクロンの記録波長にお
いて優れたテープ特性を示しており、高密度かつ大容量
の磁気メディアとして有用である。
As is clear from Table 1, the magnetic recording medium of the present invention exhibits superior tape characteristics at submicron recording wavelengths compared to coated metal tapes, and is useful as a high-density, large-capacity magnetic medium. .

なお、実施例では、板状磁性粉体をCo−NbZn  
Ni−Ti−Zn、及びSn−Mg置換のバリウムフェ
ライトで行ったが、これに限定されるものではなく、六
方晶系に属するものであればよく、ストロンチウムフェ
ライト、鉛フェライトでも差し支えない。また、実施例
2では、バリウムフェライトの表面に過剰のスピネルフ
ェライトをコートしたものを用いたが、これに限定され
るものではない。
In addition, in the examples, the plate-shaped magnetic powder was Co-NbZn
Although Ni-Ti-Zn and Sn-Mg substituted barium ferrite were used, the present invention is not limited thereto, and any material belonging to the hexagonal system may be used, and strontium ferrite or lead ferrite may also be used. Further, in Example 2, barium ferrite coated with excess spinel ferrite was used, but the present invention is not limited to this.

発明の効果 以上のように、本発明の磁気記録媒体は、磁気記録媒体
と磁気ヘッドとの走行方向の残留磁化曲線より得られる
保磁力(H「)とH= Hr近傍での残留磁化曲線の微
分曲線の半値幅(dHr)より計算されるd Hr /
 Hrの値が0.5以下であり、磁気記録媒体と磁気ヘ
ッドの走行方向に測定した飽和磁化曲線における角型比
が07以上であることにより、市販のメタルテープのテ
ープ特性を凌駕することができる。本発明の磁気記録媒
体は、低コスト・大容量の情報記録に利用することが可
能であり、ビデオ機器並びにメモリー機器の高性能化に
寄与するところ大であり、極めて有用な発明である。
Effects of the Invention As described above, the magnetic recording medium of the present invention has the following characteristics: the coercive force (H') obtained from the residual magnetization curve in the running direction of the magnetic recording medium and the magnetic head, and the residual magnetization curve near H=Hr. d Hr / calculated from the half width (dHr) of the differential curve
Since the Hr value is 0.5 or less and the squareness ratio in the saturation magnetization curve measured in the running direction of the magnetic recording medium and magnetic head is 07 or more, the tape characteristics can be surpassed by commercially available metal tapes. can. The magnetic recording medium of the present invention can be used for low-cost, large-capacity information recording, and greatly contributes to improving the performance of video equipment and memory equipment, making it an extremely useful invention.

Claims (3)

【特許請求の範囲】[Claims] (1)板状の磁性粉と添加剤・有機バインダーを混練し
て磁性塗料を作製したのち、非磁性基体上に前記磁性塗
料を塗布することによって得られる磁気記録媒体におい
て、前記磁気記録媒体の残留磁化曲線より得られる保磁
力(Hr)とH=Hr近傍での残留磁化曲線の微分曲線
の半値幅(dHr)より計算されるdHr/Hrの値が
0.5以下であり、磁気記録媒体と磁気ヘッドの走行方
向の飽和磁化曲線におけるヘット走行方向と同方向の角
型比が0.7以上であることを特徴とする磁気記録媒体
(1) In a magnetic recording medium obtained by kneading plate-shaped magnetic powder and an additive/organic binder to prepare a magnetic coating material, and then applying the magnetic coating material onto a non-magnetic substrate, The value of dHr/Hr calculated from the coercive force (Hr) obtained from the residual magnetization curve and the half width (dHr) of the differential curve of the residual magnetization curve near H=Hr is 0.5 or less, and the magnetic recording medium and a magnetic recording medium having a squareness ratio of 0.7 or more in the same direction as the head running direction in the saturation magnetization curve in the running direction of the magnetic head.
(2)板状磁性粉が六方晶系に属する結晶構造を有する
ことを特徴とする請求項(1)記載の磁気記録媒体。
(2) The magnetic recording medium according to claim (1), wherein the plate-shaped magnetic powder has a crystal structure belonging to a hexagonal system.
(3)板状磁性粉が、マグネトプランバイト型構造のR
ブロックとSブロックの規則的な積層以外に過剰なスピ
ネル構造を有することを特徴とする請求項(1)記載の
磁気記録媒体。
(3) The plate-shaped magnetic powder has a magnetoplumbite-type structure R
2. The magnetic recording medium according to claim 1, wherein the magnetic recording medium has an excessive spinel structure in addition to the regular stacking of blocks and S blocks.
JP2180062A 1990-07-06 1990-07-06 Magnetic recording medium Pending JPH0467424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2180062A JPH0467424A (en) 1990-07-06 1990-07-06 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2180062A JPH0467424A (en) 1990-07-06 1990-07-06 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0467424A true JPH0467424A (en) 1992-03-03

Family

ID=16076815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2180062A Pending JPH0467424A (en) 1990-07-06 1990-07-06 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0467424A (en)

Similar Documents

Publication Publication Date Title
JP2004103186A (en) Magnetic recording medium
JP6632465B2 (en) Magnetic recording medium and recording apparatus for microwave assisted recording
KR930009640B1 (en) Magnetic recording medium
JPH04123312A (en) Magnetic recording medium for master
JPH0349025A (en) Magnetic recording medium
JPH0467424A (en) Magnetic recording medium
JP2004303408A (en) Magnetic recording medium having increased high density broadband signal-to-noise ratio
JP2632943B2 (en) Magnetic recording media
JP3288136B2 (en) Magnetic recording / reproducing method
JPH0349024A (en) Magnetic recording medium
JPH0322212A (en) Magnetic recording medium
JP2843342B2 (en) Manufacturing method of magnetic recording medium
JPH03238619A (en) Magnetic recording medium
JP2651749B2 (en) Magnetic recording media
JPH0619829B2 (en) Magnetic recording medium
JPH03286420A (en) Magnetic recording medium
JP3012190B2 (en) Magnetic recording media
JPH0562152A (en) Magnetic tape
JPH04163715A (en) Magnetic tape and manufacture thereof
JPH0444628A (en) Magnetic recording medium
JPH0467684B2 (en)
JPS61217933A (en) Magnetic recording medium
JPH11175959A (en) Magnetic recording medium
JPH0562161A (en) Magnetic recording medium and its manufacture
JPH04103020A (en) Mother magnetic recording medium