JPH0714151A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPH0714151A
JPH0714151A JP14997193A JP14997193A JPH0714151A JP H0714151 A JPH0714151 A JP H0714151A JP 14997193 A JP14997193 A JP 14997193A JP 14997193 A JP14997193 A JP 14997193A JP H0714151 A JPH0714151 A JP H0714151A
Authority
JP
Japan
Prior art keywords
magnetic
layer
recording medium
flux path
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14997193A
Other languages
Japanese (ja)
Inventor
Hajime Takeuchi
肇 竹内
Hiromi Sakata
浩実 坂田
Tatsumi Maeda
辰巳 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14997193A priority Critical patent/JPH0714151A/en
Publication of JPH0714151A publication Critical patent/JPH0714151A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To produce a magnetic recording medium having satisfactory surface smoothness with satisfactory productivity. CONSTITUTION:This magnetic recording medium has <=5nm center line average roughness (Ra) of the surface. In order to control the center line average roughness of the surface of this magnetic recording medium to <=5nm, the particle diameter of magnetic fine particles forming the flux pass layer is preferably regulated to <=120nm. In the case where a two-layered magnetic recording medium is subjected to orientation treatment, in order to attain simultaneous coating, the coercive force of magnetic fine particles in the flux pass layer is regulated to <=300Oe.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気記録媒体に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium.

【0002】[0002]

【従来の技術】従来では、一般に磁性層膜面に対して平
行な方向に磁化を形成して記録する、いわゆる面内記録
方式が用いられていた。しかし、このような記録方式で
は、減磁作用により記録密度を高めることができなかっ
た。そこで、近年では、高密度記録可能なBaフェライ
トなどの磁性微粒子を用いた垂直記録媒体が開発され、
実用化されようとしている。
2. Description of the Related Art Conventionally, a so-called in-plane recording method has been generally used, in which magnetization is formed in a direction parallel to the surface of a magnetic layer film for recording. However, in such a recording method, the recording density could not be increased due to the demagnetization effect. Therefore, in recent years, a perpendicular recording medium using magnetic fine particles such as Ba ferrite capable of high density recording has been developed.
It is about to be put to practical use.

【0003】ところが、基体上に単層の垂直記録層が塗
布された磁気記録媒体は、通常用いられるリングヘッド
による書き込みでは効率が悪く、肝心の記録密度の向上
は、面内配向媒体に比べあまり向上しなかった。
However, a magnetic recording medium in which a single perpendicular recording layer is coated on a substrate is inefficient in writing by a commonly used ring head, and the important improvement in recording density is much less than that of an in-plane oriented medium. Didn't improve.

【0004】それに対して、特開昭61−34728号
公報に記載される如く、基体上に第一磁性層として針状
比2〜3、長さ0.2μmのγ−Fe2 O3 粒子を用い
て等方的な磁気異方性を有する層を形成し、乾燥後、こ
の上に別途垂直磁気異方性を有する第二磁性層を設ける
技術が開示されている。このような構成により、残留磁
化状態が、第一磁性層の面内磁化と第二磁性層の垂直磁
化とによって安定な磁化構造となり、第一磁性層はフラ
ックスパスの役割をする。
On the other hand, as described in JP-A-61-34728, γ-Fe2 O3 particles having a needle-like ratio of 2 to 3 and a length of 0.2 μm are used as a first magnetic layer on a substrate. A technique is disclosed in which a layer having isotropic magnetic anisotropy is formed, dried, and then a second magnetic layer having perpendicular magnetic anisotropy is separately provided thereon. With such a configuration, the remanent magnetization state becomes a stable magnetization structure due to the in-plane magnetization of the first magnetic layer and the perpendicular magnetization of the second magnetic layer, and the first magnetic layer functions as a flux path.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記した従来
の磁気記録媒体では、第一磁性層の磁性材料として針状
比2〜3長さ0.2μmと大きいγ−Fe2 O3 粒子が
用いられているため、フラックスパス層にあたる第一磁
性層がフラックスパスの効果を奏することのできる厚さ
にまで第二磁性層を薄く塗布すると、平滑性が低下し、
優れた電磁変換特性を確保することができない。
However, in the above-described conventional magnetic recording medium, γ-Fe2 O3 particles having a needle-like ratio of 2 to 3 and a length of 0.2 μm and large γ-Fe2 O3 particles are used as the magnetic material of the first magnetic layer. Therefore, if the second magnetic layer is thinly applied to a thickness such that the first magnetic layer corresponding to the flux path layer can exert the effect of the flux path, the smoothness deteriorates,
It is not possible to secure excellent electromagnetic conversion characteristics.

【0006】また、磁性層を塗布・乾燥した後のカレン
ダ処理では、磁性層は厚いほど平滑性が良く、逆に薄い
ほど表面が粗くなる傾向にある。これは、圧力による磁
性層の変形量は磁性層の膜厚に比例するためで、異なる
厚さのものに同じ圧力でカレンダ処理を施した場合、膜
厚が厚いほうが平滑性が良くなる。そのため、従来例の
ように二度塗りする製造方法の場合、第一磁性層はカレ
ンダ掛りが悪い傾向にある。更にこの上に、フラックス
パスの効果を得ることのできる薄さに第二磁性層を塗布
すると、磁性層はフラックスパス層の表面粗さに影響さ
れて表面が粗くなり、平滑性が低下する。
In the calendering process after coating and drying the magnetic layer, the thicker the magnetic layer, the better the smoothness, and the thinner the magnetic layer, the rougher the surface. This is because the amount of deformation of the magnetic layer due to the pressure is proportional to the film thickness of the magnetic layer. Therefore, when calendering different thicknesses with the same pressure, the thicker the film, the better the smoothness. Therefore, in the case of the manufacturing method in which coating is performed twice as in the conventional example, the first magnetic layer tends to have poor calendaring. Furthermore, when the second magnetic layer is applied on top of this so as to obtain a flux pass effect, the surface of the magnetic layer becomes rough due to the surface roughness of the flux pass layer, and the smoothness deteriorates.

【0007】また、従来例の製造方法では、第一磁性層
塗布後に乾燥工程が必要であった。なぜなら、配向処理
を行なう場合、第一磁性層が乾燥しないまま第二磁性層
を塗布する同時塗布を行なうと、配向処理により第一の
磁性層の磁性微粒子は配向するので、第一磁性層は等方
的な磁気異方性を得られないからである。そのため、磁
気記録媒体の第一磁性層が等方的な磁気異方性を有する
には、第一磁性層塗布後に乾燥工程が必要であり、極め
て生産性が悪かった。
Further, in the manufacturing method of the conventional example, a drying step is required after the application of the first magnetic layer. This is because, in the case of performing the orientation treatment, if the second magnetic layer is applied simultaneously while the first magnetic layer is not dried, the magnetic fine particles of the first magnetic layer are oriented by the orientation treatment. This is because isotropic magnetic anisotropy cannot be obtained. Therefore, in order for the first magnetic layer of the magnetic recording medium to have isotropic magnetic anisotropy, a drying step is required after coating the first magnetic layer, resulting in extremely poor productivity.

【0008】即ち、従来例には、長手記録方式に対する
優位性を高めることを目的としたものが述べられてお
り、表面の平滑性の制御についての手段及び生産性の良
い磁気記録媒体の製造方法に関しては述べられていな
い。本発明は、上記事情に鑑みなされたもので、表面の
平滑性の良い磁気記録媒体と生産性の良い磁気記録媒体
の製造方法を提供するものである。
That is, in the conventional example, the purpose is to improve the superiority to the longitudinal recording system, and means for controlling the smoothness of the surface and a method for manufacturing a magnetic recording medium with high productivity. Is not mentioned. The present invention has been made in view of the above circumstances, and provides a magnetic recording medium having good surface smoothness and a method of manufacturing a magnetic recording medium having high productivity.

【0009】[0009]

【課題を解決するための手段】本発明の磁気記録媒体
は、支持体上に、第一の磁性微粒子を主体としたフラッ
クスパス層と、前記フラックスパス層上に第二の磁性微
粒子を主体とし膜面に対し垂直磁化成分を有する磁性塗
布層とを備えた磁気記録媒体において、前記磁性塗布層
の表面の中心線平均粗さ(Ra)が5nm以下であるこ
とを特徴とする。
A magnetic recording medium of the present invention comprises a flux path layer mainly composed of first magnetic particles on a support, and second magnetic particles mainly composed on the flux path layer. A magnetic recording medium provided with a magnetic coating layer having a perpendicular magnetization component to the film surface is characterized in that the center line average roughness (Ra) of the surface of the magnetic coating layer is 5 nm or less.

【0010】更に、前記フラックスパス層を構成する磁
性微粒子の粒径が120nm以下であることを特徴とす
る。更に、前記フラックスパス層を構成する磁性微粒子
の保磁力が300Oe以下であることを特徴とする。
Further, the particle size of the magnetic fine particles constituting the flux path layer is 120 nm or less. Further, the magnetic fine particles forming the flux path layer have a coercive force of 300 Oe or less.

【0011】更に、前記フラックスパス層を構成する磁
性微粒子が複数の磁化容易軸を有することを特徴とす
る。また、本発明の磁気記録媒体の製造方法は、支持体
上に、フラックスパス層として、保磁力が300Oe以
下である第一の磁性微粒子を主体とした第一の磁性塗料
を塗布し第一塗布層を形成する工程と、前記フラックス
パス層が乾燥する前に、前記フラックスパス層上に、磁
性塗布層として、膜面に対して垂直方向に磁化容易な第
二の磁性微粒子を主体とした第二の磁性塗料を塗布し第
二塗布層を形成する工程と、前記第一塗布層及び第二塗
布層を乾燥し、フラックスパス層及び前記磁性塗布層を
形成する工程とを具備することを特徴とする。
Further, the magnetic fine particles forming the flux path layer have a plurality of easy axes of magnetization. Further, in the method for producing a magnetic recording medium of the present invention, a first magnetic coating material composed mainly of first magnetic fine particles having a coercive force of 300 Oe or less is applied as a flux path layer on a support, and first coating is performed. A step of forming a layer, and before the flux path layer is dried, a magnetic coating layer on the flux path layer is mainly composed of second magnetic fine particles that are easily magnetized in a direction perpendicular to the film surface. And a step of applying a second magnetic coating to form a second coating layer, and a step of drying the first coating layer and the second coating layer to form a flux path layer and the magnetic coating layer. And

【0012】[0012]

【作用】本発明の磁気記録媒体は、上述した如く、支持
体上に、第一の磁性微粒子を主体としたフラックスパス
層と、このフラックスパス層上に第二の磁性微粒子を主
体とし膜面に対し垂直磁化成分を有する磁性塗布層とを
備えており、磁性塗布層の表面の中心線平均粗さ(R
a)が5nm以下であることを特徴とする。
As described above, the magnetic recording medium of the present invention has a flux path layer mainly composed of first magnetic fine particles on a support and a film surface mainly composed of second magnetic fine particles on this flux path layer. And a magnetic coating layer having a perpendicular magnetization component with respect to the center line average roughness (R
a) is 5 nm or less.

【0013】磁気記録媒体の再生出力は、記録媒体とヘ
ッドの距離即ちスペーシング量に対し指数関数的に低下
する。そのため、本発明の磁気記録媒体は、フラックス
パス層にフラックスパス層を備え、かつ垂直磁化成分を
持つ層の磁性層のRaが5nm以下とスペーシングが小
さいため、優れた電磁変換特性を確保することができ、
再生出力が向上した記録媒体となる。
The reproduction output of the magnetic recording medium decreases exponentially with the distance between the recording medium and the head, that is, the spacing amount. Therefore, in the magnetic recording medium of the present invention, the flux path layer is provided in the flux path layer, and the Ra of the magnetic layer of the layer having the perpendicular magnetization component is 5 nm or less and the spacing is small, so that excellent electromagnetic conversion characteristics are secured. It is possible,
The recording medium has improved reproduction output.

【0014】このようなRaを得るためには種々考えら
れるが、例えばフラックスパス層を構成する磁性微粒子
は、平均粒径が120nm以下が良く、更には、粒径範
囲は、40〜100nmが好ましい。粒径が大きいと、
平滑性が低下し、磁気記録媒体のフラックスパス層側の
静磁気エネルギーの蓄積が不均一となり、フラックスパ
ス層界面が乱れる。そのため、本発明では、磁性微粒子
の平均粒径を120nm以下としているので所望のRa
を持つ磁気記録媒体が得られる。
There are various methods for obtaining such Ra. For example, the magnetic particles forming the flux path layer preferably have an average particle size of 120 nm or less, and more preferably the particle size range is 40 to 100 nm. . If the particle size is large,
The smoothness deteriorates, the magnetostatic energy on the flux path layer side of the magnetic recording medium becomes non-uniform, and the interface of the flux path layer is disturbed. Therefore, in the present invention, the average particle diameter of the magnetic fine particles is set to 120 nm or less, so that the desired Ra
A magnetic recording medium having

【0015】更に、フラックスパス層を構成する磁性微
粒子の保磁力が300Oe以下であると良い。配向処理
を行なう場合、保磁力を300Oe以下にすることによ
って、塗布工程後に行なわれる配向処理に対して、磁性
微粒子が無配向性であることを保証するという作用を有
して、同時塗布が可能となる。即ち、同時塗布し配向処
理を行なっても、フラックスパス層の磁性微粒子は配向
しないので、磁性微粒子の磁化軸は多方向に向いてお
り、得られる磁気記録媒体のフラックスパス層は等方的
磁気特性を有する。また、保磁力が300Oeより大き
くなると、無配向性は、磁性塗料の粘性にも影響され
る。尚、本発明における同時塗布とは、フラックスパス
層が乾燥する前に磁性塗布層を塗布することをいう。
Further, the coercive force of the magnetic fine particles forming the flux path layer is preferably 300 Oe or less. When performing the orientation treatment, the coercive force of 300 Oe or less has the effect of ensuring that the magnetic fine particles are non-oriented to the orientation treatment performed after the coating step, and simultaneous coating is possible. Becomes That is, the magnetic particles in the flux path layer are not oriented even if they are applied simultaneously and subjected to the orientation treatment, so that the magnetization axes of the magnetic particles are oriented in multiple directions, and the flux path layer of the obtained magnetic recording medium is isotropically magnetic. Have characteristics. When the coercive force is greater than 300 Oe, the non-orientation is also affected by the viscosity of the magnetic paint. The simultaneous coating in the present invention means coating the magnetic coating layer before the flux path layer is dried.

【0016】更に、フラックスパス層を構成する磁性微
粒子が、複数の磁化容易軸を持つと良い。フラックスパ
ス層を構成する磁性微粒子が複数の磁化容易軸を持つこ
とによって、磁気記録媒体のフラックスパス層はより多
くの微小かつ任意の方向の磁界に対しても磁化が追随で
きるという作用を有するので、フラックスパス層のフラ
ックスパス効果が向上し、より一層出力特性の向上した
磁気記録媒体が得られる。
Further, the magnetic fine particles forming the flux path layer preferably have a plurality of easy magnetization axes. Since the magnetic fine particles forming the flux path layer have a plurality of easy axes of magnetization, the flux path layer of the magnetic recording medium has an effect that the magnetization can follow a larger number of minute magnetic fields in arbitrary directions. Thus, the flux path effect of the flux path layer is improved, and a magnetic recording medium having further improved output characteristics can be obtained.

【0017】また、本発明の磁気記録媒体の製造方法
は、配向処理を行なう場合、フラックスパス層に保磁力
が300Oe以下である磁性微粒子からなる磁性塗料を
用いるので、塗布工程後に行なわれる配向処理に対して
フラックスパス層の磁性微粒子が無配向性であるという
作用を有し、磁性塗布層とフラックスパス層を同時塗布
することができる。
Further, in the method of manufacturing a magnetic recording medium of the present invention, when the orientation treatment is carried out, since the magnetic coating made of magnetic fine particles having a coercive force of 300 Oe or less is used for the flux path layer, the orientation treatment carried out after the coating step. On the other hand, it has the effect that the magnetic fine particles of the flux path layer are non-oriented, and the magnetic coating layer and the flux path layer can be applied simultaneously.

【0018】また、塗布後に行なわれるカレンダ処理
は、膜厚が厚いほど平滑性が良い傾向がある。従って、
従来のフラックスパス層を塗布・乾燥した後磁性塗布層
を塗布する二度塗りと比較すると、従来では層形成毎に
カレンダ処理を行なうので、本発明の同時塗布では、磁
性塗布層の表面の平滑性が向上しかつ工程数も減るので
生産性が向上する。
Further, in the calendering process performed after coating, the smoother the film, the better the smoothness. Therefore,
Compared to the conventional double coating in which the magnetic flux coating layer is applied after the flux path layer is coated and dried, the conventional calendering process is carried out for each layer formation. Therefore, in the simultaneous coating of the present invention, the surface of the magnetic coating layer is smoothed. Productivity is improved and the number of steps is reduced, so that productivity is improved.

【0019】この製造方法では、垂直配向処理すること
が磁性塗布層の電気特性上有効であるが、面内配向処理
する場合でも短波長出力は向上する傾向にある。これ
は、磁性塗布層の面内配向が完全ではないため、及び垂
直配向しやすい磁性微粒子では面内配向といえども垂直
残留成分が多いためと考えられる。また、同様に配向処
理なしでも短波長出力は向上する傾向にあり、面内配
向、垂直配向、配向処理なしのいずれも有効である。
In this manufacturing method, vertical orientation treatment is effective in terms of electrical characteristics of the magnetic coating layer, but short-wavelength output tends to be improved even when in-plane orientation treatment is performed. It is considered that this is because the in-plane orientation of the magnetic coating layer is not perfect, and the magnetic fine particles that are likely to be vertically oriented have many vertical residual components even though they are in-plane oriented. Similarly, the short-wavelength output tends to improve even without alignment treatment, and any of in-plane alignment, vertical alignment, and no alignment treatment is effective.

【0020】本発明における磁性塗布層磁性微粒子に
は、垂直配向しやすい磁性微粒子例えばBaフェライト
に代表されるM型、W型あるいは複合型等の六方晶フェ
ライトを用いることができる。フラックスパス層磁性微
粒子には、立方晶系磁性粉例えばマグネタイト、各種の
スピネルを用いることができる。また、バインダー、そ
の他添加材は公知のものが利用できる。
As the magnetic fine particles in the magnetic coating layer in the present invention, magnetic fine particles which are easily oriented vertically, for example, M-type, W-type or composite type hexagonal ferrite represented by Ba ferrite can be used. For the magnetic particles of the flux path layer, cubic magnetic powder such as magnetite or various spinels can be used. Known binders and other additives can be used.

【0021】また、フラックスパス層の効果を得るため
には、磁性塗布層の膜厚を1μm以下にすることが望ま
しい。尚、中心線平均粗さ(Ra)(規格JIS B0
601に基づく)の測定には、Rank Tayror
Hobson社のターリーステップを用いた。
In order to obtain the effect of the flux pass layer, it is desirable that the thickness of the magnetic coating layer be 1 μm or less. The center line average roughness (Ra) (standard JIS B0
(Based on 601), the Rank Taylor
Hobson's Tarry step was used.

【0022】[0022]

【実施例】以下本発明の磁気記録媒体およびその製造方
法を説明する。 (実施例1)磁性微粒子としては、磁性塗布層にはBa
フェライト(保持力(Hc)1400 Oe,平均粒径
(d)40nm,飽和磁化(σ)60emu/g,D/
t3)、フラックスパス層にはNi−Znフェライト
(Hc 50 Oe,粉径(d) 50nm,σ 80
emu/g)を用いた。尚、Baフェライトはガラス結
晶化法、Ni−Znフェライトはフラックス法により作
製した。
The magnetic recording medium of the present invention and its manufacturing method will be described below. (Example 1) As magnetic fine particles, Ba was used in the magnetic coating layer.
Ferrite (coercive force (Hc) 1400 Oe, average particle size (d) 40 nm, saturation magnetization (σ) 60 emu / g, D /
t3), Ni-Zn ferrite (Hc 50 Oe, powder diameter (d) 50 nm, σ 80) in the flux path layer.
emu / g) was used. The Ba ferrite was produced by the glass crystallization method, and the Ni-Zn ferrite was produced by the flux method.

【0023】これらの磁性微粒子を含む磁性塗料を調整
するにあたり、下記組成の磁性塗料材料を各々混合し、
よく分散させた。 [磁性塗布層磁性塗料組成] Baフェライト 100重量部 塩化ビニル 3重量部 ウレタン 4重量部 潤滑材 2重量部 研磨材 4重量部 [フラックスパス層磁性塗料組成] Ni−Znフェライト 100重量部 塩化ビニル 2重量部 ウレタン 4重量部 潤滑材 2重量部 組成物を十分に分散させた後、各々に硬化剤としてポリ
イソシアナート系硬化剤(商品名:コロネートL、日本
ポリウレタン社製)を、塗料中の樹脂バインダ100重
量部に対して5重量部の割合で添加した。これらを、1
0μmのPETフィルム上にノズルコ−タで同時に重層
し、その後、垂直配向を行ない乾燥した。得られた膜を
カレンダ処理し、得られた原反を所定の幅に裁断して、
本発明の磁気記録媒体実施例1である8mmVTR用磁
気テープを作製した。
In preparing a magnetic coating material containing these magnetic fine particles, magnetic coating materials having the following compositions are mixed,
Well dispersed. [Magnetic coating layer Magnetic coating composition] Ba ferrite 100 parts by weight Vinyl chloride 3 parts by weight Urethane 4 parts by weight Lubricant 2 parts by weight Abrasive 4 parts by weight [Flux path layer magnetic coating composition] Ni-Zn ferrite 100 parts by weight Vinyl chloride 2 Parts by weight Urethane 4 parts by weight Lubricants 2 parts by weight After the composition is sufficiently dispersed, a polyisocyanate-based curing agent (trade name: Coronate L, manufactured by Nippon Polyurethane Co., Ltd.) as a curing agent is added to each resin in the paint. 5 parts by weight was added to 100 parts by weight of the binder. These are 1
A 0 μm PET film was overlaid with a nozzle coater at the same time, and then it was vertically aligned and dried. The obtained film is subjected to calendar treatment, and the obtained raw fabric is cut into a predetermined width,
A magnetic tape for an 8 mm VTR, which is Example 1 of the magnetic recording medium of the present invention, was manufactured.

【0024】(実施例2)実施例1において、塗布時の
上フラックスパス層の塗料の吐出量を変えることによっ
て膜厚を変えて塗布し、実施例1と同様の方法で磁気記
録媒体を得た。この磁気記録媒体の磁性塗布層は1.1
μm、フラックスパス層は1.4μmであった。この
時、上下層の膜厚が変化しても、上下層の静電気特性は
変わらなかった。
Example 2 A magnetic recording medium was obtained in the same manner as in Example 1, except that the coating amount was changed by changing the discharge amount of the coating material of the upper flux path layer at the time of coating. It was The magnetic coating layer of this magnetic recording medium was 1.1.
μm, and the flux path layer was 1.4 μm. At this time, even if the film thickness of the upper and lower layers changed, the electrostatic characteristics of the upper and lower layers did not change.

【0025】(実施例3)実施例1において、フラック
スパス層磁性粉のNi−Znフェライトを微粒子作製の
際の熱処理の条件を変更することによって粒径を120
nmとして、実施例1と同様の方法で磁気記録媒体を得
た。このときのフラックスパス層磁性微粒子の保持力
は、190Oeであった。
(Embodiment 3) In Embodiment 1, the particle diameter is changed to 120 by changing the condition of the heat treatment for producing fine particles of the magnetic powder of the flux path layer Ni-Zn ferrite.
nm, a magnetic recording medium was obtained by the same method as in Example 1. At this time, the coercive force of the magnetic fine particles in the flux path layer was 190 Oe.

【0026】(実施例4)実施例3において、フラック
スパス層磁性塗料材料の組成を塩化ビニル8重量部、ウ
レタン8重量部とし、実施例1と同様の方法で磁気記録
媒体を得た。
Example 4 A magnetic recording medium was obtained in the same manner as in Example 1, except that the composition of the magnetic coating material for the flux path layer in Example 3 was 8 parts by weight of vinyl chloride and 8 parts by weight of urethane.

【0027】(実施例5)実施例1において、フラック
スパス層磁性塗料材料のNi−ZnフェライトにCoを
添加してフラックスパス層磁性微粒子の保持力を240
Oeにし、実施例1と同様の方法で磁気記録媒体を得
た。
(Example 5) In Example 1, Co was added to Ni-Zn ferrite which is a magnetic coating material for the flux path layer to increase the coercive force of the magnetic particles of the flux path layer to 240.
A magnetic recording medium was obtained in the same manner as in Example 1 with Oe set.

【0028】(実施例6)実施例1において、垂直記録
の代わりに面内配向を行なって磁気記録媒体を得た。
Example 6 A magnetic recording medium was obtained by performing in-plane orientation instead of perpendicular recording in Example 1.

【0029】(実施例7)実施例1において、フラック
スパス層磁性塗料材料のNi−Znフェライトの代わり
に一軸異方性を有するCo置換型Baフェライト Hc
200Oe、粉径40nmを用いて、実施例1と同様の
方法で磁気記録媒体を得た。フラックスパス層は一軸異
方性を有するが、粉保磁力が小さいためにフラックスパ
ス層単層の配向率は52%とほぼ無配向であった。
(Example 7) In Example 1, instead of Ni-Zn ferrite of the magnetic coating material for the flux path layer, Co substitution type Ba ferrite Hc having uniaxial anisotropy.
A magnetic recording medium was obtained in the same manner as in Example 1 using 200 Oe and a powder diameter of 40 nm. The flux path layer has uniaxial anisotropy, but since the powder coercive force is small, the orientation rate of the flux path layer single layer was 52%, which was almost non-oriented.

【0030】(実施例8)実施例1において、塗布時の
上フラックスパス層の塗料の吐出量を変えることによっ
て膜厚を変えて塗布し、実施例1と同様の方法で磁気記
録媒体を得た。この磁気記録媒体の膜厚は、磁性塗布層
は0.2μm、フラックスパス層は2.3μmであっ
た。この時、上下層の膜厚が変化しても、上下層の静電
気特性は変わらなかった。
(Embodiment 8) A magnetic recording medium was obtained in the same manner as in Embodiment 1, except that the coating amount was changed by changing the discharge amount of the coating material of the upper flux path layer during coating. It was The thickness of this magnetic recording medium was 0.2 μm in the magnetic coating layer and 2.3 μm in the flux path layer. At this time, even if the film thickness of the upper and lower layers changed, the electrostatic characteristics of the upper and lower layers did not change.

【0031】(比較例1)針状比2〜3、長さ0.2μ
mのγ−Fe23 微粒子を用いて実施例1に倣って塗
料化したものを、PETフィルム上に塗布、乾燥した
後、カレンダ処理を行ない、キュアを施してフラックス
パス層を形成する。この時の膜厚みは2μmであった。
次に、径0.1μm前後の六角板状微結晶Baフェライ
トを用いて実施例1に倣って塗料化したものを、塗布厚
み0.5μmになるように塗布し、垂直配向磁界の中で
乾燥を行なった後カレンダ処理を行なって、磁気記録媒
体を得た。
(Comparative Example 1) Needle ratio 2 to 3, length 0.2 μ
The γ-Fe 2 O 3 fine particles of m, which were made into a paint according to Example 1, were applied onto a PET film, dried, and then subjected to calendaring and curing to form a flux path layer. The film thickness at this time was 2 μm.
Next, a hexagonal plate-shaped microcrystalline Ba ferrite having a diameter of about 0.1 μm, which was made into a paint in accordance with Example 1, was applied to have a coating thickness of 0.5 μm, and dried in a vertical alignment magnetic field. After that, calendering was performed to obtain a magnetic recording medium.

【0032】(比較例2)実施例1の磁性塗布層磁性塗
料材料を塗布し、垂直配向して、単層の磁気記録媒体を
得た。
Comparative Example 2 Magnetic Coating Layer The magnetic coating material of Example 1 was applied and vertically aligned to obtain a single-layer magnetic recording medium.

【0033】(比較例3)実施例1の磁性塗布層磁性塗
料材料を塗布し、面内配向して、単層の磁気記録媒体を
得た。
Comparative Example 3 Magnetic Coating Layer The magnetic coating material of Example 1 was applied and in-plane oriented to obtain a single-layer magnetic recording medium.

【0034】以上、実施例1〜実施例8及び比較例1〜
比較例3で得られた磁気記録媒体をそれぞれ8mm幅に
裁断し、磁気記録媒体の特性と再生出力を測定した。こ
の測定結果を表1に示す。表1では、磁性塗布層を上
層、フラックスパス層を下層という。また、表1におけ
る磁性塗布層、フラックスパス層各々の飽和磁化量は、
各々の層の磁性塗料材料を単層に塗布した場合の飽和磁
化量を測定したものである。尚、再生出力は、8mm改
造デッキにギャップ0.2μmのセンダスト薄膜ヘッド
を搭載し、常温で測定した。
As described above, Examples 1 to 8 and Comparative Examples 1 to 1
The magnetic recording medium obtained in Comparative Example 3 was cut into a width of 8 mm, and the characteristics and reproduction output of the magnetic recording medium were measured. The results of this measurement are shown in Table 1. In Table 1, the magnetic coating layer is called the upper layer and the flux path layer is called the lower layer. Further, the saturation magnetization amount of each of the magnetic coating layer and the flux path layer in Table 1 is
The saturation magnetization is measured when the magnetic coating material for each layer is applied to a single layer. The reproduction output was measured at room temperature by mounting a sendust thin film head with a gap of 0.2 μm on a modified deck of 8 mm.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【発明の効果】本発明の磁気記録媒体によれば、表面の
平滑性がよいので、出力特性の向上した磁気記録媒体が
えられる。また、本発明の磁気記録媒体の製造方法によ
れば、磁性塗布層とフラックスパス層を同時に塗布でき
るので、平滑性の良い磁気記録媒体を容易に製造するこ
とができる。
According to the magnetic recording medium of the present invention, since the surface has good smoothness, a magnetic recording medium having improved output characteristics can be obtained. Further, according to the method of manufacturing a magnetic recording medium of the present invention, the magnetic coating layer and the flux path layer can be coated simultaneously, so that a magnetic recording medium having good smoothness can be easily manufactured.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】支持体上に、第一の磁性微粒子を主体とし
たフラックスパス層と、前記フラックスパス層上に第二
の磁性微粒子を主体とし膜面に対し垂直磁化成分を有す
る磁性塗布層とを備えた磁気記録媒体において、前記磁
性塗布層の表面の中心線平均粗さ(Ra)が5nm以下
であることを特徴とする磁気記録媒体。
1. A flux path layer composed mainly of first magnetic particles on a support, and a magnetic coating layer composed mainly of second magnetic particles on the flux path layer and having a perpendicular magnetization component to the film surface. A magnetic recording medium comprising: a magnetic recording medium having a center line average roughness (Ra) of 5 nm or less on the surface of the magnetic coating layer.
【請求項2】前記フラックスパス層を構成する磁性微粒
子の粒径が120nm以下であることを特徴とする請求
項1記載の磁気記録媒体。
2. The magnetic recording medium according to claim 1, wherein the particle size of the magnetic fine particles forming the flux path layer is 120 nm or less.
【請求項3】前記フラックスパス層を構成する磁性微粒
子の保磁力が300Oe以下であることを特徴とする請
求項1及び請求項2記載の磁気記録媒体。
3. The magnetic recording medium according to claim 1, wherein the magnetic fine particles forming the flux path layer have a coercive force of 300 Oe or less.
【請求項4】前記フラックスパス層を構成する磁性微粒
子が複数の磁化容易軸を有することを特徴とする請求項
1、請求項2及び請求項3記載の磁気記録媒体。
4. The magnetic recording medium according to claim 1, wherein the magnetic fine particles forming the flux path layer have a plurality of easy magnetization axes.
【請求項5】支持体上に、フラックスパス層として、保
磁力が300Oe以下である第一の磁性微粒子を主体と
した第一の磁性塗料を塗布し第一塗布層を形成する工程
と、前記フラックスパス層が乾燥する前に、前記フラッ
クスパス層上に、磁性塗布層として、膜面に対して垂直
方向に磁化容易な第二の磁性微粒子を主体とした第二の
磁性塗料を塗布し第二塗布層を形成する工程と、前記第
一塗布層及び第二塗布層を乾燥し、フラックスパス層及
び前記磁性塗布層を形成する工程とを具備する磁気記録
媒体の製造方法。
5. A step of forming a first coating layer by coating a first magnetic coating material mainly composed of first magnetic fine particles having a coercive force of 300 Oe or less on a support as a flux path layer, Before the flux path layer is dried, a second magnetic paint composed mainly of second magnetic fine particles that are easy to magnetize in the direction perpendicular to the film surface is applied on the flux path layer as a magnetic coating layer. A method of manufacturing a magnetic recording medium, comprising: a step of forming two coating layers; and a step of drying the first coating layer and the second coating layer to form a flux path layer and the magnetic coating layer.
JP14997193A 1993-06-22 1993-06-22 Magnetic recording medium and its production Pending JPH0714151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14997193A JPH0714151A (en) 1993-06-22 1993-06-22 Magnetic recording medium and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14997193A JPH0714151A (en) 1993-06-22 1993-06-22 Magnetic recording medium and its production

Publications (1)

Publication Number Publication Date
JPH0714151A true JPH0714151A (en) 1995-01-17

Family

ID=15486631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14997193A Pending JPH0714151A (en) 1993-06-22 1993-06-22 Magnetic recording medium and its production

Country Status (1)

Country Link
JP (1) JPH0714151A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037979A (en) * 1988-07-21 1991-08-06 Ciba-Geigy Corporation Cationic compounds

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037979A (en) * 1988-07-21 1991-08-06 Ciba-Geigy Corporation Cationic compounds

Similar Documents

Publication Publication Date Title
JPH08180378A (en) Magnetic recording medium
JP2644322B2 (en) Magnetic recording media
JPH11154322A (en) Magnetic recording medium
JPH0714151A (en) Magnetic recording medium and its production
JPH11149630A (en) Magnetic recording medium and its production
JP3012190B2 (en) Magnetic recording media
JPH0619829B2 (en) Magnetic recording medium
JPH10255261A (en) Orientation method of magnetic recording medium
JPH0785297B2 (en) Magnetic recording medium
JP3139469B2 (en) Magnetic recording media
JPH1186265A (en) Magnetic recording medium
JPH11110735A (en) Manufacture of magnetic recording medium and magnetic recording medium
JPH11144228A (en) Magnetic recording medium
JPH0836734A (en) Magnetic recording medium
JPH07121861A (en) Magnetic recording medium
JPH0845065A (en) Magnetic recording medium
JPH09204642A (en) Magnetic recording medium
JPH1186263A (en) Magnetic recording medium and manufacture thereof
JPH08180377A (en) Magnetic recording medium
JPH1027330A (en) Magnetic recording medium
JPH0349024A (en) Magnetic recording medium
JPH01251427A (en) Magnetic recording medium
JPH07254133A (en) Magnetic recording medium
JPH11219512A (en) Magnetic recording medium
JPS6157040A (en) Production of vertical magnetic recording medium