JPH036643B2 - - Google Patents

Info

Publication number
JPH036643B2
JPH036643B2 JP59140297A JP14029784A JPH036643B2 JP H036643 B2 JPH036643 B2 JP H036643B2 JP 59140297 A JP59140297 A JP 59140297A JP 14029784 A JP14029784 A JP 14029784A JP H036643 B2 JPH036643 B2 JP H036643B2
Authority
JP
Japan
Prior art keywords
magnetic
recording
recording medium
hexagonal ferrite
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59140297A
Other languages
Japanese (ja)
Other versions
JPS60149106A (en
Inventor
Koki Yokoyama
Reiji Nishikawa
Osamu Kubo
Masanobu Ueha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP59140297A priority Critical patent/JPS60149106A/en
Publication of JPS60149106A publication Critical patent/JPS60149106A/en
Publication of JPH036643B2 publication Critical patent/JPH036643B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の技術分野] 本発明は磁気記録体に用いられる六方晶系フエ
ライト微粉末に係わり、特に垂直磁気記録体に適
した磁気記録体用六方晶系フエライト微粉末に関
する。 [発明の技術的背景とその問題点] 磁気記録は、一般に針状Co−γFe2O3のような
磁性粉末を支持体に塗着した記録媒体を用いてそ
の面内長手方向に磁化する方式(最短記録波長約
1.2μm)によつて行なわれている。 しかしながらこの面内長手方向の磁化を用いる
記録方式においては、記録の高密度化を図ると記
録媒体内の減磁界が増加するため高密度記録を達
成し難いという不都合がある。 近年このような難点を解消する磁気記録方式と
して、記録媒体の垂直方向の磁化を用いる垂直磁
気記録方式が提案されている。 この垂直磁化記録方式では、記録密度が高くな
るにつれて記録媒体内の減磁界が減少し、前記密
度がより安定になる。したがつて本質的に高密度
記録に適した記録方式であるということができ
る。 ところでこの垂直磁化方式においては、記録媒
体がその表面に垂直な方向に磁化容易軸を有する
必要があり、この種の記録媒体としてCo−Crス
パツタ膜が開発されている。 しかしながらこのCo−Cr膜はヘツドとの摩擦
(摺動)により摩耗し易く、かつ記録媒体層自体
が可撓性に乏しく取り扱い難いうえに、さらにそ
の製造も操作が煩雑であり、しかもCo−Crは化
学的に不安定であるため記録媒体としての信頼性
にも問題がある。特にこの記録媒体は、スパツタ
リング、蒸着など真空プロセスを用いて作成する
必要があり、従来慣用されてきた塗布法によつて
は作成できないという難点を有する。 ところで、従来から硬質磁性材料として知られ
ている、例えばBaFe12O19などの六方晶系フエラ
イトは平板状をなしており、かつ磁可容易軸も平
板の面に垂直であるから、この六方晶系フエライ
トを記録媒体用の磁性粉末として用いることがで
きれば、塗布法により記録媒体層を形成すること
が可能となり、上述のような不都合を除去できる
ものと考えられる。 しかしながら上記六方晶系フエライトは保磁力
iHcが高く(通常5000エルステツド以上)、現用
されているフエライト、センダスト、アモルフア
ス等からなるヘツド材料では、記録、消去ができ
ないという問題がある。また仮に記録、消去が可
能であつたとしても高い保磁力iHcのため、塗布
法による成膜過程において粒子相互が凝集し易
く、実際には六方晶系フエライトを磁性粉末とし
て用いた塗布法による高い密度の磁化記録体を得
ることはできなかつた。 [発明の目的] 本発明者等は、このような従来の欠点を解消す
べく鋭意研究をすすめた結果、六方晶系フエライ
トのFe原子の一部を、その保磁力を低減化させ
る元素で置換することにより、保持力を塗布法に
適した値に調整することができ、これによつて塗
布法による高密度磁化記録体が得られることを見
出した。 すなわち、六方晶系フエライトとしては、 一般式 AFe12O19(またはAO・6Fe2O3) (ただし、AはBa、Sr、Pbから選ばれた1種以
上の元素を表わす) で表されるものが知られており、この六方晶系フ
エライトは、1分子中の12個のFe3+イオンのう
ち8個が上向き、4個が下向きというように互い
に反平行の磁気能率をもち、いわゆるフエリ磁性
を有しているが、この8個のFe3+イオンの一部
を他の金属イオンで置換することにより保磁力を
低減化させることができるのである。 本発明はこのような知見に基づいてなされたも
ので、成膜過程で凝集することなく、塗布法によ
り容易に磁気記録体を製造可能な磁気記録体用六
方晶系フエライト微粉末を提供しようとするもの
である。 [発明の概要] すなわち本発明の磁気記録体用六方晶系フエラ
イト微粉末は、 一般式 AFe(12-X)MXO19 ………(1) (ただし、AはBa、Sr、Pbから選ばれた1種以
上の元素を、Mは1/2zn+1/2Ge、2/3Zn+1/3
Nb、2/3Zn+1/3V、1/2Co+1/2Ti、1/2Co+1/
2Geの1種以上の置換元素又は元素の組合せを、
またxは1〜2.5の正の数をそれぞれ表す)で示
され、かつ平均粒径が0.01〜0.3μmであることを
特徴としている、 本発明においては、これらの元素の組合せで
Fe原子の一部を置換することにより、六方晶系
フエライトの保磁力を塗布法による成膜過程で凝
集しない程度に調整し、かつ磁気記録体の記録、
再生に使用する磁気ヘツドの特性と整合するよう
調整することができる。 一般的に六方晶系フエライトのFe原子の一部
を上記した各元素の組合せで置換すると、保磁力
が低減するようになる。現用されている磁気ヘツ
ドで記録、再生するには、磁性粉末の保磁力は
200〜2000エルステツドの範囲にあることが好ま
しく、したがつて上記の一般式における置換原子
数Xは、得られる磁性粉末の保磁力がこの範囲と
なるように設定される。 上記のXの範囲は、用いる元素または元素の組
み合わせにより異なるが、一般にX=1〜2.5の
範囲が適当である。置換元素の原子数Xが1未満
では保磁力低減効果が僅少となり、また2.5を越
えると、保磁力が低く記録媒体として所要の性能
を得るのが難しくなる。 また上記一般式(1)におけるAとして2種以上の
原子を用いる場合には、これらの原子の総数が全
体としてAFe(12-X)MxO19の式を満足させる数と
なることが望ましい。 一般に長手方向の記録密度を高くする場合には
記録波長を短くする必要があるが、本発明の置換
六方晶系フエラト微粉末の平均粒径は、この磁気
記録体への記録波長より小さいことが必要であ
る。 本発明の六方晶系フエライト微粉末の平均粒径
は目的とする記録波長に依存するため、その粒径
は一概には決められないが、0.01〜0.3μmの範囲
である必要がある。平均粒径が0.01μmに満たな
いと、所要の強磁性を呈しなくなり、逆に、0.3μ
mを越えると単一の結晶中に多数の磁区が存在す
るようになり、信号対ノズル比が悪化すると共に
高密度記録を有利に行ない難くなる。 本発明の六方晶系フエライト微粉末を用いて磁
気記録体を製造するには、熱可塑性または熱硬化
性樹脂を主成分とする結合剤、滑剤、研磨剤、帯
電防止剤あるいは分散剤尚の補助剤と有機溶剤に
溶解または分散させて磁性塗料とし、これを例え
ばポリエチレンテレフタレートからなるフイルム
やシートなどの支持体上に塗布し、結合剤を加熱
硬化させて磁気記録媒体層を形成すればよい。 前記磁気記録媒体層は均質な単一の層であつて
もよいし、あるいは磁性特性の異なる、または磁
性粒子含有量の異なる磁性層を2層以上重ねた多
層構造のものであつてもよい。 また支持体と磁気記録媒体の層以外に磁気記録
媒体層の支持体に対する接着強度を増加させるた
めに、支持体の直上に下塗り層を設けたり、支持
体に対し磁性層と反対側にバツクコート層を設け
たり、磁性層の保護のために磁性層の上に保護層
を設けたりしてもよく、さらに必要に応じてこれ
らの組合わされた多層構造としてもよい。 磁性塗料の塗布層には、通常乾燥前に配向処理
が施される。 配向処理は磁場中に磁束を横切る方向に磁性塗
料を塗布した支持体を通過させて、磁束の方向に
六方晶系フエライト微粒子の磁化容易軸を配向さ
せて行なつてもよいし、塗布層を一定方向に所定
の圧力で圧延することにより行なつてもよい。 この後、磁性塗料を塗布した支持体は乾燥機に
送られて乾燥硬化されて磁気記録体が得られる。 以上説明したように、本発明の置換六方晶系フ
エライト微粉末は六方晶C面を有する板状の形状
を有するため塗布工程においてC面の配向が容易
であり、これを主成分とする磁性塗料を支持体に
塗着後、乾燥前に磁界を加えるか、あるいは機械
的に一定方向に圧延することにより容易に磁化容
易軸を支持体の面に対して垂直となるよう配向さ
せることができる。 しかも、Fe原子の一部をZn−Ge、Zn−Nb、
Zn−V、Co−Ti、Co−Ge等により置換されて、
保磁力iHcが適当な範囲に調整されているので、
磁場配向による凝集を防止することができる。 したがつて本発明の六方系フエライト微粉末
は、その分散性が極めて良好であり、垂直磁化に
よる高密度記録も良好に行ない得る。 かくして本発明の六方晶系フエライト微粉末
は、塗布法で容易に磁気記録媒体層を形成(構
成)し得るので量産に適しており、かつ製造コス
トを低減させることができる。 また、本発明の六方晶系フエライト微粉末は、
平均粒径が小さいため配向処理を施さない場合に
は、媒体に垂直な磁化成分および媒体面内磁化成
分がともにに存在することになり、配向処理を施
さずに乾燥、硬化させて垂直磁化記録および面内
長手記録がともに可能な磁気記録媒体用として使
用することができる。 [発明の効果] 本発明の六方晶系フエライト微粉末は、Fe原
子の一部が価数に応じて比率の調整された2種の
元素の組合わせで置換されて保磁力が適正範囲に
調整されているので、スパツタ等の複雑な手段を
要することなく従来慣用されている塗布法によつ
て均質で高密度記録可能な垂直磁化磁気記録体を
製造することができる。 また平均粒径が微小であるので、配向させるこ
となく支持体上に固定したものは、垂直磁化記録
および面内長手記録がともに可能な磁気記録体と
して使用することができる。 [発明の実施例] 実施例 1 バリウム、鉄、亜鉛およびニオブの硝酸塩をモ
ル比で1:11.35:2/3×0.65:1/3×0.65の割合で
含む水溶液にアルカリ水溶液を滴下して共沈物を
得た。 この共沈物を水洗処理して、アルカリを除去し
た後、乾燥させ、950℃で加熱処理を施して、バ
リウムフエライトの亜鉛−ニオブ一部置換体微粒
子粉末を得た。この微粒子粉末は、電子顕微鏡観
察によると、平均粒径0.1〜0.2μmの板状であり
保磁力iHcが2000エルステツド、磁化σg62emu/
gであつた。 上記によつて得た磁性体粉末と結合剤等の補助
剤とを有機溶剤中に分散または溶解させて、混合
した後、ポリエチレンテレフタレートフイルム面
に塗布し磁場配向(配向条件垂直方向4000Oeの
磁界引加)を行つてから乾燥し、カレンダ処理を
行つて、表面平滑化した後加熱して結合剤を硬化
させ、垂直な磁気異方性を有する磁性媒体層を形
成させた。第1図はこのようにして得られた置換
六方系フエライト粉末の磁気記録体の磁化曲線、
第2図は磁性体粉末として、平均BaFe12O19の分
子式を持つ六方晶系フエライト微粉末を用いた以
外は実施例1と同様にして製造した比較例1の六
方晶系フエライト粉末の磁気記録体の磁化曲線、
第3図は従来のビデオテープに用いられる針状
Co−γFe2O3粉末を用いて製造した比較例2の磁
気記録体の媒体面に垂直な方向の磁化曲線であ
る。 これらの各図から本発明の置換六方晶系フエラ
イト微粉末がよく分散した結果、粒子が垂直配向
し、磁化曲線が角形を示しており、しかも保磁力
が記録媒体として適正な値を示していることがわ
かる。 このようにして製造された磁気記録体を垂直磁
化記録に適用したところ、記録媒体層内(面内)
での減磁界も小さく、高密度で、かつ良好な記録
を行うことができた。 記録再生試験の結果を付表に示す。
[Technical Field of the Invention] The present invention relates to a fine hexagonal ferrite powder used in a magnetic recording medium, and particularly to a fine hexagonal ferrite powder for a magnetic recording medium suitable for a perpendicular magnetic recording medium. [Technical background of the invention and its problems] Magnetic recording generally uses a recording medium in which a support is coated with magnetic powder such as acicular Co-γFe 2 O 3 and is magnetized in the in-plane longitudinal direction. (Shortest recording wavelength approx.
1.2 μm). However, this recording method using magnetization in the in-plane longitudinal direction has the disadvantage that if the recording density is increased, the demagnetizing field within the recording medium increases, making it difficult to achieve high density recording. In recent years, a perpendicular magnetic recording method that uses magnetization in the perpendicular direction of a recording medium has been proposed as a magnetic recording method that overcomes these difficulties. In this perpendicular magnetization recording method, as the recording density increases, the demagnetizing field within the recording medium decreases, and the density becomes more stable. Therefore, it can be said that this recording method is essentially suitable for high-density recording. However, in this perpendicular magnetization method, it is necessary for the recording medium to have an axis of easy magnetization in a direction perpendicular to its surface, and a Co--Cr sputtered film has been developed as this type of recording medium. However, this Co-Cr film is easily worn out due to friction (sliding) with the head, and the recording medium layer itself has poor flexibility and is difficult to handle.Furthermore, its manufacture is complicated, and the Co-Cr film is difficult to handle. Since it is chemically unstable, there is also a problem with its reliability as a recording medium. In particular, this recording medium has the disadvantage that it must be produced using a vacuum process such as sputtering or vapor deposition, and cannot be produced by conventional coating methods. By the way, hexagonal ferrite, such as BaFe 12 O 19 , which has been conventionally known as a hard magnetic material, has a flat plate shape, and the axis of magnetic ease is perpendicular to the plane of the flat plate. If ferrite based ferrite can be used as a magnetic powder for recording media, it will be possible to form a recording media layer by a coating method, and it is thought that the above-mentioned disadvantages can be eliminated. However, the hexagonal ferrite mentioned above has a coercive force
There is a problem in that recording and erasing cannot be performed with currently used head materials such as ferrite, sendust, and amorphous, which have a high iHc (usually 5000 oersted or more). Furthermore, even if recording and erasing were possible, due to the high coercive force iHc, the particles tend to aggregate with each other during the film formation process using the coating method. It was not possible to obtain a magnetized recording medium of high density. [Purpose of the Invention] As a result of intensive research aimed at solving these conventional drawbacks, the present inventors have succeeded in replacing some of the Fe atoms in hexagonal ferrite with an element that reduces its coercive force. It has been found that by doing this, the coercive force can be adjusted to a value suitable for the coating method, and thereby a high-density magnetized recording material can be obtained by the coating method. In other words, hexagonal ferrite is represented by the general formula AFe 12 O 19 (or AO・6Fe 2 O 3 ) (where A represents one or more elements selected from Ba, Sr, and Pb). This hexagonal ferrite has magnetic efficiencies that are antiparallel to each other, with 8 of the 12 Fe 3+ ions in one molecule pointing upward and 4 pointing downward. Although it has magnetism, the coercive force can be reduced by replacing some of these eight Fe 3+ ions with other metal ions. The present invention was made based on these findings, and aims to provide a fine hexagonal ferrite powder for magnetic recording materials that does not agglomerate during the film-forming process and can be easily manufactured by a coating method. It is something to do. [Summary of the invention] That is, the hexagonal ferrite fine powder for magnetic recording media of the present invention has the general formula AFe (12-X) M One or more selected elements, M is 1/2zn + 1/2Ge, 2/3Zn + 1/3
Nb, 2/3Zn+1/3V, 1/2Co+1/2Ti, 1/2Co+1/
One or more substitution elements or combinations of elements of 2Ge,
Furthermore, x represents a positive number from 1 to 2.5), and the average particle size is 0.01 to 0.3 μm.
By substituting some of the Fe atoms, the coercive force of hexagonal ferrite can be adjusted to the extent that it does not aggregate during the coating process, and the recording of magnetic recording media can be improved.
It can be adjusted to match the characteristics of the magnetic head used for reproduction. Generally, when some of the Fe atoms in hexagonal ferrite are replaced with a combination of the above-mentioned elements, the coercive force is reduced. In order to record and reproduce data with currently used magnetic heads, the coercive force of magnetic powder must be
It is preferably in the range of 200 to 2000 oersteds, and therefore the number of substituted atoms X in the above general formula is set so that the coercive force of the resulting magnetic powder falls within this range. The above range of X varies depending on the element or combination of elements used, but generally a range of X=1 to 2.5 is appropriate. If the number of atoms of the substituent element X is less than 1, the effect of reducing coercive force will be small, and if it exceeds 2.5, the coercive force will be so low that it will be difficult to obtain the required performance as a recording medium. Further, when two or more types of atoms are used as A in the above general formula (1), it is desirable that the total number of these atoms as a whole satisfies the formula AFe (12-X) MxO 19 . Generally, when increasing the recording density in the longitudinal direction, it is necessary to shorten the recording wavelength, but the average particle size of the substituted hexagonal ferato fine powder of the present invention can be smaller than the recording wavelength for this magnetic recording medium. is necessary. Since the average particle size of the hexagonal ferrite fine powder of the present invention depends on the intended recording wavelength, the particle size cannot be determined unconditionally, but it needs to be in the range of 0.01 to 0.3 μm. If the average particle size is less than 0.01μm, it will not exhibit the required ferromagnetism;
If m is exceeded, a large number of magnetic domains will exist in a single crystal, which will deteriorate the signal-to-nozzle ratio and make it difficult to advantageously perform high-density recording. In order to produce a magnetic recording medium using the hexagonal ferrite fine powder of the present invention, a binder, a lubricant, an abrasive, an antistatic agent, or a dispersant mainly composed of a thermoplastic or thermosetting resin is required. A magnetic recording medium layer can be formed by dissolving or dispersing the binder in a binder and an organic solvent to form a magnetic coating, coating this on a support such as a film or sheet made of polyethylene terephthalate, and curing the binder by heating. The magnetic recording medium layer may be a homogeneous single layer, or may have a multilayer structure in which two or more magnetic layers having different magnetic properties or different magnetic particle contents are laminated. In addition to the support and magnetic recording medium layer, in order to increase the adhesive strength of the magnetic recording medium layer to the support, an undercoat layer is provided directly above the support, and a back coat layer is provided on the opposite side of the support from the magnetic layer. or a protective layer may be provided on the magnetic layer to protect the magnetic layer, and if necessary, a multilayer structure may be formed in which these are combined. The applied layer of magnetic paint is usually subjected to an orientation treatment before drying. Orientation treatment may be carried out by passing a support coated with magnetic paint in a direction transverse to the magnetic flux in a magnetic field to orient the axis of easy magnetization of the hexagonal ferrite fine particles in the direction of the magnetic flux. It may be carried out by rolling in a certain direction with a certain pressure. Thereafter, the support coated with the magnetic paint is sent to a dryer and dried and hardened to obtain a magnetic recording medium. As explained above, since the substituted hexagonal ferrite fine powder of the present invention has a plate-like shape with a hexagonal C-plane, the C-plane can be easily oriented in the coating process, and a magnetic paint containing this as a main component After being applied to a support and before drying, the easy magnetization axis can be easily oriented perpendicular to the surface of the support by applying a magnetic field or mechanically rolling it in a certain direction. Moreover, some of the Fe atoms can be converted into Zn−Ge, Zn−Nb,
Substituted by Zn-V, Co-Ti, Co-Ge, etc.
Since the coercive force iHc is adjusted to an appropriate range,
Aggregation due to magnetic field orientation can be prevented. Therefore, the hexagonal ferrite fine powder of the present invention has extremely good dispersibility and can perform high-density recording by perpendicular magnetization well. Thus, the hexagonal ferrite fine powder of the present invention can easily form (constitute) a magnetic recording medium layer by a coating method, and is therefore suitable for mass production and can reduce manufacturing costs. Furthermore, the hexagonal ferrite fine powder of the present invention is
Since the average particle size is small, if orientation treatment is not performed, both magnetization components perpendicular to the medium and magnetization components in the plane of the medium will exist, and perpendicular magnetization recording can be achieved by drying and hardening without orientation treatment. It can be used as a magnetic recording medium capable of both in-plane longitudinal recording and in-plane longitudinal recording. [Effects of the Invention] In the hexagonal ferrite fine powder of the present invention, a part of the Fe atoms are replaced with a combination of two types of elements whose ratio is adjusted according to the valence, and the coercive force is adjusted to an appropriate range. Therefore, a perpendicularly magnetized magnetic recording medium capable of homogeneous, high-density recording can be manufactured by a conventional coating method without requiring complicated means such as sputtering. Furthermore, since the average particle size is minute, those fixed on a support without orientation can be used as a magnetic recording medium capable of both perpendicular magnetization recording and in-plane longitudinal recording. [Embodiments of the Invention] Example 1 An alkaline aqueous solution was added dropwise to an aqueous solution containing nitrates of barium, iron, zinc, and niobium in a molar ratio of 1:11.35:2/3×0.65:1/3×0.65. Got a precipitate. This coprecipitate was washed with water to remove the alkali, then dried and heat-treated at 950°C to obtain fine powder of barium ferrite partially substituted with zinc and niobium. According to electron microscopic observation, this fine particle powder has a plate shape with an average particle size of 0.1 to 0.2 μm, a coercive force iHc of 2000 oersted, and a magnetization σg62emu/
It was hot at g. The magnetic powder obtained above and an auxiliary agent such as a binder are dispersed or dissolved in an organic solvent, mixed, and then applied to the surface of a polyethylene terephthalate film for magnetic field orientation (alignment condition: magnetic field attraction of 4000 Oe in the vertical direction). (a)), dried, calendered to smooth the surface, and heated to harden the binder to form a magnetic medium layer having perpendicular magnetic anisotropy. Figure 1 shows the magnetization curve of the magnetic recording material of the substituted hexagonal ferrite powder obtained in this way.
Figure 2 shows the magnetic recording of the hexagonal ferrite powder of Comparative Example 1, which was produced in the same manner as in Example 1, except that hexagonal ferrite fine powder with an average molecular formula of BaFe 12 O 19 was used as the magnetic powder. magnetization curve of the body,
Figure 3 shows the needle-like shape used in conventional videotapes.
2 is a magnetization curve in a direction perpendicular to the medium surface of a magnetic recording medium of Comparative Example 2 manufactured using Co-γFe 2 O 3 powder. These figures show that the substituted hexagonal ferrite fine powder of the present invention is well dispersed, so that the particles are vertically oriented, the magnetization curve is square, and the coercive force is an appropriate value for a recording medium. I understand that. When the magnetic recording body manufactured in this way was applied to perpendicular magnetization recording, it was found that within the recording medium layer (in-plane)
The demagnetizing field was also small, allowing high-density and good recording. The results of the recording/reproduction test are shown in the attached table.

【表】 媒体:ヘツド相対速度3/75m/sec 記録ヘツド:補助磁極励磁垂直記録ヘツド (主磁極厚3μm、巻数、15ターン) 再生ヘツド:リングヘツド (ギヤツプ0/2μm、トラツク巾35μm、巻数18
ターン) また上記においてバリウム塩を一定にして鉄
塩:2/3亜鉛+1/3ニオブ塩の比を9.5:2.5の割合
(モル比)まで変え980℃で熱処理した場合、また
2/3Zn+1/3Nb系塩の代わりに1/2Zn+1/2Ge系
塩、2/3Zn+1/3V系塩を用いた場合も同様の磁
性微粒子粉末が得られ、磁気記録体を構成した場
合も同様の結果が認められた。 以上の結果を次表に示す。
[Table] Media: Head relative speed 3/75 m/sec Recording head: Auxiliary magnetic pole excitation perpendicular recording head (main pole thickness 3 μm, number of turns, 15 turns) Playback head: Ring head (gap 0/2 μm, track width 35 μm, number of turns 18
In addition, in the above case, when the barium salt is kept constant and the ratio of iron salt: 2/3 zinc + 1/3 niobium salt is changed to a ratio (molar ratio) of 9.5: 2.5 and heat treated at 980℃, 2/3 Zn + 1/3 Nb Similar magnetic fine particle powders were obtained when 1/2Zn+1/2Ge-based salts and 2/3Zn+1/3V-based salts were used instead of the system salts, and similar results were observed when magnetic recording bodies were constructed. The above results are shown in the table below.

【表】 実施例 2 バウリム、鉄、コバルトおよびチタン(1/2Co
+1/2Ti)の硝酸塩をモル比で1対10.6対0.7対0.7
の割合で含む水溶液にアルカリを添加し、共沈物
を得た。この共沈物につき水洗によるアルカリ除
去、乾燥を順次施した後、950℃で加熱処理を施
しバリウムフエライトのコバルト、チタン置換体
微粒子粉末を得た。この微粒子は電子顕微鏡観察
による平均粒径約0.1μmの板状であり、保磁力
iHc1000エルステツド、磁化σg58emu/gであつ
た。 上記によつて得た磁性体粉末を用い実施例1の
場合と同様にして磁気記録体を構成した。この記
録体を垂直磁化記録に適用したところ高い密度で
良好な記録が可能であつた。
[Table] Example 2 Baurim, iron, cobalt and titanium (1/2Co
+1/2Ti) nitrate in a molar ratio of 1:10.6:0.7:0.7
An alkali was added to an aqueous solution containing the following ratio to obtain a coprecipitate. This coprecipitate was sequentially washed with water to remove alkali, dried, and then heated at 950°C to obtain fine powder of barium ferrite substituted with cobalt and titanium. These fine particles are plate-shaped with an average particle size of approximately 0.1 μm as observed by electron microscopy, and have a coercive force
iHc1000 oersted, magnetization σg 58emu/g. A magnetic recording body was constructed in the same manner as in Example 1 using the magnetic powder obtained above. When this recording medium was applied to perpendicular magnetization recording, good recording at high density was possible.

【表】 (記録、再生条件は実施例1に同じ) また上記においてバリウム塩を一定にし、鉄塩
対コバルト塩−チタン塩の比を変えた他は同じ条
件で得たバリウムフエライト置換対微粒子粉末に
ついて、保磁力iHcをそれぞれ測定したところ第
2図に示す如き傾向が認められた。 さらに上記において1/2Co+1/2Ti系塩の代り
に1/2Co+1/2Ge系塩を用いて同様にして得た磁
性体粉末の平均粒径、保磁力および磁化は次表の
通りであつた。
[Table] (Recording and playback conditions are the same as in Example 1) Also, barium ferrite substituted fine particle powder obtained under the same conditions as above except that the barium salt was kept constant and the ratio of iron salt to cobalt salt to titanium salt was changed. When the coercive force iHc was measured for each, a tendency as shown in FIG. 2 was observed. Furthermore, the average particle diameter, coercive force, and magnetization of magnetic powder obtained in the same manner as above using 1/2Co+1/2Ge salt instead of 1/2Co+1/2Ti salt were as shown in the following table.

【表】 なお以上の実施例においては、バリウムフエラ
イト置換体の場合を例示したがストロンチウムフ
エライト置換体、鉛フエライト置換体の場合も次
表に示すように同様の結果が得られた。
[Table] In the above examples, the case of a barium ferrite substituted product was exemplified, but similar results were obtained in the case of a strontium ferrite substituted product and a lead ferrite substituted product as shown in the following table.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1の置換六方晶系フエ
ライト微粉末を用いた記録体層の磁化曲線図、第
2図は比較例1の六方晶系フエライト微粉末を用
いた記録体層の磁化曲線図、第3図は比較例2の
Co−γFe2O3粉末を用いた記録媒体の磁化曲線、
第4図は本発明の実施例2のバリウムフエライト
のコバルト−チタン置換体の保磁力とコバルト−
チタン置換量との関係を示す曲線図である。
FIG. 1 is a magnetization curve diagram of a recording layer using substituted hexagonal ferrite fine powder of Example 1 of the present invention, and FIG. 2 is a magnetization curve diagram of a recording layer using hexagonal ferrite fine powder of Comparative Example 1. Magnetization curve diagram, Figure 3 is of Comparative Example 2.
Magnetization curve of recording medium using Co-γFe 2 O 3 powder,
Figure 4 shows the coercive force and cobalt-titanium substituted barium ferrite of Example 2 of the present invention.
It is a curve diagram showing the relationship with the amount of titanium substitution.

Claims (1)

【特許請求の範囲】 1 一般式 AFe(12-X)MXO19 (ただし、AはBa、Sr、Pbから選ばれた1種以
上の元素を、Mは1/2Zn+1/2Ge、2/3Zn+1/3
Nb、2/3Zn+1/3V、1/2Co+1/2Ti、1/2Co+1/
2Geの1種以上の置換元素又は元素の組合せを、
またxは1〜2.5の正の数をそれぞれ表す)で示
され、かつ平均粒径が0.01〜0.3μmであることを
特徴とする磁気記録体用六方晶系フエライト微粉
末。 2 保磁力が200〜2000エルステツドである特許
請求の範囲第1項記載の磁気記録体用六方晶系フ
エライト微粉末。
[Claims] 1 General formula AFe ( 12 -X) M 3Zn+1/3
Nb, 2/3Zn+1/3V, 1/2Co+1/2Ti, 1/2Co+1/
One or more substitution elements or combinations of elements of 2Ge,
A fine hexagonal ferrite powder for a magnetic recording medium, characterized in that x represents a positive number from 1 to 2.5) and has an average particle size of 0.01 to 0.3 μm. 2. The hexagonal ferrite fine powder for magnetic recording media according to claim 1, which has a coercive force of 200 to 2000 oersteds.
JP59140297A 1984-07-06 1984-07-06 Hexagonal system ferrite fine-powder for magnetic recording material Granted JPS60149106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59140297A JPS60149106A (en) 1984-07-06 1984-07-06 Hexagonal system ferrite fine-powder for magnetic recording material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59140297A JPS60149106A (en) 1984-07-06 1984-07-06 Hexagonal system ferrite fine-powder for magnetic recording material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP53157664A Division JPS6050323B2 (en) 1978-12-22 1978-12-22 High density recording medium

Publications (2)

Publication Number Publication Date
JPS60149106A JPS60149106A (en) 1985-08-06
JPH036643B2 true JPH036643B2 (en) 1991-01-30

Family

ID=15265506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59140297A Granted JPS60149106A (en) 1984-07-06 1984-07-06 Hexagonal system ferrite fine-powder for magnetic recording material

Country Status (1)

Country Link
JP (1) JPS60149106A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355122A (en) * 1986-08-22 1988-03-09 Toshiba Glass Co Ltd Magnetic powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5586103A (en) * 1978-12-22 1980-06-28 Toshiba Corp High density magnetic recording unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5586103A (en) * 1978-12-22 1980-06-28 Toshiba Corp High density magnetic recording unit

Also Published As

Publication number Publication date
JPS60149106A (en) 1985-08-06

Similar Documents

Publication Publication Date Title
JP3886969B2 (en) Magnetic recording medium and magnetic recording cartridge
US4636433A (en) Magnetic powders for magnetic recording media and magnetic recording media employing said magnetic powder therein
JPS6050323B2 (en) High density recording medium
KR860000310B1 (en) Magnetic recording media
US3139354A (en) Magnetic recording element containing magnetic particles treated with werner-type complex compound and method of manufacture thereof
JPH0127487B2 (en)
JPH03701B2 (en)
JPS61133020A (en) Magnetic recording medium
JPH036643B2 (en)
JPH05144615A (en) Magnetic recording magnetic powder and magnetic recording medium using the same
JPS60157719A (en) Magnetic recording medium and its manufacture
JP2745516B2 (en) Magnetic recording media
JP4268629B2 (en) Magnetic recording medium and magnetic recording cartridge
JPH0766541B2 (en) Magnetic recording body
JPH0322654B2 (en)
JPH0619829B2 (en) Magnetic recording medium
JPH0785297B2 (en) Magnetic recording medium
JPS61139926A (en) Magnetic recording medium
JPS5946051B2 (en) Method for manufacturing magnetic recording material
JP4268628B2 (en) Magnetic recording medium and magnetic recording cartridge
JP2843342B2 (en) Manufacturing method of magnetic recording medium
JPH0715744B2 (en) Magnetic recording medium
JPS59129935A (en) Magnetic recording medium
JPS59157846A (en) Magnetic disk
JPS62195725A (en) Magnetic recording medium