JPS6050323B2 - High density recording medium - Google Patents

High density recording medium

Info

Publication number
JPS6050323B2
JPS6050323B2 JP53157664A JP15766478A JPS6050323B2 JP S6050323 B2 JPS6050323 B2 JP S6050323B2 JP 53157664 A JP53157664 A JP 53157664A JP 15766478 A JP15766478 A JP 15766478A JP S6050323 B2 JPS6050323 B2 JP S6050323B2
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
recording
magnetization
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53157664A
Other languages
Japanese (ja)
Other versions
JPS5586103A (en
Inventor
弘毅 横山
羚二 西川
修 久保
正信 上羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP53157664A priority Critical patent/JPS6050323B2/en
Publication of JPS5586103A publication Critical patent/JPS5586103A/en
Publication of JPS6050323B2 publication Critical patent/JPS6050323B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は高密度磁気記録体、特に垂直磁気記録に適した
高密度磁気記録体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a high-density magnetic recording medium, particularly a high-density magnetic recording medium suitable for perpendicular magnetic recording.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

磁気記録は、一般に針状Co−γFe。 Magnetic recording generally uses acicular Co-γFe.

03のような磁性粉末を支持体に塗着した記録媒体を用
いてその面内長手方向に磁化する方式(最短記録波長約
1.2μm)によつて行なわれている。
This method uses a recording medium in which magnetic powder such as No. 03 is coated on a support and magnetizes it in the longitudinal direction of the surface (shortest recording wavelength is about 1.2 μm).

しかしながらこの面内長手方向の磁化を用いる記録方式
においては、記録の高密度化を図ると、記録媒体内の減
磁界か増加するため高密度記録を達成し難いという不都
合がある。
However, in this recording method using magnetization in the longitudinal direction in the plane, there is a disadvantage that if the recording density is increased, the demagnetizing field within the recording medium increases, making it difficult to achieve high density recording.

近年このような不都合を解消する磁気記録方式として、
記録媒体の垂直方向の磁化を用いる垂直磁化記録方式が
提案されている。
In recent years, magnetic recording methods have been developed to eliminate these inconveniences.
A perpendicular magnetization recording method that uses perpendicular magnetization of a recording medium has been proposed.

この垂直磁化記録方式では、記録密度が高くなるにつれ
て記録媒体内の減磁界が減少し、記録状”態がより安定
になる。
In this perpendicular magnetization recording method, as the recording density increases, the demagnetizing field within the recording medium decreases, and the recording state becomes more stable.

したがつて本質的に高密度記録に適した記録方式である
ということができる。ところでこの垂直磁化方式におい
ては、記録媒体がその表面に垂直な方向に磁化容易軸を
有する・必要があり、この種の記録媒体としてCo−C
rスパッタ膜が開発されている。
Therefore, it can be said that this recording method is essentially suitable for high-density recording. However, in this perpendicular magnetization method, it is necessary for the recording medium to have an axis of easy magnetization in the direction perpendicular to its surface.
r sputtered film has been developed.

しかしながらこのCo−Cr膜はヘッドとの摩擦(摺動
)により摩耗し易く、記録媒体層自体が可撓性に乏しく
取り扱い難いうえに、さらにその製フ造も操作が煩雑で
あり、しかもCo−Crは化学的に不安定であるため記
録媒体としての信頼性に問題がある。
However, this Co-Cr film is easily worn out due to friction (sliding) with the head, the recording medium layer itself has poor flexibility and is difficult to handle, and furthermore, the manufacturing process is complicated, and the Co-Cr film is difficult to handle. Since Cr is chemically unstable, its reliability as a recording medium is problematic.

特にこの記録媒体は、スパッタリング、蒸着など真空プ
ロセスを用いて作成する必要があり、従来慣用されてき
た塗布法によつては作成できないという難点を有する。
ところで、従来から硬質磁性材料として知られている、
例えばBaFel。
In particular, this recording medium has the disadvantage that it must be produced using a vacuum process such as sputtering or vapor deposition, and cannot be produced by conventional coating methods.
By the way, there is a material that has been known as a hard magnetic material.
For example, BaFel.

Ol9などの六方晶系フェライトは平板状をなしており
、かつ磁化容易軸も平板の面に垂直であるから、この六
方晶系フェライトを記録媒体用の磁性粉末として用いる
ことができれば、塗布法により記録媒体層を形成するこ
とが可能となり、上述のような不都合を除去できるもの
と考えられる。しかしながら上記六方晶系フェライトは
保磁力IHcが高く(通常5000エルステッド以上)
、現用されているフェライト、センダスト、アモルファ
ス等からなるヘッド材料では、記録、消去ができないと
いう問題がある。
Hexagonal ferrite such as Ol9 has a flat plate shape, and the axis of easy magnetization is perpendicular to the plane of the flat plate. Therefore, if this hexagonal ferrite can be used as a magnetic powder for recording media, it can be applied by coating. It is possible to form a recording medium layer, and it is considered that the above-mentioned disadvantages can be eliminated. However, the above-mentioned hexagonal ferrite has a high coercive force IHc (usually 5000 Oe or more).
There is a problem in that recording and erasing cannot be performed with currently used head materials such as ferrite, sendust, and amorphous.

また仮に記録、消去が可能であつたとしても、高い保磁
力1Hcのため、塗布法による成膜過程において粒子相
互が凝集し易く、実際には六方晶系フェライトを磁性粉
末として用いた塗布法による高い密度の磁化記録体を得
ることはできなかつた。またBaFel。
Furthermore, even if recording and erasing were possible, due to the high coercive force of 1Hc, particles tend to agglomerate with each other during the film formation process using the coating method, and in reality, the coating method using hexagonal ferrite as magnetic powder It was not possible to obtain a magnetized recording medium with high density. Also BaFel.

Ol9で表されるBaフェライトのほか、そのFe原子
を他の元素て置換したイオン置換体もいろいろ知られて
いる。しかし、それらはいずれも焼結体、あるいは焼成
によつて調整された粒径の大きい磁性粉に関するもので
あり、微粒子の置換体に関するものは知られていない。
In addition to Ba ferrite represented by Ol9, various ion-substituted products in which Fe atoms are replaced with other elements are also known. However, all of these relate to sintered bodies or magnetic powders with large particle sizes adjusted by firing, and none are known to relate to substituted fine particles.

Baフェライトの焼結体や粒径が大きい場合では多磁区
構造や結晶組織がみられる.ため、磁性粉の磁気特性が
非常に異なつたものとなり、磁気記録に適した保磁力お
よび磁化を有するものは得られていない。また、特公昭
46−3545号公報にはいわゆる水熱性によるBaF
el2Ol9の合成法において、CO..Znイ.オン
が含有される可能性があることが示唆されているが、こ
のような水熱法では3価のFeイオンをこれらの2価の
−fオンで充分量置換し得るものではなく、その量は不
純物レベルのきわめて微量であり、事実上BaFel2
Ol9の磁気特性、特に保磁・力を現用のヘッド材料に
適する範囲に制御することはてきないため高密度磁気記
録体として実用化することはできなかつた。
In sintered bodies of Ba ferrite and in cases where the grain size is large, a multi-domain structure and crystal structure are observed. Therefore, the magnetic properties of the magnetic powders are very different, and it has not been possible to obtain magnetic powders with coercive force and magnetization suitable for magnetic recording. In addition, Japanese Patent Publication No. 46-3545 describes BaF due to so-called hydrothermal properties.
In the synthesis method of el2Ol9, CO. .. Zn i. It has been suggested that there is a possibility that ions may be contained, but in this hydrothermal method, it is not possible to replace trivalent Fe ions in a sufficient amount with these divalent -f ions; is an extremely small amount of impurity level, and is practically BaFel2
Because it is not possible to control the magnetic properties of Ol9, particularly the coercivity and force, within a range suitable for current head materials, it has not been possible to put it into practical use as a high-density magnetic recording medium.

〔発明の目的〕 本発明者らは、一般のイオン結晶を有する鉱物において
は、原子価の異なるイオンであつても陽イオンの価数の
変化が互いに打ち消されるような関係にある1組のイオ
ンの組み合せを用いた場合にはイオンの置換が行なわれ
ることに着目し、BaFel。
[Purpose of the Invention] The present inventors discovered that in minerals having general ionic crystals, a pair of ions have a relationship such that changes in cation valence cancel each other out even if the ions have different valences. We focused on the fact that ion replacement occurs when a combination of BaFel and BaFel is used.

Ol9のFe原子を他の元素で置換してその保磁力を磁
気記録に適する値に制御する目的で、イオン半径および
イオンの価数がFeイオンのそれとほぼ等しい単独のイ
オン、またはイオンの半径)がFeイオンのそれとほぼ
等しくかつ組み合せた場合の価数がFeイオンのそれと
等しくなるイオンの組み合せを用いて、BaFel。O
l9のFeイオンを置換して多くの置換?フェライト微
粒子を作成する実験を行なつた結果、置換曳フェライト
微・粒子の保磁力の値を磁気記録に適する値に制御し得
る置換元素の種類および量を見出した。本発明はこのよ
うな知見に基づいてなされたもので、磁性微粉末を成膜
過程て凝集させることなく、塗布法により容易に製造可
能で、かつ高密度・記録のてきる磁気記録体を提供しよ
うとするものである。
For the purpose of replacing the Fe atom of Ol9 with another element and controlling its coercive force to a value suitable for magnetic recording, a single ion or ion radius whose ionic radius and ion valence are approximately equal to that of the Fe ion) is almost equal to that of Fe ions and the valence when combined is equal to that of Fe ions. O
Many substitutions by replacing the Fe ion of l9? As a result of conducting experiments to create fine ferrite particles, we discovered the type and amount of substitution elements that can control the coercive force value of substituted ferrite particles to a value suitable for magnetic recording. The present invention has been made based on such knowledge, and provides a magnetic recording medium that can be easily manufactured by a coating method without causing agglomeration of magnetic fine powder during film formation, and that can perform high-density recording. This is what I am trying to do.

〔発明の概要〕[Summary of the invention]

すなわち本発明の高密度磁気記録体は、一般式AF′e
(12−X)MxOl9(1)(式中AはBa,Sr,
Pbのいずれか1種以上の元素を、MはIn..Zn−
E..Zn−Nb..Zn−■、CO一Ti..CO−
Geの1種以上の元素又は元素の組み合わせを、Xは1
2未満の正の数)で示される六方晶系フェライト微粉末
を含む磁気記録媒体層を具備して成ることを特徴とする
高密度磁気記録体である。
That is, the high-density magnetic recording body of the present invention has the general formula AF'e
(12-X)MxOl9(1) (wherein A is Ba, Sr,
Any one or more elements of Pb, M is In. .. Zn-
E. .. Zn-Nb. .. Zn-■, CO-Ti. .. CO-
One or more elements or a combination of elements of Ge, X is 1
The present invention is a high-density magnetic recording body characterized by comprising a magnetic recording medium layer containing hexagonal ferrite fine powder represented by a positive number less than 2.

一般式(1)で示される六方晶系フェライトにおいて、
Feの一部を置換するInおよびZn−E..Zn−N
b..Zn−V.sCO−Ti..CO−αの各置換元
素等は1種でもよいし2種以上の組合せであつてもよい
In the hexagonal ferrite represented by general formula (1),
In and Zn-E. substituting part of Fe. .. Zn-N
b. .. Zn-V. sCO-Ti. .. Each substituting element of CO-α may be used alone or in combination of two or more.

本発明においては、これらの元素もしくは元素の組合わ
せでFe原子の一部を置換することにより、六方晶系フ
ェライトの保磁力を塗布法による成膜過程で凝集しない
程度に調整し、かつ磁気記録体の記録、再生に使用する
磁気ヘッドの特性と整合するよう調整することができる
In the present invention, by substituting some of the Fe atoms with these elements or a combination of elements, the coercive force of the hexagonal ferrite is adjusted to such an extent that it does not agglomerate during the coating process, and magnetic recording is achieved. It can be adjusted to match the characteristics of the magnetic head used for recording and reproducing data on the body.

置換原子1原子あたりの平均の価数は、置換されるFe
原子の価数3と一致させることが望ましい。
The average valence per substituted atom is
It is desirable to match the valence of the atom to 3.

従つて、3価の金属であるInは単独で置換してもよい
が、2価の金属であるCO..Znは、4価の金属てあ
るTi..Ge等や、5価の金属であるNbl■等との
組み合せにより価数を調整して置換することが望ましい
。2価の金属と4価の金属の組み合わせで置換を行なう
場合には、Fe原子1原子あたり例えば両金属を1h対
112の原子比で使用すればよく、また2価の金属と5
価の金属の組み合わせで置換する場合には、それぞれ1
h対215もしくは1対115の原子比で使用すればよ
い。
Therefore, In, which is a trivalent metal, may be substituted alone, but CO, which is a divalent metal, may be substituted alone. .. Zn is a tetravalent metal Ti. .. It is desirable to adjust the valence and replace by combining with Ge, etc., and Nbl, which is a pentavalent metal, etc. When performing substitution with a combination of a divalent metal and a tetravalent metal, it is sufficient to use both metals in an atomic ratio of 1 h to 112 per Fe atom, and the divalent metal and the 5
When replacing with a combination of valent metals, 1 for each
It may be used at an atomic ratio of h:215 or 1:115.

さらに、本発明においては、六方晶系の結晶構造を損わ
ない限り上記の組成に厳密に一致させる必要はなく、い
ずれか一方の成分を増減させてもよく、また他の置換元
素を含有させてもよい。
Furthermore, in the present invention, it is not necessary to strictly match the above composition as long as the hexagonal crystal structure is not impaired; either one of the components may be increased or decreased, or other substituent elements may be included. It's okay.

一般的に六方晶系フェライトのFe原子の一部を上記し
た各元素または元素の組合せで置換すると、保磁力は低
減するようになる。現用されている磁気ヘッドで記録、
再生を行なうには、磁性粉末の保持力は200〜200
0エルステッドの範囲にあることが好ましく、したがつ
て上記の一般式における置換原子数Xは、得られる磁性
粉末の保磁力がこの範囲となるように設定される。上記
のXの範囲は、用いる原子または原子の組み合わせによ
り異なるが、一般にX=1〜2.5の範囲が適当てある
Generally, when some of the Fe atoms in hexagonal ferrite are replaced with the above-mentioned elements or combinations of elements, the coercive force is reduced. Recorded using currently used magnetic heads,
For regeneration, the magnetic powder must have a holding power of 200 to 200
It is preferably in the range of 0 oersteds, and therefore the number of substituted atoms X in the above general formula is set so that the coercive force of the obtained magnetic powder falls within this range. The above range of X varies depending on the atoms or combinations of atoms used, but generally a range of X=1 to 2.5 is suitable.

置換原子数Xが1未満ては保持力低減効果が僅少となり
、また2.5を越えると、保磁力か低く記録媒体として
所要の性能を得るのが難しくなる。また上記一般式(1
)におけるAとして2種以上の原子を用いる場合には、
これらの原子の総数が全体としてAFeく,2−o)M
.XOl9の式を満足させる数となることが望ましい。
If the number of substituted atoms, In addition, the above general formula (1
), when two or more types of atoms are used as A,
The total number of these atoms as a whole is AFe, 2-o) M
.. It is desirable that the number satisfies the formula of XOl9.

一般に長手方向の記録密度を高くする場合には記録波長
を短くする必要があるが、本発明の置換六方晶系フェラ
イト微粉末の平均粒子径は、この磁気記録体への記録波
長より小さいことが必要である。
Generally, when increasing the recording density in the longitudinal direction, it is necessary to shorten the recording wavelength, but the average particle diameter of the substituted hexagonal ferrite fine powder of the present invention can be smaller than the recording wavelength for this magnetic recording medium. is necessary.

このように、本発明の六方晶系フェライト微粉末の平均
粒径は目的とする記録波長に依存するため、その平均粒
径は一概には決められないが、0.01〜0.3μmの
範囲であることが好ましい。粒子径が0.01μmに満
たないと、所要の強磁性を呈しなくなり、逆に、0.3
μmを越えると単一の結晶中に多数の磁区が存在するよ
うになり、信号対ノイズ比が悪化すると共に高密度記録
を有利に行ない難くなる。本発明の高密度磁気記録体は
、磁性粒子である六方晶系フェライト微粉末と熱可塑性
または熱硬化性樹脂を主成分とする結合剤、滑剤、研磨
剤、帯電防止剤あるいは分散剤等の補助剤を有機溶剤に
溶解または分散させた磁性塗料を、例えばポリエチレン
テレフタレートからなるフィルムやシートなどの支持体
上に塗布し、結合剤を加熱硬化させることにより得られ
る。
As described above, since the average particle size of the hexagonal ferrite fine powder of the present invention depends on the intended recording wavelength, the average particle size cannot be determined unconditionally, but it is within the range of 0.01 to 0.3 μm. It is preferable that If the particle size is less than 0.01 μm, it will not exhibit the required ferromagnetism;
If it exceeds .mu.m, a large number of magnetic domains will exist in a single crystal, deteriorating the signal-to-noise ratio and making it difficult to advantageously perform high-density recording. The high-density magnetic recording material of the present invention consists of hexagonal ferrite fine powder, which is a magnetic particle, and a binder, a lubricant, an abrasive, an antistatic agent, a dispersant, etc. mainly composed of a thermoplastic or thermosetting resin. It can be obtained by applying a magnetic coating material in which a binder is dissolved or dispersed in an organic solvent onto a support such as a film or sheet made of polyethylene terephthalate, and then heating and curing the binder.

前記磁気記録媒体層は均質な単一の層であつてもよいし
、あるいは磁性特性の異なる、または磁性粒子含有量の
異なる磁性層を2層以上重ねた多層構造のものであつて
もよい。
The magnetic recording medium layer may be a homogeneous single layer, or may have a multilayer structure in which two or more magnetic layers having different magnetic properties or different magnetic particle contents are laminated.

また支持体と磁気記録媒体の層以外に磁気記録媒体層の
支持体に対する接着強度を増加させるために、支持体の
直上に下塗り層を設けたり、支持体に対し磁性層と反対
側にバックコート層を設けたり、磁性層の保護のために
磁性層の上に保護層を設けたりしてもよく、さらに必要
に応じてこれらの組み合わされた多層構造してもよい。
In addition to the support and magnetic recording medium layer, in order to increase the adhesive strength of the magnetic recording medium layer to the support, an undercoat layer is provided directly above the support, and a back coat is provided on the opposite side of the support from the magnetic layer. A protective layer may be provided on the magnetic layer to protect the magnetic layer, and if necessary, a multilayer structure may be formed by combining these layers.

磁性塗料の塗布層には、通常乾燥前に配向処理が施され
る。配向処理は磁場中に磁束を横切る方向に磁性塗料を
塗布した支持体を通過させて、磁束の方向に六方晶系フ
ェライト微粒子の磁化容易軸を配向させて行なつてもよ
いし、塗布層を圧延させることにより行なつてもよい。
The applied layer of magnetic paint is usually subjected to an orientation treatment before drying. Orientation treatment may be performed by passing a support coated with magnetic paint in a direction transverse to the magnetic flux in a magnetic field to orient the axis of easy magnetization of the hexagonal ferrite fine particles in the direction of the magnetic flux. It may be carried out by rolling.

この後磁性塗料を塗布した支持体は乾燥機に送易られて
乾燥され、本発明の磁気記録体が得られる。
Thereafter, the support coated with the magnetic paint is sent to a dryer and dried to obtain the magnetic recording medium of the present invention.

以上説明したように、本発明の高密度磁気記録体は、記
録媒体層が一軸性の置換六方晶系フェライト微粉末を主
体として構成されており、この微・粉末は六方晶C面を
有する板状の形状を有するため塗布工程においてC面の
配向が容易であり、これを主成分とする磁性塗料を支持
体に塗着後、乾燥前に磁界を加えるか、あるいは機械的
に一定方向に圧延することにより容易に磁化容易軸を支
持)体の面に対して垂直となるよう配向させることがで
きる。
As explained above, the high-density magnetic recording body of the present invention has a recording medium layer mainly composed of uniaxial substituted hexagonal ferrite fine powder, and this fine powder is a plate having a hexagonal C-plane. Because it has a cylindrical shape, it is easy to orient the C-plane during the coating process, and after applying a magnetic paint containing this as a main component to a support, a magnetic field is applied before drying, or mechanically rolled in a certain direction. By doing so, the axis of easy magnetization can be easily oriented perpendicular to the surface of the support body.

しかもFe原子の一部をIn,.Zn−α、Zn−Nb
lZn−■、CO−Ti..CO−α等により置換され
て、200〜2000エルステッド程度の保磁力1HC
を有するように調整されているので、磁場配向による凝
集を防止することができ、しかも磁気記録体の記録再生
に用いる現用の磁気ヘッド記録再生が可能である。
Moreover, some of the Fe atoms are In, . Zn-α, Zn-Nb
lZn-■, CO-Ti. .. Coercive force 1HC of about 200 to 2000 Oe by substitution with CO-α etc.
Since the magnetic head is adjusted to have the following properties, it is possible to prevent agglomeration due to magnetic field orientation, and moreover, it is possible to perform recording and reproduction using current magnetic heads used for recording and reproduction of magnetic recording bodies.

したがつて本発明の磁気記録体では、磁性粒子の分散性
が極めて良好であり、垂直磁化による高密度記録も良好
に行ない得る。
Therefore, in the magnetic recording medium of the present invention, the dispersibility of magnetic particles is extremely good, and high-density recording by perpendicular magnetization can be performed satisfactorily.

かくして本発明に係る記録体は塗布法で容易に形成(構
成)し得るので量産に適しており、かつ製造コストを低
減させることができる。
Thus, the recording medium according to the present invention can be easily formed (structured) by a coating method, and is therefore suitable for mass production, and can reduce manufacturing costs.

また、本発明の高密度記録体は、六方晶系フェライト微
粉末が均一に分散されており、配向処理を施さない場合
には、媒体に垂直な磁化成分および媒体の面内長手方向
磁化成分がともに存在するので、配向処理を施さずに乾
燥、硬化させて垂直磁化記録および面内長手方向磁化記
録がともに可能な記録媒体としても使用することができ
る。
In addition, in the high-density recording body of the present invention, hexagonal ferrite fine powder is uniformly dispersed, and if no orientation treatment is performed, the magnetization component perpendicular to the medium and the magnetization component in the in-plane longitudinal direction of the medium are Since both exist, it can be dried and hardened without any orientation treatment and used as a recording medium capable of both perpendicular magnetization recording and in-plane longitudinal magnetization recording.

〔発明の効果〕本発明によれば、スパッタ等の複雑な手
段を要することなく、従来慣用されている塗布法によつ
て高密度の磁気記録体を実現しうるものである。
[Effects of the Invention] According to the present invention, a high-density magnetic recording medium can be realized by a conventional coating method without requiring complicated means such as sputtering.

〔発明の実施例〕実施例1 バリウム、鉄およびインジウムの硝酸塩をモル比で1対
11対1の割合で含む水溶液にアルカリ水一溶液を滴下
して共沈物を得た。
[Examples of the Invention] Example 1 A solution of alkaline water was dropped into an aqueous solution containing nitrates of barium, iron, and indium in a molar ratio of 1:11:1 to obtain a coprecipitate.

この共沈物を水洗処理して、アルカリを除去した後、乾
燥させ、950℃で加熱処理を施して、バリウムフェラ
イトのインジウムー部置換体微粒子粉末を得た。この微
粒子粉末は電子顕微鏡観察によると平均粒径.0.1〜
0.2μmの板状であり、保持力】Hcが2000エル
ステッド、磁化σgが50emu/gであつた。上記に
よつて得た磁性体粉末と結合剤等の補助剤とを有機溶剤
中に分散または溶解させて、混合した後ポリエチレンテ
レフタレートフィルム面にj塗布し磁場配向(配向条件
垂直方向35000eの磁界印加)を行なつてから乾燥
し、スーパーカレンダ処理により表面平滑化を行ない、
加熱して結合剤を硬化させ、垂直な異方性を有する磁性
媒体層を設けた。第1図は、このようにして得られた置
換六方晶系フェライト微粉末磁気記録体の媒体面に垂直
な方向の磁化曲線、第2図は磁性体微粉末として平均B
aFel。
This coprecipitate was washed with water to remove the alkali, then dried and heat-treated at 950° C. to obtain fine particle powder of an indium moiety substituted product of barium ferrite. This fine particle powder has an average particle size according to electron microscopic observation. 0.1~
It had a plate shape of 0.2 μm, a coercive force Hc of 2000 Oe, and a magnetization σg of 50 emu/g. The magnetic powder obtained above and an auxiliary agent such as a binder are dispersed or dissolved in an organic solvent, mixed, and then coated on the surface of a polyethylene terephthalate film and oriented in a magnetic field (alignment conditions: applying a magnetic field of 35,000 e in the vertical direction). ), then dry, smooth the surface by super calendering,
Heat was applied to cure the binder and provide a magnetic media layer with perpendicular anisotropy. Figure 1 shows the magnetization curve of the thus obtained substituted hexagonal ferrite fine powder magnetic recording material in the direction perpendicular to the medium surface, and Figure 2 shows the average B of the magnetic fine powder.
aFel.

Ol9の″化学式をもつ六方晶系フェライト微粉末を用
いた以外は実施例1と同様にして製造した比較例1の磁
性媒体の磁化曲線、第3図は従来のビデオテープに用い
られる針状CO−γFe2O3粉末を用いて実施例1と
同様にして製造した比較例2の磁気記録体の媒体面に垂
直な方向の磁化曲線である。これらの各図から、本発明
の記録体の記録媒体層中では、置換六方晶系フェライト
微粉末がよく分散した結果、粒子が垂直配向し、磁化曲
線か角”形を示しており、しかも保磁力が記録媒体とし
て適正な値を示していることがわかる。
The magnetization curve of the magnetic medium of Comparative Example 1 manufactured in the same manner as in Example 1 except that hexagonal ferrite fine powder having the chemical formula of ``Ol9'' was used. Figure 3 shows the magnetization curve of the magnetic medium of Comparative Example 1. - Magnetization curves in the direction perpendicular to the medium surface of the magnetic recording body of Comparative Example 2 manufactured in the same manner as in Example 1 using -γFe2O3 powder.From these figures, it can be seen that the recording medium layer of the recording body of the present invention Inside, as a result of the well-dispersed substituted hexagonal ferrite fine powder, the particles are vertically oriented, exhibiting a magnetization curve or angular shape, and the coercive force shows an appropriate value for a recording medium. .

かくして構成した磁気記録体を垂直磁化記録に適用した
ところ記録媒体層内(面内)ての減磁界も小さく、高密
度で、かつ良好な記録を行なうことができた。
When the magnetic recording body thus constructed was applied to perpendicular magnetization recording, the demagnetizing field within the recording medium layer (in-plane) was small, and high-density and good recording could be performed.

記録、再生試験の結果を次表に示す。媒体・ヘッド相対
速度3.75n1/Sec記録ヘツドニ補助磁極励磁垂
直記録ヘッド(主磁極厚3μm1巻数15ターン) 再生ヘツドニリングヘツド (ギャップ0.2μm1トラック幅3.5μm1巻数1
8ターン)また上記においてバリウム塩を一定にし、鉄
塩対インジウム塩の比を9.5対2.5の割合(モル比
)まで代え980′Cで熱処理した場合も、またインジ
ウム塩の代りに112Zn+112Ge系塩、213Z
n+113Nb系塩或いは2137.n+113■系塩
を用いて得た場合も同様の磁性体微粒子粉末が得られ、
磁気記録体を構成した場合も同様の結果が認められた。
The results of the recording and playback tests are shown in the table below. Media/head relative speed 3.75n1/Sec Recording head Auxiliary magnetic pole excitation perpendicular recording head (Main pole thickness 3μm 1 turn 15 turns) Reproduction head Nilling head (gap 0.2μm 1 track width 3.5μm 1 turn 1
8 turns) In the above, when the barium salt is kept constant and the ratio of iron salt to indium salt is changed to a ratio (molar ratio) of 9.5 to 2.5 and heat treated at 980'C, 112Zn+112Ge salt, 213Z
n+113Nb salt or 2137. Similar magnetic fine particle powder can be obtained when using n+113■ series salt,
Similar results were observed when a magnetic recording medium was constructed.

以上の結果を次表に示す。なお第4図はバリウムフェラ
イトのインジウム置換系についてインジウム置換量と保
磁力1Hcとの関係を示す曲線図である。
The above results are shown in the table below. FIG. 4 is a curve diagram showing the relationship between the amount of indium substitution and the coercive force 1Hc for an indium substitution system of barium ferrite.

実施例2 バウリム、鉄、コバルトおよびチタン(112C0+1
1肝1)の硝酸塩をモル比で1対10,6対0.7対0
.7の割合で含む水溶液にアルカリを添加し、共沈物を
得た。
Example 2 Baurim, iron, cobalt and titanium (112C0+1
1 liver 1) nitrate in molar ratio 1:10, 6:0.7:0
.. An alkali was added to an aqueous solution containing 7 parts to obtain a coprecipitate.

この共沈物につき水洗によるアルカリ除去、乾燥を順次
施した後950℃で加熱処理を施しバリウムフェライト
のコバルト、チタン置換体微粒子粉末を得た。この微粒
子粉末は電子顕微鏡観察によると平均粒径約0.1μm
の板状てあり、保磁力1Hc1000エルステッド、磁
化σG58emu/gであつた。上記によつて得た磁性
体粉末を用い実施例1の場合と同様にして高密度磁気記
録体を構成した。
This coprecipitate was sequentially washed with water to remove alkali, dried, and then heated at 950°C to obtain fine powder of cobalt and titanium substituted barium ferrite. According to electron microscope observation, this fine particle powder has an average particle size of approximately 0.1 μm.
It was plate-shaped, had a coercive force of 1 Hc1000 Oe, and a magnetization σG of 58 emu/g. A high-density magnetic recording body was constructed in the same manner as in Example 1 using the magnetic powder obtained above.

この記録体を垂直磁化記録に適用したところ次表に示す
ように高い密度で良好な記録が可能であつた。(〒再生
条件は実施例に同じ) また上記においてバリウム塩を一定にし、鉄塩対コバル
ト塩−チタン塩の比を変えた他は同じ条件て得たバリウ
ムフェライト置換体微粒子粉末について、保磁力1Hc
をそれぞれ測定したところ第5図に示す如き傾向が認め
られた。
When this recording medium was applied to perpendicular magnetization recording, good recording at high density was possible as shown in the following table. (The regeneration conditions are the same as in the examples.) In addition, the barium ferrite substitute fine particle powder obtained under the same conditions as above except that the barium salt was kept constant and the ratio of iron salt to cobalt salt to titanium salt was changed, had a coercive force of 1Hc.
When these were measured, a tendency as shown in FIG. 5 was observed.

さらに上記において112C0+112T1系塩の代り
に112C0+112Ge系塩を用いて同様にして得た
磁性体粉末の平均粒径、保磁力および磁化は次の通りで
あつた。
Furthermore, the average particle size, coercive force and magnetization of magnetic powder obtained in the same manner as above using 112C0+112Ge type salt instead of 112C0+112T1 type salt were as follows.

なお上記においてはバリウムフェライト置換体の場合を
例示したがストロンチウムフェライト置換体、鉛フェラ
イト置換体の場合も次表に示すように同様の結果が得ら
れた。
In the above, the case of a barium ferrite substituted product was exemplified, but similar results were obtained with a strontium ferrite substituted product and a lead ferrite substituted product as shown in the following table.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1の置換六方晶系フェライト微
粉末記録媒体層の磁化曲線、第2図は比較例1の六方晶
系フェライト微粉末記録媒体層の磁化曲線、第3図は比
較例2のCO−γFe2O(1)末記録媒体の磁化曲線
、第4図は本発明に係るバリウムフェライトのインジウ
ム置換体について保磁力とインジウム置換量との関係を
示す曲線図、第5図は本発明に係るバリウムフェライト
のコバルノトーチタン置換体について保磁力とコバルト
−チタン置換量との関係を示す曲線図である。
FIG. 1 shows the magnetization curve of the substituted hexagonal ferrite fine powder recording medium layer of Example 1 of the present invention, FIG. 2 shows the magnetization curve of the hexagonal ferrite fine powder recording medium layer of Comparative Example 1, and FIG. The magnetization curve of the CO-γFe2O(1) powder recording medium of Comparative Example 2, FIG. 4 is a curve diagram showing the relationship between the coercive force and the amount of indium substitution for the indium-substituted barium ferrite according to the present invention, and FIG. FIG. 2 is a curve diagram showing the relationship between coercive force and cobalt-titanium substitution amount for a barium ferrite substituted with cobalt-titanium according to the present invention.

Claims (1)

【特許請求の範囲】 1 一般式AFe_(_1_2_−_x_)MxO_1
_9(ただし、AはBa、Sr、Pbから選ばれた1種
以上の元素を、MはIn、Zn−Ge、Zn−Nb、Z
n−V、Co−Ti、Co−Geの1種以上の置換元素
又は元素の組合せを、またXは1〜2.5の正の数をそ
れぞれ表す)で示され、かつ平均粒径が0.01〜0.
3μmの六方晶系フェライト微粉末を含む磁気記録媒体
層を具備してなることを特徴とする高密度記録体。 2 六方晶系フェライト微粉末の保磁力が200〜20
00エルステッドである特許請求の範囲第1項記載の高
密度記録体。
[Claims] 1 General formula AFe_(_1_2_-_x_)MxO_1
_9 (However, A is one or more elements selected from Ba, Sr, and Pb, and M is In, Zn-Ge, Zn-Nb, Z
n-V, Co-Ti, Co-Ge, and X represents a positive number from 1 to 2.5, respectively), and the average particle size is 0. .01~0.
A high-density recording medium comprising a magnetic recording medium layer containing 3 μm hexagonal ferrite fine powder. 2 The coercive force of hexagonal ferrite fine powder is 200 to 20
2. The high-density recording medium according to claim 1, which is 0.00 Oersted.
JP53157664A 1978-12-22 1978-12-22 High density recording medium Expired JPS6050323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53157664A JPS6050323B2 (en) 1978-12-22 1978-12-22 High density recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53157664A JPS6050323B2 (en) 1978-12-22 1978-12-22 High density recording medium

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP59140297A Division JPS60149106A (en) 1984-07-06 1984-07-06 Hexagonal system ferrite fine-powder for magnetic recording material
JP59140296A Division JPS60150236A (en) 1984-07-06 1984-07-06 Manufacture of high-density magnetic recording body
JP59140295A Division JPH0766541B2 (en) 1984-07-06 1984-07-06 Magnetic recording body

Publications (2)

Publication Number Publication Date
JPS5586103A JPS5586103A (en) 1980-06-28
JPS6050323B2 true JPS6050323B2 (en) 1985-11-08

Family

ID=15654673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53157664A Expired JPS6050323B2 (en) 1978-12-22 1978-12-22 High density recording medium

Country Status (1)

Country Link
JP (1) JPS6050323B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7267896B2 (en) 2002-03-18 2007-09-11 Hitachi Maxell, Ltd. Magnetic tape and magnetic tape cartridge
US7510790B2 (en) 2002-09-20 2009-03-31 Hitachi Maxell, Ltd. Magnetic powder, method for producing the same and magnetic recording medium comprising the same

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754267U (en) * 1980-09-17 1982-03-30
JPS6138482Y2 (en) * 1980-09-17 1986-11-06
JPS5756904A (en) * 1980-09-22 1982-04-05 Toshiba Corp Magnetic powder for magnetic recording medium
JPS57195327A (en) * 1981-05-26 1982-12-01 Fuji Photo Film Co Ltd Magnetic recording medium
JPS5856302A (en) * 1981-09-30 1983-04-04 Toshiba Corp Manufacture of magnetic powder used for high density magnetic recording
JPS5861529A (en) * 1981-10-07 1983-04-12 株式会社日立製作所 Vacuum breaker
JPS58203625A (en) * 1982-05-24 1983-11-28 Toshiba Corp Magnetic recording medium
JPS6069822A (en) * 1983-08-19 1985-04-20 Toshiba Corp Magnetic recording medium
JPS6070518A (en) * 1983-09-28 1985-04-22 Toshiba Corp Magnetic recording medium
JPH07105033B2 (en) * 1984-03-31 1995-11-13 株式会社東芝 Magnetic recording medium
JP2607456B2 (en) * 1984-05-14 1997-05-07 株式会社東芝 Magnetic powder for magnetic recording and method for producing the same
JPS616677A (en) * 1984-06-21 1986-01-13 Toshiba Corp Magnetic recording medium
JPS60149106A (en) * 1984-07-06 1985-08-06 Toshiba Corp Hexagonal system ferrite fine-powder for magnetic recording material
JPH0766541B2 (en) * 1984-07-06 1995-07-19 株式会社東芝 Magnetic recording body
JPH0679373B2 (en) * 1984-07-27 1994-10-05 株式会社東芝 Magnetic recording medium
JPH0690969B2 (en) * 1984-11-30 1994-11-14 株式会社東芝 Magnetic powder for magnetic recording medium and magnetic recording medium using the same
JPS62174120A (en) * 1986-01-29 1987-07-30 Fuso Seisakusho:Kk Synthetic resin molded part with terminal mounting holes and manufacture thereof
JPS6265238A (en) * 1986-08-11 1987-03-24 Toshiba Corp Production of magnetic recording medium
JPH02267122A (en) * 1989-04-07 1990-10-31 Nippon Zeon Co Ltd Magnetic powder for magnetic recording medium
JPH02296303A (en) * 1989-05-11 1990-12-06 Nippon Zeon Co Ltd Magnetic powder for magnetic record medium
JPH0760514B2 (en) * 1989-09-11 1995-06-28 株式会社東芝 Magnetic recording medium and manufacturing method thereof
JPH06208917A (en) * 1993-09-01 1994-07-26 Toshiba Corp Magnetic recording powder and magnetic recording medium employing the same
GB2414852B (en) 2003-02-19 2007-05-02 Hitachi Maxell Magnetic recording medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7267896B2 (en) 2002-03-18 2007-09-11 Hitachi Maxell, Ltd. Magnetic tape and magnetic tape cartridge
US7291409B2 (en) 2002-03-18 2007-11-06 Hitachi Maxell, Ltd. Magnetic recording medium using magnetic powder having a core portion and an outer layer portion including a rare earth element and magnetic recording cassette
US7445858B2 (en) 2002-03-18 2008-11-04 Hitachi Maxell, Ltd. Magnetic recording medium using magnetic powder having a core portion and an outer layer portion including a rare earth element and magnetic recording cassette
US7510790B2 (en) 2002-09-20 2009-03-31 Hitachi Maxell, Ltd. Magnetic powder, method for producing the same and magnetic recording medium comprising the same

Also Published As

Publication number Publication date
JPS5586103A (en) 1980-06-28

Similar Documents

Publication Publication Date Title
JPS6050323B2 (en) High density recording medium
JP3886969B2 (en) Magnetic recording medium and magnetic recording cartridge
US5585032A (en) Ferromagnetic fine powder for magnetic recording
US4486496A (en) Magnetic recording medium
US4606971A (en) Magnetic recording medium
JP6754744B2 (en) Manufacturing method of magnetic recording medium for microwave assist recording, magnetic recording device and magnetic recording medium
WO2009142263A1 (en) Magnetic recording medium
JPH0127487B2 (en)
JPH03701B2 (en)
JPH0719363B2 (en) Magnetic recording medium
JP3231989B2 (en) Hexagonal ferrite magnetic powder
JPH05144615A (en) Magnetic recording magnetic powder and magnetic recording medium using the same
JPH036643B2 (en)
JPH0766541B2 (en) Magnetic recording body
JPH0322654B2 (en)
JP7105202B2 (en) Magnetic recording medium for microwave assisted recording, magnetic recording apparatus, and method for manufacturing magnetic recording medium
JP3975367B2 (en) Magnetic recording medium
JPS6255904A (en) Hexagonal system ferrite magnetic powder
JP2796058B2 (en) Magnetic recording media
JPH0619829B2 (en) Magnetic recording medium
JPH0785297B2 (en) Magnetic recording medium
JPH0582324A (en) Magnetic recording magnetic powder and magnetic recording medium using the same
JPH1027330A (en) Magnetic recording medium
JPH0677036A (en) Magnetism recording magnetic particle and magnetism recording medium using the same
JPH0467424A (en) Magnetic recording medium

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370