JPS6265238A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS6265238A
JPS6265238A JP61188309A JP18830986A JPS6265238A JP S6265238 A JPS6265238 A JP S6265238A JP 61188309 A JP61188309 A JP 61188309A JP 18830986 A JP18830986 A JP 18830986A JP S6265238 A JPS6265238 A JP S6265238A
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
magnetization
hexagonal
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61188309A
Other languages
Japanese (ja)
Other versions
JPH0323974B2 (en
Inventor
Tadashi Ido
井戸 忠
Koki Yokoyama
横山 弘毅
Moriyasu Wada
和田 守叶
Toshihiko Oguchi
小口 寿彦
Akio Ishizawa
石沢 昭男
Yoshiyasu Koike
小池 吉康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61188309A priority Critical patent/JPS6265238A/en
Publication of JPS6265238A publication Critical patent/JPS6265238A/en
Publication of JPH0323974B2 publication Critical patent/JPH0323974B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To eliminate a stage for an orientation treatment and to maintain the residual magnetization/saturation magnetization ratio of a magnetization curve at a prescribed value by preparing a magnetic coating compd. for which hexagonal magnetic material powder of a prescribed grain size having uniaxial anisotropy is used and coating such coating compd. on a substrate, then drying the coating. CONSTITUTION:The magnetic coating compd. is prepd. by using the hexagonal magnetic material powder having the uniaxial anisotropy and 0.01-0.3mum grain size. The magnetic coating compd. prepd. in such a manner is coated on the substrate and is dried, by which the stage for an orientation treatment is elimi nated and the manpower, electric power, etc., are lessened. Hexagonal ferrite or the substituent thereof is used for the hexagonal magnetic material. The ratio of the residual magnetization/saturation magnetization of the magnetization curve formed by subjecting the magnetization curve adjusted in the direction perpendicular to the medium surface to a diamagnetic field correction is set at 0.3-0.7.

Description

【発明の詳細な説明】 [発明の目的] (Jlc業上の利用分野) 本発明は磁気記録媒体の製造方法に係り、特に六方晶系
−軸異方性の磁性体粉末を無配向に基材に塗布して成る
、高密度磁気記録に好適な媒体の製造方法に関する。
Detailed Description of the Invention [Objective of the Invention] (Field of Application in the JLC Industry) The present invention relates to a method for manufacturing a magnetic recording medium, and particularly to a method for producing a magnetic recording medium based on a non-oriented hexagonal-axis anisotropic magnetic powder. The present invention relates to a method for manufacturing a medium suitable for high-density magnetic recording, which is coated on a material.

(従来の技術) 従来、磁気記録、再生にはγ−Fe2O3゜CrO2な
どの針状結晶からなる磁性体粉を記録媒体の面内長手方
向に配向させ、面内長り方向の残留磁化を利用する方式
が一般的である。しかしこの記録再生方式では記録の高
密度化に伴って磁気記録媒体内の反磁界が増加する性質
があり、特に短波長領域における記録回生が悪い欠点が
ある。この反磁界に打ち勝って高密度記録を行うには記
録媒体の保磁力を高める一方磁気記録層を薄くする必要
があるが、現状では磁気記録層の高保磁力化は困難であ
り、また磁気記録層を薄くすることは再生信号の特性低
下を招くなどの問題がある。結局、従来よりの針状r磁
性体粉を面内長手方向に配向させ、該方向の残留磁化を
利用する方式によっては、磁気記録の高密度化は困難で
ある。
(Prior art) Conventionally, for magnetic recording and reproduction, magnetic powder made of acicular crystals such as γ-Fe2O3°CrO2 is oriented in the in-plane longitudinal direction of the recording medium, and residual magnetization in the in-plane longitudinal direction is utilized. The most common method is to However, this recording and reproducing system has the disadvantage that the demagnetizing field within the magnetic recording medium increases as the recording density increases, and recording regeneration is particularly poor in the short wavelength region. In order to overcome this demagnetizing field and perform high-density recording, it is necessary to increase the coercive force of the recording medium and thin the magnetic recording layer. However, currently it is difficult to increase the coercive force of the magnetic recording layer, and Making it thinner has problems such as degrading the characteristics of the reproduced signal. After all, it is difficult to achieve high density magnetic recording using the conventional method of orienting acicular r magnetic powder in the in-plane longitudinal direction and utilizing residual magnetization in this direction.

そこで、磁気記録媒体の面に対し垂直方向の残留磁化を
用いる方式が提案された。このような垂直磁気記録方式
においては、記録媒体表面に対して垂直な方向に磁化容
易軸を有している必要があり、次のような記録媒体が提
案されている。
Therefore, a method using residual magnetization in the direction perpendicular to the surface of the magnetic recording medium was proposed. In such a perpendicular magnetic recording system, it is necessary to have an axis of easy magnetization in a direction perpendicular to the recording medium surface, and the following recording media have been proposed.

一つは、基材表面にスパッタ法によってCo−Cr合金
膜を形成したものである。しかし、この記録媒体にはC
o−Cr合金膜と磁気ヘッドとの摺動により、記録々V
体と磁気ヘッド双方の損耗がはなはだしいこと、記録媒
体自体が可とぅ性に劣り取扱いが困難であること、更に
は製造上の生産性が低いことなどの欠点があり、実用に
は供し難いものであった。
One is one in which a Co--Cr alloy film is formed on the surface of a base material by sputtering. However, this recording medium has C.
By sliding the o-Cr alloy film and the magnetic head, recording V
It is difficult to put it into practical use because of its drawbacks, such as excessive wear and tear on both the magnetic head and the recording medium itself, which is difficult to handle due to its poor flexibility, and low manufacturing productivity. Met.

また、磁性粉を有機バインダーとともに基材に塗布して
磁気記録層を形成する塗布型の垂直磁気記録媒体として
は、磁性体としてFe3O4多面体や置換元素を含むB
aフェライト等の粉末を用い、これを記録媒体の面に対
し垂直な方向に配向させたものが提案されている。この
型の記録媒体では、短波長領域における記録、再生も改
善され1記録の高密度も+j(能であるが、磁気記録層
表面の凹凸化がはなはだしくそれだけC6気ヘンドとの
接触が低ドし、従来の針状磁性体を面内長「方向に配向
させた記録媒体に比較して11生出力が不安定であると
いう欠点がある。また この記録媒体では、従来のリン
グ状磁気ヘッドでl+!i足な記録を11いt’lない
という不利な点もある。
In addition, as a coated perpendicular magnetic recording medium in which a magnetic recording layer is formed by applying magnetic powder to a base material together with an organic binder, B containing Fe3O4 polyhedrons and substitutional elements as a magnetic material is used.
It has been proposed that a powder such as a-ferrite is used and the powder is oriented in a direction perpendicular to the surface of the recording medium. In this type of recording medium, recording and reproduction in the short wavelength region are improved, and the density of one recording is also +j (capacity). , compared to a conventional recording medium in which acicular magnetic material is oriented in the in-plane length direction, the 11 raw output is unstable.Also, with this recording medium, the conventional ring-shaped magnetic head has the disadvantage that the l+ !There is also the disadvantage that there are no 11 records.

製造技術の観点からすると、従来の塗/Ii型媒体はい
ずれも磁場配向処理が行われて来た0面内隘「方向の残
留磁化を利用する方式であれ、垂直)j向の残留磁化を
利用する方式であれ、ia磁性体磁化容易軸をその方向
に配向せしめる磁場配向処理は不可欠である。しかし、
かかる磁場配向処理には1例えば配向磁石、機械配向用
装置などの特別の、没備、電力を必要とするので、この
]]程をなくすことができれば、製造1程は筒中になり
、省力化でき、製品の低廉化も実現できるという利・5
があるのもIG実であった。
From the viewpoint of manufacturing technology, all conventional coated/Ii type media have been subjected to magnetic field orientation treatment, regardless of the method that utilizes the residual magnetization in the 0-plane direction, or the method that utilizes the residual magnetization in the vertical) j direction. Regardless of the method used, a magnetic field orientation process that orients the easy axis of magnetization of the ia magnetic material in that direction is essential.However,
Such magnetic field alignment processing requires special equipment and power, such as alignment magnets and mechanical alignment equipment, so if this step can be eliminated, the first step in production can be done in the cylinder, which would save labor. Benefits: 5.
It was also true that there was an IG.

そこでこれまでにおいて、針状磁性体を含む樹11ti
塗料を基材表面に巾に塗布したまま乾燥させ、仝〈磁場
配向処理を施さない磁気記録媒体が試みられた例がある
。この場合でも、記録の高密度化は記録媒体の面に対し
て争直な方向に配向した磁性体の残留磁化の活用いかん
にかかっているわけだが、実際には記録の高密度化は側
底達成できるものではなかった。これは垂直方向の残留
磁化成分が非常に少ないためである。このような経すか
ら、la磁場配向処理不可欠の工程とされてきた。
So far, we have developed 11 trees containing acicular magnetic materials.
There is an example of a magnetic recording medium in which a paint is applied to the surface of a substrate and allowed to dry without being subjected to magnetic field alignment treatment. Even in this case, increasing the recording density depends on the utilization of the residual magnetization of the magnetic material oriented in a direction perpendicular to the surface of the recording medium, but in reality, increasing the recording density depends on It was not something that could be achieved. This is because the residual magnetization component in the vertical direction is very small. Because of this process, the la magnetic field orientation treatment has been considered an essential step.

以1−詳述したように、針状磁性体によっては記録の高
密度化はまず不可能であ−)た、一方Fe3O4多面体
や置換型Baフェライトでは高密度化は可能であるが記
録媒体として種々の難点、問題をか未だ存在し実用ヒ満
足できるものではなかった。まして、これまでの経緯が
らして塗布型記録媒体においては磁場配向処理は不可欠
のに程と考えられていて、この工程を省くことによって
SJ造ヒの利点を追究することなどは側底問題にすべき
議論ではなかった。
As explained in detail below, it is almost impossible to increase the recording density with some acicular magnetic materials.On the other hand, it is possible to increase the recording density with Fe3O4 polyhedrons and substituted Ba ferrites, but it is difficult to use as a recording medium. Various difficulties and problems still exist, and it is not satisfactory for practical use. Furthermore, given the past history, magnetic field alignment treatment is considered to be indispensable for coated recording media, and pursuing the advantages of SJ fabrication by omitting this process is a side issue. It wasn't a discussion that should have taken place.

(発明か解決しようとする問題【気) 本発明はかかる技術水準のもとで、従来の高密度磁気記
録媒体の有していたF記の諸問題を解消し、しかも磁場
配向処理T程なしに製造し得る高密度磁気記録媒体の製
H’i方法を提供することを目的とする。
(Problem to be solved by the invention [Qi]) Based on the above-mentioned technical level, the present invention solves the problems listed in F that the conventional high-density magnetic recording media had, and moreover, it does not require magnetic field orientation treatment T. An object of the present invention is to provide a H'i method for manufacturing a high-density magnetic recording medium that can be manufactured in a number of steps.

[発明の構成] (問題点を解決するための手段) 本発明を簡潔に述べると、六方晶系で一軸異方性の結晶
からなる粒PI O、Ol = 0 、3 gの磁性体
粉末を含有する樹脂Mll成金基材に塗jli・乾燥す
ることによって、媒体表面に市直な方向に1111定し
た磁化曲線を反磁界補正した磁化曲線の残留磁化/飽和
磁化の比(以ド、r角形比」という)を0.3〜0.7
にすることを4¥徴とする磁気記録媒体の製造方法であ
る。
[Structure of the Invention] (Means for Solving the Problems) To briefly describe the present invention, particles PIO, Ol = 0, 3 g of magnetic powder consisting of hexagonal and uniaxially anisotropic crystals are prepared. The ratio of residual magnetization/saturation magnetization of the magnetization curve obtained by demagnetizing field correction of the magnetization curve determined perpendicular to the medium surface by coating and drying the containing resin Mll on the metal forming base material (hereinafter referred to as r-square ratio) ) between 0.3 and 0.7
This is a method of manufacturing a magnetic recording medium in which the cost is 4 yen.

磁気記録媒体においてはm性体の各粒子が完全にばらば
らの方向を向いて、いわば無配向の状■;で存在すれば
角形比が0.5になるが、本発明のように0.3〜0.
7の範囲にあれば1−分である、角形比が0.3未満で
は記録媒体の而に対する垂直方向配向粒子が少なくなり
、垂直方向残!#I 磁化の出力が小さくなり好ましく
ない、角形比が0.7を超えると垂直方向配向粒子が過
多になり、従来の垂直磁気記録媒体のおける問題、即ち
磁気記録層表面の凹凸化と出力の不安定化とか。
In a magnetic recording medium, if each particle of the m-type substance is completely oriented in different directions and exists in a so-called non-oriented state, the squareness ratio will be 0.5, but as in the present invention, the squareness ratio is 0.3. ~0.
If the squareness ratio is in the range of 7, it is 1-minute.If the squareness ratio is less than 0.3, there will be fewer vertically oriented particles with respect to the recording medium, and there will be fewer vertically oriented particles. #I If the squareness ratio exceeds 0.7, there will be too many vertically oriented particles, which will lead to problems with conventional perpendicular magnetic recording media, such as unevenness on the surface of the magnetic recording layer and decreased output. Things like destabilization.

従来のリング状ヘッドに適しないなどの問題が起ってく
るので好ましくない、しかしながら、ここで最も注目す
べきことは、本発明で製造される高密度記録特性は、磁
場配向処理をまったく行わずに製造し得ることであり、
これは磁性体として31状粒子を用いた場合の前述の結
果からは側底予Jlll L得ないことである。
This is undesirable because it causes problems such as being unsuitable for conventional ring-shaped heads.However, what is most noteworthy here is that the high-density recording characteristics produced by the present invention do not require any magnetic field alignment treatment. It is possible to manufacture
This is because the basolateral prediction cannot be obtained from the above-mentioned results when 31-shaped particles are used as the magnetic material.

本発明で用いる六方晶系で一軸異方性の結晶からなる磁
性体の具体例としては、Ba、Sr。
Specific examples of the magnetic material composed of hexagonal and uniaxially anisotropic crystals used in the present invention include Ba and Sr.

Pb、Ca’9のフェライトなどの六方晶フェライト及
び該フェライトのFeの一部をCo、Ti。
Hexagonal ferrites such as Pb and Ca'9 ferrites and a part of the Fe of the ferrites are replaced with Co and Ti.

Zn 、Nb 、Ta、Sbなどテ置換したもの、ある
いはCOを主成分とする合金Co−Ni。
Zn, Nb, Ta, Sb, etc. substituted with Te, or an alloy Co-Ni whose main component is CO.

Co−Feが例示できるが、特に置換型六方晶フェライ
トが々fましい、これらの磁性体粉末は、粒径0.01
〜0.3μの範囲にある必要がある。0.01−未満で
は強磁性を示さなくなり、磁気記録には使用できない、
また0、3−を超えると高密度記録に適さなくなる。
Co-Fe is an example, but substituted hexagonal ferrite is particularly frightening.These magnetic powders have a particle size of 0.01
It needs to be in the range of ~0.3μ. If it is less than 0.01, it will no longer exhibit ferromagnetism and cannot be used for magnetic recording.
Moreover, if it exceeds 0.3-, it becomes unsuitable for high-density recording.

ノ、(材l−に磁性体粉末を含む樹脂組成物を塗布する
r順は、従来の方法に従えばよい0例えば塩化ビニル−
耐酸ビニル共屯合体、ウレタン!!l脂、セルロース誘
導体などの樹脂に、アニオン系、ノニオン系、カチオン
系などの分散剤、硬化剤、更に必要に応じ適当な有効溶
剤等からなる組成物中に磁性体粉末を分散させ、これを
ドクターブレードなどを用いて基材に塗布すればよい、
この後、乾燥することにより磁気記録媒体が得られる。
(The order in which the resin composition containing magnetic powder is applied to the material may be according to the conventional method.)
Acid-resistant vinyl conjugate, urethane! ! Magnetic powder is dispersed in a composition consisting of a resin such as lubricant or cellulose derivative, an anionic, nonionic, or cationic dispersant, a curing agent, and an appropriate effective solvent if necessary. Just apply it to the base material using a doctor blade etc.
Thereafter, a magnetic recording medium is obtained by drying.

本発明の磁気記録媒体は、安定した記録、再生を行うこ
とができ、しかも現在主流であるリング状磁気へ一2ド
を使用することができる、高密度記録に好適な媒体であ
る。しかも、磁場配向処理なしに製造できるため、省力
化、省電力、低廉化の点でも有利な記録媒体である。
The magnetic recording medium of the present invention is a medium suitable for high-density recording, which can perform stable recording and reproduction, and can also use ring-shaped magnetism, which is currently the mainstream. Moreover, since it can be manufactured without magnetic field alignment treatment, it is a recording medium that is advantageous in terms of labor saving, power saving, and low cost.

以下、実施例を具体的に記載する。Examples will be specifically described below.

実施例 Ba、Feの塩化物及び保磁力低減化のための添加物即
ちCo、Tiの塩化物を含む溶液と、NaOH,Na2
CO3を用いたアルカリ溶液とを混合し、沈澱物を得た
後、これを洗浄、乾燥した粉末を900℃にて2時間焼
成して板状のCo −T i m換Baフェライト粉末
を得た。この粉末の粒径は顕微鏡観察の結果0.05−
〜0.25−であった、この粉末をレシチンなどの分散
剤及びウレタンや1ム化ビニルなどの樹脂とよ< JS
、合し、分散して得た塗ネ1を、ドクターブレードを用
いて約3−の厚みにポリエチレンテレフタレートの基材
に塗布し、乾燥後、カレンダー処理を施して表面を平滑
にした。このようにして得た記録媒体の磁化曲線を反磁
界補正した磁化曲線を第1図に示す、この図より角形比
は0.48であった。この記録媒体について、現在使用
されているリング状ヘッドにより記録した場合の記録冨
度と再生出力を第2図に示す(曲線A)、記録、再生に
用いたリング状ヘッドの形状はギャプ輻Q、15g、ト
ラック幅35−である、比較のために現在使用されてい
る面内長手方向に針状粒子(Co−被着γ−Fe203
)を配向させた記録媒体の値も同時に示した(曲線B)
が、本発明により得られた磁気記録媒体が、すぐれた高
密度記録特性を示すのがわかる。
Example A solution containing chlorides of Ba and Fe and additives for reducing coercive force, ie, chlorides of Co and Ti, and NaOH, Na2
After mixing with an alkaline solution using CO3 to obtain a precipitate, this was washed and the dried powder was calcined at 900°C for 2 hours to obtain a plate-shaped Co - Ti m exchanged Ba ferrite powder. . As a result of microscopic observation, the particle size of this powder was 0.05-
This powder was mixed with a dispersant such as lecithin and a resin such as urethane or vinyl chloride.
The coating material 1 obtained by combining and dispersing the coating material was applied to a polyethylene terephthalate base material to a thickness of about 3 mm using a doctor blade, and after drying, the surface was smoothed by calendering. The magnetization curve obtained by demagnetizing field correction of the magnetization curve of the recording medium thus obtained is shown in FIG. 1. From this figure, the squareness ratio was 0.48. Figure 2 shows the recording density and reproduction output of this recording medium when recording is performed using the currently used ring-shaped head (curve A). , 15g, track width 35-, the currently used in-plane longitudinal direction acicular particles (Co-coated γ-Fe203
) is also shown at the same time as the value of the recording medium oriented (curve B)
However, it can be seen that the magnetic recording medium obtained according to the present invention exhibits excellent high-density recording characteristics.

比較例 上記実施例で用いた磁性塗料を、実施例と同様にして基
材上に塗布したのち、塗料が乾燥する前に媒体に垂直な
方向に4 KOeの磁界を印加して配向処理を行い、し
かるのち乾燥し、カレンダー処理を行って磁気記録媒体
を製造した。この磁気記録媒体の角形比は0.80であ
った。また、表面あらさは0.06−であり、実施例の
記録媒体の表面あらさの0.02−に比べて大きかった
。さらに実施例と同様にして測定した再生出力は実施例
の再生出力に比べて一2dBであり、同様に出力対ノイ
ズ比は一3dBと低かった。
Comparative Example The magnetic paint used in the above example was applied onto a substrate in the same manner as in the example, and before the paint dried, a magnetic field of 4 KOe was applied in the direction perpendicular to the medium to perform orientation treatment. , and then dried and calendered to produce a magnetic recording medium. The squareness ratio of this magnetic recording medium was 0.80. Further, the surface roughness was 0.06-, which was larger than the surface roughness of the recording medium of Example, which was 0.02-. Further, the reproduction output measured in the same manner as in the example was 12 dB compared to the reproduction output of the example, and the output-to-noise ratio was similarly low at 13 dB.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の磁気記録媒体の媒体表面に垂直な方向
に測定した磁化曲線を反磁界補正した磁化曲線を表し;
第2図は、前記記録媒体A及び比較用の記録媒体Bの記
録密度と再生出力との関係を表す。 0.1    0.30.5  1.0    3.0
’K”Iti−’J &(10’/cm >第2図
FIG. 1 shows a magnetization curve obtained by demagnetizing field correction of the magnetization curve measured in the direction perpendicular to the medium surface of the magnetic recording medium of the present invention;
FIG. 2 shows the relationship between the recording density and reproduction output of the recording medium A and the comparative recording medium B. 0.1 0.30.5 1.0 3.0
'K'Iti-'J &(10'/cm>Fig. 2

Claims (2)

【特許請求の範囲】[Claims] (1)粒径が0.01〜0.3μmであって、一軸異方
性の六方晶系磁性体粉末を用いて磁性塗料を調製し、次
いで前記磁性塗料を基体上に実質的に配向処理を施すこ
となく塗布・乾燥することにより、媒体表面に垂直な方
向に測定した磁化曲線を反磁界補正した磁化曲線の、残
留磁化/飽和磁化の比を0.3〜0.7にすることを特
徴とする磁気記録媒体の製造方法。
(1) A magnetic paint is prepared using a uniaxially anisotropic hexagonal magnetic powder having a particle size of 0.01 to 0.3 μm, and then the magnetic paint is substantially oriented on a substrate. By coating and drying without applying any A method for manufacturing a magnetic recording medium.
(2)六方晶磁性体が六方晶フェライト又はその置換体
である特許請求の範囲第1項記載の製造方法。
(2) The manufacturing method according to claim 1, wherein the hexagonal magnetic material is hexagonal ferrite or a substitute thereof.
JP61188309A 1986-08-11 1986-08-11 Production of magnetic recording medium Granted JPS6265238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61188309A JPS6265238A (en) 1986-08-11 1986-08-11 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61188309A JPS6265238A (en) 1986-08-11 1986-08-11 Production of magnetic recording medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56102265A Division JPS586525A (en) 1981-07-02 1981-07-02 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6265238A true JPS6265238A (en) 1987-03-24
JPH0323974B2 JPH0323974B2 (en) 1991-04-02

Family

ID=16221350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61188309A Granted JPS6265238A (en) 1986-08-11 1986-08-11 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6265238A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5586103A (en) * 1978-12-22 1980-06-28 Toshiba Corp High density magnetic recording unit
JPS55142421A (en) * 1979-04-23 1980-11-07 Toshiba Corp Manufacture for magnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5586103A (en) * 1978-12-22 1980-06-28 Toshiba Corp High density magnetic recording unit
JPS55142421A (en) * 1979-04-23 1980-11-07 Toshiba Corp Manufacture for magnetic recording medium

Also Published As

Publication number Publication date
JPH0323974B2 (en) 1991-04-02

Similar Documents

Publication Publication Date Title
KR860000310B1 (en) Magnetic recording media
KR930009640B1 (en) Magnetic recording medium
JPH04123312A (en) Magnetic recording medium for master
JP2744114B2 (en) Multi-frequency superimposed magnetic recording method and magnetic recording medium for multi-frequency superimposed magnetic head recording
JPS6265238A (en) Production of magnetic recording medium
JPH03701B2 (en)
JPH0386917A (en) Magnetic recording carrier
JPS6250888B2 (en)
JPS62117104A (en) Recording and reproducing method for magnetic recording medium
KR960002035B1 (en) Magnetic recording medium and its manufacturing method
JPS6146893B2 (en)
JPS61217936A (en) Production of magnetic recording medium
JPS6146892B2 (en)
JP2843342B2 (en) Manufacturing method of magnetic recording medium
JPH01251427A (en) Magnetic recording medium
JPS59129935A (en) Magnetic recording medium
JPH0349024A (en) Magnetic recording medium
JPH04163715A (en) Magnetic tape and manufacture thereof
JPS6157040A (en) Production of vertical magnetic recording medium
JPS61217933A (en) Magnetic recording medium
JPH0362313A (en) Magnetic recording medium and its production
JPH036643B2 (en)
JPH08106622A (en) Magnetic recording medium and its production
JPS61217932A (en) Magnetic recording medium
JPH0562152A (en) Magnetic tape