JPH08106622A - Magnetic recording medium and its production - Google Patents

Magnetic recording medium and its production

Info

Publication number
JPH08106622A
JPH08106622A JP6266231A JP26623194A JPH08106622A JP H08106622 A JPH08106622 A JP H08106622A JP 6266231 A JP6266231 A JP 6266231A JP 26623194 A JP26623194 A JP 26623194A JP H08106622 A JPH08106622 A JP H08106622A
Authority
JP
Japan
Prior art keywords
magnetic
longitudinal direction
flux density
magnetic field
hexagonal ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6266231A
Other languages
Japanese (ja)
Inventor
Shinichi Kitahata
慎一 北畑
Toyoji Okuwaki
東洋治 奥脇
Kazuyoshi Yoshida
和悦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Holdings Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP6266231A priority Critical patent/JPH08106622A/en
Publication of JPH08106622A publication Critical patent/JPH08106622A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE: To improve durability by specifying the ratio of the residual magnetic flux density in a longitudinal direction measured when a magnetic field is removed after the magnetic layer surface of a magnetic recording medium provided with a magnetic layer contg. platelike hexagonal ferrite powder on a nonmagnetic substrate is subjected to saturation magnetization in a perpendicular direction and the saturation magnetic flux density in the longitudinal direction to a prescribed value. CONSTITUTION: The axis of easy magnetization of the planar hexagonal ferrite powder in the magnetic coating film 2 is oriented in the longitudinal direction like an arrow A on a base film 3 formed with the magnetic coating film 2 of a fluid state coated with a magnetic coating material between opposed N-N magnets 1a, 1b at the left end of Fig. Next, the axis of easy magnetization of the platelike hexagonal ferrite powder is oriented in a C direction from a B direction by the opposed S-N magnets 4a, 4b on the right side, then the opposed S-N magnets 5a, 5b. The ratio of the residual magnetic flux density Br' in the longitudinal direction and the saturation magnetic flux density Bs in the longitudinal direction measured when the magnetic field is removed after the magnetic layer surface is subjected to saturation magnetization in the direction perpendicular thereto is specified to a relation satisfying 0.2<Br'/Bs<0.6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は記録素子として板状六
方晶フェライト粉末を使用した磁気記録媒体とその製造
方法に関し、さらに詳しくは電磁変換特性および耐久性
に優れた前記の磁気記録媒体とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium using a plate-shaped hexagonal ferrite powder as a recording element and a method for producing the same, and more specifically to the above magnetic recording medium excellent in electromagnetic conversion characteristics and durability. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】一般に、磁気記録媒体は、磁性粉末を結
合剤樹脂、有機溶剤およびその他の必要成分とともに混
合分散して調製した磁性塗料を、基体上に塗布、乾燥し
てつくられ、近年、この種の磁気記録媒体に対する高記
録密度化の要求がますます強くなっている。このため、
磁性粉末として、板状六方晶フェライト粉末を使用する
ことが行われており、特に、板状六方晶フェライト粉末
の板面に対して垂直方向にある磁化容易軸を磁性層の長
手方向に配向させると、粉末粒子が板面を接してスタッ
キングを起こした場合に作用する粒子間相互作用によっ
て、磁気記録媒体の保磁力角形比が 0.9程度以上とな
り、従来の針状磁性粉末を用いた磁気記録媒体の 0.7程
度の保磁力角形比に比べて高く、優れた短波長特性を示
すことから、この種の板状六方晶フェライト粉末を磁性
層の長手方向に配向させて、高記録密度化することが試
みられている。
2. Description of the Related Art Generally, a magnetic recording medium is prepared by coating and drying a magnetic coating material prepared by mixing and dispersing magnetic powder with a binder resin, an organic solvent and other necessary components on a substrate. The demand for higher recording density for this type of magnetic recording medium is increasing. For this reason,
As a magnetic powder, it has been practiced to use a plate-shaped hexagonal ferrite powder, and in particular, an easy axis of magnetization that is perpendicular to the plate surface of the plate-shaped hexagonal ferrite powder is oriented in the longitudinal direction of the magnetic layer. And the coercive force squareness ratio of the magnetic recording medium becomes about 0.9 or more due to the interparticle interaction that occurs when the powder particles come into contact with the plate surface and stacking occurs, and the magnetic recording medium using the conventional acicular magnetic powder It has a higher coercive force squareness ratio of about 0.7 and exhibits excellent short wavelength characteristics.Therefore, it is possible to orient this kind of plate-shaped hexagonal ferrite powder in the longitudinal direction of the magnetic layer to achieve high recording density. Being tried.

【0003】[0003]

【発明が解決しようとする課題】ところが、この種の板
状六方晶フェライト粉末を長手方向に配向させるために
強い配向磁場中にさらすと、角型は高くなるものの、粉
末粒子のスタッキングの程度が大きくなりすぎて、ノイ
ズの増大をきたすという難点がある。また、磁性層の表
面平滑性を良好にして短波長特性を向上させるために必
要不可欠なカレンダ処理を行うと、長手方向の配向によ
り磁性層面に対して立てられた状態の板状六方晶フェラ
イト粉末が押さえられ、配向が乱されるという現象がお
こって、かえって短波長特性が悪化し、甚だしい場合に
は磁性層面にきれつが入り、耐久性が著しく低下する。
However, when this type of plate-shaped hexagonal ferrite powder is exposed to a strong orienting magnetic field in order to orient it in the longitudinal direction, the squareness becomes higher, but the stacking degree of the powder particles is increased. There is a drawback that it becomes too large and causes an increase in noise. In addition, when the calendering treatment, which is indispensable in order to improve the surface smoothness of the magnetic layer and to improve the short wavelength characteristics, is performed, the plate-like hexagonal ferrite powder is erected on the magnetic layer surface by the longitudinal orientation. Occurs, and the orientation is disturbed, and the short-wavelength characteristics are rather deteriorated. In extreme cases, the surface of the magnetic layer is cracked and durability is significantly reduced.

【0004】[0004]

【課題を解決するための手段】この発明は、かかる事情
に鑑み種々検討を行った結果なされたもので、非磁性基
体上に板状六方晶フェライト粉末を含む磁性塗料を塗布
した後、まず磁化容易軸を長手方向に配向させ、次いで
磁化容易軸を垂直方向に配向させ、さらに磁性層面に対
し垂直方向に平均して10〜60°の方向に磁力線の方
向を有する磁場を作用させて配向させ、磁性層面に対し
垂直方向に飽和磁化させたのち磁場を取り去った場合に
測定した長手方向の残留磁束密度Br´と長手方向の飽
和磁束密度Bsの比Br´/Bsを、 0.2<Br´/Bs<0.6 を満たす関係にすることによって、板状六方晶フェライ
ト粉末のスタッキングを適度なものとし、またカレンダ
処理によって板状六方晶フェライト粉末を、乱れを生じ
させることなく良好に配向させて、電磁変換特性および
耐久性を充分に向上させたものである。
The present invention has been made as a result of various studies in view of such circumstances. After applying a magnetic coating material containing plate-shaped hexagonal ferrite powder on a non-magnetic substrate, the The easy axis is oriented in the longitudinal direction, then the easy axis is oriented in the vertical direction, and the magnetic layer is oriented by applying a magnetic field having an average direction of 10 to 60 ° in the direction perpendicular to the magnetic layer surface. The ratio Br ′ / Bs of the residual magnetic flux density Br ′ in the longitudinal direction and the saturated magnetic flux density Bs in the longitudinal direction measured when the magnetic field is removed after saturation magnetization in the direction perpendicular to the magnetic layer surface is 0.2 <Br ′ / By satisfying the relationship of satisfying Bs <0.6, stacking of the plate-shaped hexagonal ferrite powder is made moderate, and the plate-shaped hexagonal ferrite powder is not disturbed by the calendar treatment. It is oriented well and the electromagnetic conversion characteristics and durability are sufficiently improved.

【0005】この発明において、板状六方晶フェライト
粉末の磁場配向は、図1の板状六方晶フェライト粉末の
磁場配向工程説明図に示すように、まず左端のN−N対
向磁石1a,1b間に、磁性塗料が塗布されて流動状態
の磁性塗膜2が形成されたベ−スフィルム3を導入出さ
せて行われ、磁性塗膜2中の板状六方晶フェライト粉末
の磁化容易軸を矢印Aに示すように長手方向に配向させ
る。
In the present invention, the magnetic field orientation of the plate-shaped hexagonal ferrite powder is first determined between the N-N facing magnets 1a and 1b at the left end as shown in the magnetic field orientation process explanatory diagram of the plate-shaped hexagonal ferrite powder of FIG. The magnetic film is applied to the base film 3 on which the magnetic coating film 2 in a fluidized state is formed, and the easy axis of magnetization of the plate-like hexagonal ferrite powder in the magnetic coating film 2 is indicated by an arrow. As shown in A, it is oriented in the longitudinal direction.

【0006】そして、引き続き、中央部のS−N対向磁
石4a、4b間に導入出させて、こんどは磁性塗膜2中
の板状六方晶フェライト粉末の磁化容易軸を矢印Bに示
すように垂直方向に配向させ、さらに、引き続いて、右
端部の幅を広くした磁石5aと、幅を狭くして入り側端
面を磁石5aと揃えた磁石5bとのS−N対向磁石5
a、5b間に導入出させ、磁性塗膜2面に対し垂直方向
に平均して10〜60°の方向に磁力線の方向を有する
磁場を作用させて配向させる。
Then, it is introduced between the S-N facing magnets 4a and 4b in the central portion, and this time, the easy axis of magnetization of the plate-shaped hexagonal ferrite powder in the magnetic coating film 2 is indicated by an arrow B. The SN facing magnet 5 is composed of a magnet 5a which is oriented in the vertical direction and is further widened, and a magnet 5b whose width at the right end is narrowed and magnet 5b whose width is narrowed so that the entrance side end face is aligned with the magnet 5a.
It is introduced between a and 5b, and is oriented by applying a magnetic field having a direction of magnetic force lines in the direction of 10 to 60 ° on average in the direction perpendicular to the surface of the magnetic coating film 2.

【0007】しかして、流動状態の磁性塗膜2中の板状
六方晶フェライト粉末は、まず左端のN−N対向磁石1
a,1bにより磁化容易軸が矢印Aに示すように長手方
向にそろえられ、次いで、中央部のS−N対向磁石4
a、4bによる垂直方向の磁場の印加により、矢印Bに
示すように垂直方向に配向されるため、粉末粒子同士が
その板面を互いに平行となるように流動しやすくなる。
そして、さらに右端部のS−N対向磁石5a、5bによ
り、磁性層面に対して角度を徐々に変えながら斜め方向
の磁力線成分を有する磁場が印加されるため、板状六方
晶フェライト粉末はその板面をそろえて磁性層面に対し
て斜め方向に配向され、磁化容易軸が最終的に矢印Cに
示すように配向される。
However, the plate-like hexagonal ferrite powder in the magnetic coating film 2 in the fluidized state is first of all the N-N facing magnet 1 at the left end.
The axes of easy magnetization are aligned in the longitudinal direction by a and 1b as shown by the arrow A, and then the SN facing magnet 4 in the central portion is aligned.
By applying a magnetic field in the vertical direction by a and 4b, the particles are oriented in the vertical direction as shown by arrow B, so that the powder particles easily flow so that their plate surfaces are parallel to each other.
Further, the SN facing magnets 5a and 5b at the right end further apply a magnetic field having a magnetic force line component in an oblique direction while gradually changing the angle with respect to the magnetic layer surface, so that the plate-shaped hexagonal ferrite powder is The planes are aligned in an oblique direction with respect to the magnetic layer plane, and the easy axis of magnetization is finally oriented as shown by an arrow C.

【0008】従って、六方晶フェライト粉末粒子のスタ
ッキングの程度が大きくなりすぎて、ノイズの増大をき
たすこともなく、また、引き続きカレンダ処理を行って
も、六方晶フェライト粉末粒子の板面がそろっているた
め、六方晶フェライト粉末粒子の配向の乱れも抑制され
る。その結果、板状六方晶フェライト粉末が良好に配向
され、磁性層表面の表面平滑性が良好になって、電磁変
換特性が充分に向上され、また磁性層面にきれつが入っ
たりすることもなく、耐久性が充分に向上される。
Therefore, the stacking degree of the hexagonal ferrite powder particles does not become too large, which causes an increase in noise, and even if the calendering is continuously performed, the plate surfaces of the hexagonal ferrite powder particles are uniform. Therefore, the disorder of the orientation of the hexagonal ferrite powder particles is also suppressed. As a result, the plate-like hexagonal ferrite powder is favorably oriented, the surface smoothness of the magnetic layer surface is improved, the electromagnetic conversion characteristics are sufficiently improved, and the magnetic layer surface is not cracked. Durability is sufficiently improved.

【0009】このように、板状六方晶フェライト粉末の
磁化容易軸を、最終的に図1の矢印Cに示すように磁性
層面に対して斜め方向に配向させる際、右端部のS−N
対向磁石5a、5bで作用させる磁場は、磁性塗膜2面
に対し垂直方向に平均して10〜60°の方向に磁力線
の方向を有する磁場とし、磁性層面に対して垂直方向に
飽和磁化させたのち磁場を取り去った場合に測定した長
手方向の残留磁束密度Br´と長手方向の飽和磁化密度
Bsの比Br´/Bsが、 0.2<Br´/Bs<0.6 を満たす関係となるようにするのが好ましく、このBr
´/Bsが 0.2より小さくては出力が低下し、また、0.
6 より大きくなるとノイズが増大する傾向を示すため好
ましくない。
Thus, when the easy axis of magnetization of the plate-like hexagonal ferrite powder is finally oriented obliquely with respect to the magnetic layer surface as shown by arrow C in FIG.
The magnetic field applied by the opposing magnets 5a and 5b is a magnetic field having a direction of magnetic force lines in the direction of 10 to 60 ° on average in the direction perpendicular to the magnetic coating film 2 surface, and saturated magnetization is applied in the direction perpendicular to the magnetic layer surface. After that, the ratio Br ′ / Bs of the residual magnetic flux density Br ′ in the longitudinal direction and the saturation magnetization density Bs in the longitudinal direction measured when the magnetic field is removed is set to satisfy the relationship of 0.2 <Br ′ / Bs <0.6. Is preferred, and this Br
If ´ / Bs is less than 0.2, the output will decrease, and
When it is larger than 6, noise tends to increase, which is not preferable.

【0010】また、この発明において使用される板状六
方晶フェライト粉末としては、水熱法、ガラス中フラッ
クス法など、通常の製造法によって作製される各種置換
元素を含有する板状六方晶フェライト粉末が好適なもの
として使用され、保磁力が200エルステッド未満では
高密度記録が行えず、2000エルステッドを超えると
現行の磁気ヘッドでは充分な磁気記録が行えないため、
200〜2000エルステッドの保磁力を有するものが
好ましく使用される。また粒子径は、平均粒子径が0.02
μm未満では充分な磁気特性が得られず、 0.5μmを超
えると磁性層の表面平滑性を充分に向上させることがで
きず、高密度記録が行えないため、0.02μm〜 0.5μm
の範囲内のものが好ましく使用される。
Further, the plate-like hexagonal ferrite powder used in the present invention is a plate-like hexagonal ferrite powder containing various substitution elements produced by a conventional manufacturing method such as a hydrothermal method or a flux method in glass. Is preferable, and if the coercive force is less than 200 Oersted, high-density recording cannot be performed, and if it exceeds 2000 Oersted, the current magnetic head cannot perform sufficient magnetic recording.
Those having a coercive force of 200 to 2000 Oersted are preferably used. The average particle size is 0.02.
If it is less than μm, sufficient magnetic properties cannot be obtained, and if it exceeds 0.5 μm, the surface smoothness of the magnetic layer cannot be sufficiently improved and high density recording cannot be performed, so 0.02 μm to 0.5 μm
Those within the range are preferably used.

【0011】この発明の磁気記録媒体を製造するには常
法に準じて行えばよく、たとえば、板状六方晶フェライ
ト粉末を、結合剤樹脂、有機溶剤等とともに混合分散し
て磁性塗料を調製し、この磁性塗料をポリエステルフィ
ルムなどの非磁性基体上にロ−ルコ−タ−など任意の塗
布手段によって塗布した後、まず磁化容易軸を長手方向
に配向させ、次いで磁化容易軸を垂直方向に配向させ、
さらに磁性層面に対し垂直方向に平均して10〜60°
の方向に磁力線の方向を有する磁場を作用させて配向さ
せ、磁性層面に対し垂直方向に飽和磁化させたのち磁場
を取り去った場合に測定した長手方向の残留磁束密度B
r´と長手方向の飽和磁束密度Bsの比Br´/Bs
が、 0.2<Br´/Bs<0.6 を満たす関係となるようにすればよい。
The magnetic recording medium of the present invention may be manufactured according to a conventional method. For example, a plate-shaped hexagonal ferrite powder is mixed and dispersed with a binder resin, an organic solvent and the like to prepare a magnetic coating material. After coating this magnetic coating on a non-magnetic substrate such as a polyester film by any coating means such as a roll coater, first the easy axis of magnetization is oriented in the longitudinal direction, and then the easy axis of magnetization is oriented in the vertical direction. Let
Furthermore, it is 10 to 60 ° on average in the direction perpendicular to the magnetic layer surface.
The residual magnetic flux density B in the longitudinal direction measured when the magnetic field is removed by applying a magnetic field having a direction of magnetic force lines to
The ratio Br ′ / Bs of r ′ and the saturation magnetic flux density Bs in the longitudinal direction
Should satisfy the relation of 0.2 <Br ′ / Bs <0.6.

【0012】ここに用いる結合剤樹脂としては、塩化ビ
ニル−酢酸ビニル系共重合体、ポリビニルブチラ−ル系
樹脂、繊維素系樹脂、ポリウレタン系樹脂、ポリエステ
ル系樹脂、イソシアネ−ト化合物、放射線硬化型樹脂な
ど従来汎用されている結合剤樹脂が広く用いられる。
The binder resin used here is a vinyl chloride-vinyl acetate copolymer, a polyvinyl butyral resin, a fibrin resin, a polyurethane resin, a polyester resin, an isocyanate compound, radiation curing. Conventionally widely used binder resins such as mold resins are widely used.

【0013】また、有機溶剤としては、メチルエチルケ
トン、メチルイソブチルケトン、シクロヘキサノン、テ
トラヒドロフラン、酢酸エチル、トルエンなど従来から
汎用されている有機溶剤が単独または二種以上混合して
使用される。
As the organic solvent, conventionally used organic solvents such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, tetrahydrofuran, ethyl acetate and toluene may be used alone or in combination of two or more.

【0014】なお、磁性塗料中には通常使用されている
各種添加剤、たとえば分散剤、潤滑剤、研磨剤、帯電防
止剤などを任意に添加使用してもよい。
In the magnetic coating composition, various kinds of additives usually used, such as a dispersant, a lubricant, an abrasive and an antistatic agent, may be optionally added and used.

【0015】[0015]

【実施例】次に、この発明の実施例について説明する。 実施例1 Co−Ti置換型バリウムフェライト六方晶磁性粉末 1000 重量部 (平均粒子径0.05μm、平均板状比3、保磁力1250 エルステッド、飽和磁化58 emu/g) 塩化ビニル−酢酸ビニル−ビニルアルコ−ル共重合体 137.5 〃 (U.C.C 社製;VAGH) ポリウレタン樹脂(大日本インキ化学工業社製;パンデッ 87.5 〃 クスT5201) α−Fe2 3 粉末 100 〃 メチルイソブチルケトン 800 〃 トルエン 800 〃 上記の組成物をボ−ルミルにて3日間混合分散した後、
オレイルオレ−ト80重量部と3官能性イソシアネ−ト
化合物(日本ポリウレタン工業社製;コロネ−トL)2
5重量部とを加え、さらに2時間混合分散して磁性塗料
を調製した。
EXAMPLES Next, examples of the present invention will be described. Example 1 1000 parts by weight of Co-Ti substituted barium ferrite hexagonal magnetic powder (average particle diameter 0.05 μm, average plate ratio 3, coercive force 1250 Oersted, saturation magnetization 58 emu / g) vinyl chloride-vinyl acetate-vinyl alcohol- Copolymer 137.5〃 (UCC; VAGH) Polyurethane resin (Dainippon Ink and Chemicals; Pandex 87.5 〃 T5201) α-Fe 2 O 3 powder 100 〃 Methyl isobutyl ketone 800 〃 Toluene 800 〃 After mixing and dispersing the product in a ball mill for 3 days,
80 parts by weight of oleyl oleate and a trifunctional isocyanate compound (Nippon Polyurethane Industry Co., Ltd .; Coroneate L) 2
5 parts by weight was added, and the mixture was further mixed and dispersed for 2 hours to prepare a magnetic coating material.

【0016】次いで、この磁性塗料をグラビアコ−タ−
を用いて厚さが14μmのポリエステルフィルム上に塗
布した後、磁性塗料が流動状態にある間に、まず最大磁
場強度4Kエルステッドを発生している反発対向磁石を
用いて磁化容易軸を長手方向に配向させ、さらに最大磁
場強度4Kエルステッドを発生している吸引対向磁石を
用いて磁化容易軸を垂直方向に配向させ、引き続き磁性
層面に対し垂直方向に平均して20°方向に磁力線の方
向がある磁場中を通過させて配向させた。配向後、乾燥
して厚さが 2.5μmの磁性層を形成した後、カレンダ処
理を行い、所定の幅に裁断して磁気テ−プを作製した。
Then, the magnetic coating is applied to a gravure coater.
Is applied to a polyester film having a thickness of 14 μm, and then while the magnetic paint is in a flowing state, first, an easy axis of magnetization is set in the longitudinal direction by using a repulsive opposed magnet that generates a maximum magnetic field strength of 4 K oersted. Orientation is further performed, and the easy axis of magnetization is oriented in the vertical direction by using an attracting opposed magnet that generates a maximum magnetic field strength of 4K oersted, and then the direction of the magnetic field lines is in the direction of 20 ° on average in the direction perpendicular to the magnetic layer surface. It was oriented by passing through a magnetic field. After the orientation, the magnetic layer was dried to form a magnetic layer having a thickness of 2.5 μm, calendered and cut into a predetermined width to produce a magnetic tape.

【0017】実施例2 実施例1における磁場配向工程において、磁化容易軸を
垂直方向に配向させた後、引き続き行う配向を、磁性層
面に対し垂直方向に平均して20°方向に磁力線の方向
がある磁場中に代えて、磁性層面に対し垂直方向に平均
して40°方向に磁力線の方向がある磁場中を通過させ
て行った以外は、実施例1と同様にして磁場配向させ、
磁気テ−プを作製した。
Example 2 In the magnetic field orientation step in Example 1, after the easy axis of magnetization is oriented in the vertical direction, the subsequent orientation is averaged in the direction perpendicular to the surface of the magnetic layer and the direction of the magnetic field lines is 20 °. Magnetic field orientation was performed in the same manner as in Example 1 except that instead of a certain magnetic field, the magnetic field was oriented in the direction perpendicular to the surface of the magnetic layer and the direction of the magnetic force lines was 40 ° on average.
A magnetic tape was produced.

【0018】比較例1 実施例1における磁場配向工程において、長手方向配向
磁場および垂直方向配向磁場の印加を省き、磁性層面に
対し垂直方向に平均して20°方向に磁力線の方向があ
る磁場のみを印加した以外は、実施例1と同様にして磁
場配向させ、磁気テ−プを作製した。
Comparative Example 1 In the magnetic field orientation step of Example 1, the application of the longitudinal orientation magnetic field and the vertical orientation magnetic field was omitted, and only the magnetic field in which the direction of the magnetic field lines was 20 ° on average in the direction perpendicular to the magnetic layer surface. A magnetic tape was produced in the same manner as in Example 1 except that the magnetic field was applied.

【0019】比較例2 実施例1における磁場配向工程において、垂直方向配向
磁場のみを印加し、長手方向配向磁場および磁性層面に
対し垂直方向に平均して20°方向に磁力線の方向があ
る磁場の印加を省いた以外は、実施例1と同様にして磁
場配向させ、磁気テ−プを作製した。
Comparative Example 2 In the magnetic field orientation step in Example 1, only the vertical orientation magnetic field was applied, and the longitudinal orientation magnetic field and the magnetic field in which the direction of the magnetic force line was 20 ° on average in the direction perpendicular to the magnetic layer surface. A magnetic tape was produced by orienting the magnetic field in the same manner as in Example 1 except that the application was omitted.

【0020】比較例3 実施例1における磁場配向工程において、長手方向配向
磁場のみを印加し、垂直方向配向磁場および磁性層面に
対し垂直方向に平均して20°方向に磁力線の方向があ
る磁場の印加を省いた以外は、実施例1と同様にして磁
場配向させ、磁気テ−プを作製した。
COMPARATIVE EXAMPLE 3 In the magnetic field orientation step in Example 1, only the longitudinal orientation magnetic field was applied, and the vertical orientation magnetic field and the magnetic field having the direction of the magnetic force line in the direction perpendicular to the magnetic layer surface were 20 °. A magnetic tape was produced by orienting the magnetic field in the same manner as in Example 1 except that the application was omitted.

【0021】各実施例および比較例で得られた磁気テ−
プについて、長手方向の保磁力Hcと角型Br/Bs、
磁性層面に対して垂直方向に10Kエルステッドの磁場
を印加して飽和磁化させたのち磁場を取り去った場合に
測定した長手方向の残留磁束密度Br´と長手方向の飽
和磁束密度Bsの比Br´/Bs、最大残留磁束密度B
mを測定し、磁性層の表面粗さおよびスチル耐久性を測
定した。また、ギャップ長 0.2μmのアモルファスヘッ
ドを用い、相対速度 3.8m/sec で、記録波長が 0.5μ
mにおける最適記録電流値のところで出力Cを測定し、
さらに、C/Nを測定した。磁性層の表面粗さは、東京
精密社製触針式表面粗度計を用いてカットオフ0.08mmで
中心線平均粗さRaを測定した。また、スチル耐久性は
出力が初期出力に対して6dB低下するまでの時間とし
て測定した。下記表1はその結果である。
The magnetic tape obtained in each Example and Comparative Example
The coercive force Hc in the longitudinal direction and the square Br / Bs,
The ratio Br ′ / of the residual magnetic flux density Br ′ in the longitudinal direction and the saturated magnetic flux density Bs in the longitudinal direction measured when the magnetic field is removed after the magnetic field is removed by applying a magnetic field of 10 K oersted in the direction perpendicular to the magnetic layer surface to cause saturation magnetization. Bs, maximum residual magnetic flux density B
m was measured to measure the surface roughness and still durability of the magnetic layer. Also, using an amorphous head with a gap length of 0.2 μm, the relative speed was 3.8 m / sec and the recording wavelength was 0.5 μm.
The output C is measured at the optimum recording current value at m,
Furthermore, C / N was measured. Regarding the surface roughness of the magnetic layer, the center line average roughness Ra was measured at a cutoff of 0.08 mm using a stylus type surface roughness meter manufactured by Tokyo Seimitsu Co., Ltd. The still durability was measured as the time required for the output to drop 6 dB from the initial output. Table 1 below shows the results.

【0022】 [0022]

【0023】[0023]

【発明の効果】上記表1から明らかなように、実施例1
および2で得られたこの発明の磁気テ−プは、いずれも
比較例1ないし3で得られた磁気テ−プに比べて、角型
Br/Bs、Br´/Bs、出力CおよびC/Nが高
く、磁性層の表面粗さが小さくて、スチル耐久性もよ
く、このことからこの発明で得られる磁気記録媒体は、
電磁変換特性および耐久性に優れていることがわかる。
As is apparent from Table 1 above, Example 1
The magnetic tapes of the present invention obtained in Nos. 1 and 2 are square Br / Bs, Br '/ Bs, outputs C and C /, respectively, as compared with the magnetic tapes obtained in Comparative Examples 1 to 3. The N content is high, the surface roughness of the magnetic layer is small, and the still durability is good. From this, the magnetic recording medium obtained by the present invention is
It can be seen that the electromagnetic conversion characteristics and durability are excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明における板状六方晶フェライト粉末の
磁場配向工程を示す説明図である。
FIG. 1 is an explanatory view showing a magnetic field orientation step of plate-like hexagonal ferrite powder in the present invention.

【符号の説明】 1a,1b N−N対向磁石 2 磁性塗膜 3 ベ−スフィルム(非磁性基体) 4a,4b S−N対向磁石 5a,5b S−N対向磁石[Explanation of reference numerals] 1a, 1b NN counter magnet 2 magnetic coating film 3 base film (non-magnetic substrate) 4a, 4b SN counter magnet 5a, 5b SN counter magnet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 和悦 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kaetsu Yoshida 1-280, Higashi Koigokubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基体上に板状六方晶フェライト粉
末を含む磁性層を設けた磁気記録媒体において、磁性層
面に対し垂直方向に飽和磁化させたのち磁場を取り去っ
た場合に測定した長手方向の残留磁束密度Br´と長手
方向の飽和磁束密度Bsの比Br´/Bsが、 0.2<Br´/Bs<0.6 を満たす関係にあることを特徴とする磁気記録媒体
1. A magnetic recording medium having a magnetic layer containing plate-shaped hexagonal ferrite powder on a non-magnetic substrate, and a longitudinal direction measured when the magnetic field is removed after saturation magnetization in a direction perpendicular to the magnetic layer surface. Of the residual magnetic flux density Br 'and the saturation magnetic flux density Bs in the longitudinal direction, Br' / Bs, satisfy the relationship of 0.2 <Br '/ Bs <0.6.
【請求項2】 非磁性基体上に板状六方晶フェライト粉
末を含む磁性塗料を塗布した後、まず磁化容易軸を長手
方向に配向させ、次いで磁化容易軸を垂直方向に配向さ
せ、さらに磁性層面に対し垂直方向に平均して10〜6
0°の方向に磁力線の方向を有する磁場を作用させて配
向させ、磁性層面に対し垂直方向に飽和磁化させたのち
磁場を取り去った場合に測定した長手方向の残留磁束密
度Br´と長手方向の飽和磁束密度Bsの比Br´/B
sを、 0.2<Br´/Bs<0.6 を満たす関係にすることを特徴とする磁気記録媒体の製
造方法
2. A magnetic coating material containing a plate-shaped hexagonal ferrite powder is applied onto a non-magnetic substrate, and then the easy axis of magnetization is oriented in the longitudinal direction, and then the easy axis of magnetization is oriented in the vertical direction, and further the magnetic layer surface. To 10-6 on average in the vertical direction
The residual magnetic flux density Br ′ in the longitudinal direction and the longitudinal residual magnetic flux density Br ′ measured when the magnetic field is removed after the magnetic field having the direction of the magnetic force line in the direction of 0 ° is applied to orient it and saturated magnetization in the direction perpendicular to the magnetic layer surface is removed. Ratio Br ′ / B of saturation magnetic flux density Bs
and a relationship of 0.2 <Br ′ / Bs <0.6 is satisfied.
JP6266231A 1994-10-04 1994-10-04 Magnetic recording medium and its production Withdrawn JPH08106622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6266231A JPH08106622A (en) 1994-10-04 1994-10-04 Magnetic recording medium and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6266231A JPH08106622A (en) 1994-10-04 1994-10-04 Magnetic recording medium and its production

Publications (1)

Publication Number Publication Date
JPH08106622A true JPH08106622A (en) 1996-04-23

Family

ID=17428098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6266231A Withdrawn JPH08106622A (en) 1994-10-04 1994-10-04 Magnetic recording medium and its production

Country Status (1)

Country Link
JP (1) JPH08106622A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013025853A (en) * 2011-07-25 2013-02-04 Fujifilm Corp Magnetic tape and magnetic recorder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013025853A (en) * 2011-07-25 2013-02-04 Fujifilm Corp Magnetic tape and magnetic recorder
US8841009B2 (en) 2011-07-25 2014-09-23 Fujifilm Corporation Magnetic tape and magnetic recording device

Similar Documents

Publication Publication Date Title
JPS6249656B2 (en)
JP2644322B2 (en) Magnetic recording media
JPH04123312A (en) Magnetic recording medium for master
JPS6343811B2 (en)
JPH03701B2 (en)
JPH08106622A (en) Magnetic recording medium and its production
JPS5853022A (en) Magnetic recording medium
JPS59129933A (en) Magnetic recording medium
JPH0221050B2 (en)
JPH0619829B2 (en) Magnetic recording medium
JP2843342B2 (en) Manufacturing method of magnetic recording medium
JPH0349025A (en) Magnetic recording medium
JP2741018B2 (en) Magnetic recording media
JPS6341133B2 (en)
JPH0296924A (en) Manufacture of perpendicular magnetic recording medium
JPH01251427A (en) Magnetic recording medium
JPS59151342A (en) Magnetic recording medium and its manufacture
JPS59129935A (en) Magnetic recording medium
JPH0581643A (en) Magnetic recording medium
JPS62159345A (en) Production of magnetic recording medium
JPH0562152A (en) Magnetic tape
JPH0729152A (en) Magnetic recording medium
JPH0329116A (en) Production of magnetic recording medium
JPS61217936A (en) Production of magnetic recording medium
JPH03201214A (en) Magnetic recording medium and its production

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115