WO2009142263A1 - Magnetic recording medium - Google Patents

Magnetic recording medium Download PDF

Info

Publication number
WO2009142263A1
WO2009142263A1 PCT/JP2009/059351 JP2009059351W WO2009142263A1 WO 2009142263 A1 WO2009142263 A1 WO 2009142263A1 JP 2009059351 W JP2009059351 W JP 2009059351W WO 2009142263 A1 WO2009142263 A1 WO 2009142263A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic powder
recording medium
powder
range
Prior art date
Application number
PCT/JP2009/059351
Other languages
French (fr)
Japanese (ja)
Inventor
幹雄 岸本
俊明 泰井
健一郎 吉田
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Publication of WO2009142263A1 publication Critical patent/WO2009142263A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • G11B5/70678Ferrites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/714Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the dimension of the magnetic particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent

Definitions

  • the present invention relates to a magnetic recording medium, and more particularly, to a magnetic recording medium suitable for ultrahigh density recording such as a digital video tape and a backup tape for a computer using hexagonal ferrite powder as a magnetic powder.
  • a coating type magnetic recording medium having a magnetic layer containing a magnetic powder and a binder on a non-magnetic support requires a further improvement in recording density as the recording / reproducing method shifts from an analog method to a digital method. Yes.
  • the demand for video tapes for high recording density and backup tapes for computers is increasing year by year.
  • the thickness of the magnetic layer In order to cope with the short wavelength recording indispensable for improving the recording density, it is effective to reduce the thickness of the magnetic layer to 200 nm or less, particularly 100 nm or less in order to reduce the thickness loss during recording.
  • a reproducing magnetic head used in such a high recording density medium an MR head capable of obtaining a high output is generally used, but it is considered that a GMR head with higher sensitivity will be used in the future.
  • the coercive force depends on the shape magnetic anisotropy based on the acicular shape of the particles, it is difficult to further reduce the particle size from the above particle diameter. ing. That is, the acicular metal magnetic powder exhibits coercive force due to the shape magnetic anisotropy due to the acicular shape, but the acicular ratio (particle length / width) inevitably decreases as the particle size decreases. Thus, the coercive force is reduced. This reduction in coercive force becomes a fatal problem in improving the recording density. As described above, the acicular metal magnetic powder has an essential problem that the coercive force decreases as the particle size is reduced, and there is a limit to the particle size reduction.
  • a hexagonal ferrite magnetic powder having a plate shape and having an easy axis of magnetization in a direction perpendicular to the plate surface has been proposed as a magnetic powder that is completely different from the needle-shaped magnetic powder (Japanese Patent Laid-Open No. 6-290924). JP, JP-A-2005-340690 and JP-A-2002-298331).
  • This plate-shaped hexagonal ferrite magnetic powder has a coercive force based on crystal magnetic anisotropy, so that it can maintain a high coercive force even when it becomes a fine particle.
  • SNR noise-to-power ratio
  • the hexagonal ferrite magnetic powder disclosed in JP-A-6-290924, JP-A-2005-340690, and JP-A-2002-298331 has a high coercive force even though it is a fine particle. It has excellent characteristics as a magnetic powder.
  • the sensitivity of the reproducing head has been remarkably increased, and a high reproduction output can be obtained relatively easily, but at the same time, the noise output also increases, resulting in a problem that a high SNR cannot be obtained. In order to prevent this increase in noise, it is essential to make the magnetic powder fine particles.
  • the hexagonal ferrite magnetic powder has a small calculation volume due to the fine particles, but the particles have a plate-like shape, so that the particles are easily laminated and aggregated. As a result, the volume of the particles Low noise commensurate with is not realized.
  • An object of the present invention is to obtain a magnetic recording medium suitable for high-density recording that achieves a high SNR by realizing the inherent low noise of fine-grained hexagonal ferrite magnetic powder.
  • the present invention provides a magnetic recording medium comprising a nonmagnetic support, and a magnetic layer containing a magnetic powder and a binder formed on the nonmagnetic support.
  • Plate ratio in the range of 1 to 2, preferably 1.1 to 1.9, average particle size in the range of 10 to 20 nm, preferably in the range of 12 to 18 nm, 79.6 to 318.4 kA / m ( 1,000 to 4,000 oersted), preferably in the range of 95.5 to 302.4 kA / m (1,200 to 3,800 oersted), 20 to 60 Am 2 / kg (20 to 60 emu / kg).
  • a magnetic recording medium which is a plate-shaped hexagonal ferrite magnetic powder having a saturation magnetization in the range of g), preferably 25 to 58 Am 2 / kg (25 to 58 emu / g).
  • the remarkable feature of the present invention is that the conventional plate-shaped hexagonal ferrite magnetic powder has a high plate-like ratio, whereas the plate-like ratio of the hexagonal ferrite magnetic powder used is 1-2. It is small.
  • the laminated aggregation of magnetic powders which has been a drawback of the plate hexagonal ferrite magnetic powder, can be achieved.
  • the magnetic recording medium is applied to a system using a high-sensitivity head such as a GMR head, the inherent low noise of the hexagonal ferrite magnetic powder can be realized.
  • the magnetic layer of the magnetic recording medium according to the present invention comprises, as a magnetic powder, a plate ratio in the range of 1 to 2, an average particle size in the range of 10 to 20 nm, 79.6 to 318.4 kA / m (1,000 to By using a plate-shaped hexagonal ferrite magnetic powder having a coercive force in the range of 4,000 Oersted) and a saturation magnetization in the range of 20 to 60 Am 2 / kg (20 to 60 emu / g), the magnetic powder
  • a high SNR can be obtained.
  • the plate-like ratio means a value (length / thickness) obtained by dividing the maximum length of the plate-like particles in the plane direction by the thickness.
  • the average particle size is a value obtained by actually measuring the particle size of a photograph (magnification of 100,000 times) taken with a transmission electron microscope for 300 particles and averaging the measured values.
  • the magnetic powders can be easily laminated with each other, and as a result, the laminated and agglomerated magnetic powder behaves as one magnetic powder, resulting in high noise.
  • the magnetic powder having a plate ratio of 1 includes not only a hexagonal shape but also a spherical or cubic shape.
  • the average particle size of the hexagonal ferrite magnetic powder is smaller than 10 nm, it becomes difficult to uniformly disperse the magnetic powder in the magnetic layer, and the noise reduction effect becomes small. If the average particle size of the hexagonal ferrite magnetic powder exceeds 20 nm, the noise becomes high because the particle size of one magnetic powder itself is too large even if it can be uniformly dispersed.
  • hexagonal ferrite magnetic powder used in the present invention at least one hexagonal ferrite magnetic powder selected from the group consisting of barium ferrite magnetic powder and strontium ferrite magnetic powder is preferable, and barium ferrite magnetic powder is particularly preferable. Since these hexagonal ferrite magnetic powders have large magnetic anisotropy, they have a feature that can suppress a decrease in output particularly in a short wavelength region.
  • the hexagonal ferrite-based magnetic powder includes Al, Si, S, Sc, Ti, V, Cr, Cu, Y, Mo, Rh, Pd, Ag, Sn, Sb, Te, Ta, in addition to the predetermined elements.
  • Elements such as W, Re, Au, Bi, La, Ce, Pr, Nd, P, Co, Mn, Zn, Ni, B, Ge, and Nb may be included. The addition of these elements is necessary to control the particle size and magnetic properties of the hexagonal ferrite magnetic powder.
  • the production method is not particularly limited, and a conventionally known method for producing a hexagonal ferrite magnetic powder can be used.
  • An example of such a manufacturing method is implemented as follows. For example, an alkaline aqueous solution is added to an aqueous solution of a metal salt containing one or both of barium salt and strontium salt, which are constituent elements of hexagonal ferrite magnetic powder, and an iron salt to form a coprecipitate. Next, the coprecipitate is hydrothermally treated to synthesize a precursor of hexagonal ferrite magnetic powder.
  • barium salts, strontium salts, and iron salts chlorides, sulfates, nitrates, and carbonates of these metals are preferably used.
  • the particle size can be arbitrarily controlled simultaneously with the coercive force by adding an appropriate amount of metal ions such as cobalt, titanium, nickel, zinc and manganese together with the above metal salt.
  • metal ions such as cobalt, titanium, nickel, zinc and manganese
  • any alkaline compound can be used, but sodium hydroxide is usually used.
  • the amount of the alkaline compound is preferably an equimolar amount or more with respect to the metal salt to be added, and the excess alkali concentration is preferably 0.01 mol / L or more.
  • This alkali concentration is particularly important for obtaining a hexagonal ferrite magnetic powder having a small plate ratio. If the alkali concentration is too high, the plate ratio tends to increase. On the other hand, when the alkali concentration is low, those having a small plate ratio are likely to be produced, but the crystallinity is low and the magnetic properties tend to be lowered. In particular, when the amount is less than an equimolar amount with respect to the metal salt, other than hexagonal ferrite magnetic powder is likely to be generated.
  • a precursor of a hexagonal ferrite magnetic powder is first synthesized at a relatively low alkali concentration, followed by hydrothermal treatment. It is effective to produce a magnetic powder having desired magnetic properties by increasing the crystallinity while maintaining the particle shape by adjusting the conditions.
  • Hydrothermal treatment is usually performed using an autoclave.
  • the heat treatment in the autoclave is preferably performed at 200 to 350 ° C. for 1 to 6 hours. If the hydrothermal treatment temperature is too low, a precursor of a hexagonal ferrite magnetic powder having a desired shape cannot be obtained. If the hydrothermal treatment temperature is too high, no particular problem occurs, but the energy efficiency is deteriorated. If the hydrothermal treatment time is too short, a precursor of hexagonal ferrite magnetic powder having a desired shape cannot be obtained. If the hydrothermal treatment time is too long, no particular problem occurs, but the energy efficiency deteriorates.
  • the thus-prepared hexagonal ferrite magnetic powder precursor is then heat-treated with a flux at a temperature equal to or higher than the melting point of the flux.
  • a flux is a base material for crystal growth of the hexagonal ferrite magnetic powder, and at the same time prevents sintering of the hexagonal ferrite magnetic powder.
  • a hexagonal ferrite magnetic powder having the desired particle shape and magnetic properties and a narrow particle size distribution can be obtained.
  • the flux used those which melt at 500 to 1,000 ° C. and do not dissolve in hexagonal ferrite particles are preferably used.
  • the melting temperature is lower than this, the heat treatment of the hexagonal ferrite particles becomes insufficient, so that the crystallinity of the hexagonal ferrite particles can be sufficiently improved and the magnetic properties cannot be improved.
  • a flux having a high melting temperature crystal growth of hexagonal ferrite particles in the flux becomes excessive, and the particles tend to be coarse.
  • the saturation magnetization amount of the obtained magnetic powder tends to be lowered.
  • Preferred examples of such fluxing agents include sulfates of sodium, potassium and lithium, chlorides, bromides and iodides, boric acid and the like, and especially NaCl, KCl and KBr are well soluble in water. After the heat treatment, washing with water is preferable because these fluxes can be easily removed and do not remain as impurities in the magnetic powder.
  • the heat treatment using a flux is preferably performed at a temperature in the range of 750 to 900 ° C. for 1 to 4 hours. If the treatment temperature is too low or the treatment time is too short, the heat treatment is insufficient, the crystallinity of the hexagonal ferrite magnetic powder is not sufficiently improved, and the magnetic properties are not sufficiently improved. On the other hand, if the treatment temperature is too high or the treatment time is too long, the flux will adhere to the particle surface and tend to lower the magnetic properties, particularly the saturation magnetization.
  • the above-described hexagonal ferrite constituent element metal salt, a flux, and a mixture of a mixture are rapidly cooled to suppress the growth of hexagonal ferrite particles.
  • the rapidly cooled product is heat-treated at 400 to 700 ° C. to grow crystals into hexagonal ferrite particles in an appropriate size in the flux, and then the hexagonal ferrite particles are obtained by dissolving and removing the flux. You can also.
  • a tabular hexagonal ferrite magnetic powder having an average particle size of 10 to 20 nm can be obtained.
  • the magnetic recording medium of the present invention will be described below.
  • any conventionally used nonmagnetic support for magnetic recording media can be used.
  • the thickness composed of polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins, cellulose triacetate, polycarbonate, polyamide, polyimide, polyamideimide, polysulfone, aramid, aromatic polyamide, etc. is usually 2 to 15 ⁇ m, especially 2 to 7 ⁇ m.
  • the plastic film is preferably used.
  • the thickness of the magnetic layer is preferably 300 nm or less in order to solve the decrease in output due to demagnetization, which is an essential problem in longitudinal recording.
  • the magnetic layer thickness is 300 nm or more, the reproduction output decreases due to the thickness loss, or Mr ⁇ t, which is the product of the residual magnetization (Mr) and the magnetic layer thickness (t), becomes too large.
  • Mr ⁇ t which is the product of the residual magnetization (Mr) and the magnetic layer thickness (t)
  • Mr ⁇ t the product of the residual magnetization
  • t the thickness loss
  • the magnetic layer thickness is less than 10 nm, it is difficult to obtain a uniform magnetic layer.
  • the longitudinal coercive force (Hc) is in the range of 119.4 to 358.2 kA / m (1,500 to 4,500 oersted), preferably 95.
  • the squareness ratio (Br / Bm) in the range of 0.65 to 0.92, preferably in the range of 0.62 to 0.90, Mr ⁇ t, which is the product of remanent magnetization (Mr) and magnetic layer thickness (t), is in the range of 0.1 to 2.0 memu / cm 2 , preferably in the range of 0.12 to 1.98 memu / cm 2.
  • Mr ⁇ t which is the product of remanent magnetization (Mr) and magnetic layer thickness (t)
  • Mr remanent magnetization
  • t magnetic layer thickness
  • the coercive force (Hc) in the vertical direction is in the range of 79.6 to 318.4 kA / m (1,000 to 4,000 Oersted), preferably 95.5 to 302.5 kA / m (1,200 to 3,800 oersted), squareness ratio (Br / Bm) in the range of 0.60 to 0.85, preferably in the range of 0.62 to 0.83, and Mr ⁇ t of 0.1. It is preferable to adjust the thickness of the magnetic layer and the degree of filling so that it is in the range of 05 to 1.5 memu / cm 2 , preferably in the range of 0.06 to 1.4 memu / cm 2 .
  • the longitudinal coercive force (Hc) is in the range of 79.6 to 318.4 kA / m (1,000 to 4,000 Oersted), preferably 95.5 to 302.5 kA. / M (1,200 to 3,800 oersted), squareness ratio (Br / Bm) in the range of 0.40 to 0.65, preferably in the range of 0.42 to 0.63, and Mr ⁇ t is 0. .08 ⁇ 1.8memu / cm 2, preferably in the range to be in the range of 0.09 ⁇ 1.7memu / cm 2, it is preferable to adjust the magnetic layer thickness and degree of filling.
  • the above coercive force range is preferable. If Mr ⁇ t is smaller than the above range, the reproduction output is small even when a high-sensitivity head such as a GMR head is used. If Mr ⁇ t is larger than the above range, a high-sensitivity head such as a GMR head is used. In some cases, the output is saturated and distorted easily.
  • any orientation of the magnetic recording medium by using the hexagonal ferrite magnetic powder having a low plate ratio of 1 to 2 according to the present invention, the inherent low noise of the magnetic powder can be realized, As a result, a high SNR can be obtained.
  • the average surface roughness Ra of the magnetic layer is preferably in the range of 1.0 to 3.2 nm. When Ra is within this range, contact with the head is improved, and high SNR is obtained. If Ra is smaller than this range, the slidability tends to decrease due to sticking of the head or the like, and if it exceeds this range, the contact of the head becomes poor and the output tends to decrease.
  • the magnetic layer preferably contains an additive such as carbon black for improving conductivity and surface lubricity and alumina for improving polishing.
  • an additive such as carbon black for improving conductivity and surface lubricity and alumina for improving polishing.
  • carbon black and alumina can be used.
  • the undercoat layer is not essential, but is preferably provided between the nonmagnetic support and the magnetic layer for the purpose of improving durability.
  • the thickness of the undercoat layer is preferably 0.1 to 3.0 ⁇ m. If the thickness of the undercoat layer is less than 0.1 ⁇ m, the durability of the magnetic tape may deteriorate, and if it exceeds 3.0 ⁇ m, not only the effect of improving the durability of the magnetic tape is saturated but also the entire tape As the thickness increases, the tape length per roll becomes shorter and the storage capacity per roll becomes smaller.
  • the inorganic particles included in the undercoat layer are not particularly limited.
  • acicular iron oxide preferably has an average length of 50 to 200 nm
  • granular or amorphous iron oxide preferably has an average particle size of 5 to 200 nm. Have.
  • the undercoat layer contains magnetic particles.
  • the type of magnetic particles is not particularly limited, and magnetic iron oxide, magnetic metal, or magnetic alloy can be used, but the magnetic flux from the magnetic layer can be closed by the undercoat layer to generate a strong magnetic flux only from the surface.
  • the magnetic particles used in the undercoat layer have as small a coercive force as possible and a large saturation magnetization.
  • an intermediate layer may be further formed between the magnetic layer of the undercoat layer and the upper magnetic layer for recording signals.
  • This intermediate layer is effective for controlling the magnetic interaction between the upper layer and the undercoat layer and more effectively utilizing the perpendicular magnetization component.
  • the binder used in the undercoat layer and the magnetic layer is not particularly limited, and those used in conventional magnetic recording media can be used.
  • binders are polyurethane resin, vinyl chloride resin, vinyl chloride-vinyl acetate copolymer resin, vinyl chloride-vinyl alcohol copolymer resin, vinyl chloride-vinyl acetate-vinyl alcohol copolymer resin, vinyl chloride-vinyl acetate- It is a combination with at least one selected from vinyl chloride resins such as maleic anhydride copolymer resin, vinyl chloride-hydroxyl group-containing alkyl acrylate copolymer resin, nitrocellulose, epoxy resin and the like.
  • vinyl chloride resin and a polyurethane resin it is preferable to use a vinyl chloride resin and a polyurethane resin in combination.
  • thermosetting crosslinking agent that is bonded to a functional group contained in the binder to crosslink.
  • the crosslinking agent include isocyanates such as tolylene diisocyanate, hexamethylene diisocyanate and isophorone diisocyanate, reaction products of these isocyanates with polyols such as trimethylolpropane, and polyisocyanates such as condensation products of the above isocyanates. is there.
  • any known fatty acid, fatty acid ester, fatty acid amide and the like are used.
  • the backcoat layer is also not essential in the magnetic recording medium of the present invention, but in the case of a magnetic tape, it is desirable to form a backcoat layer on the surface opposite to the magnetic layer forming surface of the nonmagnetic support.
  • the thickness of the back coat layer is preferably 0.2 to 0.8 ⁇ m, more preferably 0.3 to 0.8 ⁇ m. If the thickness of the backcoat layer is less than 0.2 ⁇ m, the effect of improving running performance is insufficient, and if it exceeds 0.8 ⁇ m, the total thickness of the tape is increased and the storage capacity per roll is reduced.
  • any conventionally used organic solvent can be used as the solvent.
  • organic solvents include aromatic solvents such as benzene, toluene and xylene, ketone solvents such as acetone, cyclohexanone, methyl ethyl ketone and methyl isobutyl ketone, ester solvents such as ethyl acetate and butyl acetate, dimethyl carbonate, Carbonate ester solvents such as diethyl carbonate and alcohol solvents such as ethanol and isopropanol.
  • organic solvents such as hexane, tetrahydrofuran, and dimethylformamide can also be used.
  • the magnetic paint, undercoat paint and backcoat paint can be prepared by a conventional paint production method, and it is particularly preferable to use a kneading process or a primary dispersion process using a kneader.
  • a sand mill is desirable because it can improve the dispersibility of magnetic powder and the like and can control the surface properties.
  • Magnetic coating, undercoating and / or back coating can be applied by conventional coating methods such as gravure coating, roll coating, blade coating, and extrusion coating. It is coated on a nonmagnetic support.
  • a method for applying the undercoat paint and the magnetic paint the undercoat paint is applied on a non-magnetic support, and after drying, the magnetic paint is applied.
  • Any of the simultaneous multilayer coating method (wet-on-wet) may be employed. Considering the leveling of the thin magnetic layer at the time of coating, it is particularly preferable to adopt a simultaneous multilayer coating method in which the magnetic coating is applied while the undercoat coating is wet.
  • part means “parts by weight”.
  • a barium ferrite magnetic powder represented by the general formula: BaO ⁇ 6Fe 2 O 3 is used as the hexagonal ferrite magnetic powder, but it goes without saying that the hexagonal ferrite magnetic powder is not limited to the barium ferrite magnetic powder. .
  • the barium ferrite precursor is thoroughly washed with water until the pH (of the washing liquid) is 8 or less, and then a barium ferrite precursor suspension is prepared and the supernatant liquid is removed.
  • a barium ferrite precursor suspension is prepared and the supernatant liquid is removed.
  • 500 g of NaCl was added and stirred to dissolve NaCl.
  • the barium ferrite precursor suspension containing dissolved NaCl was placed in a vat with a wide area and heated to 100 ° C. with a dryer to evaporate water.
  • the mixture of barium ferrite precursor and NaCl thus obtained is crushed, put in a crucible, first heated at 830 ° C. for 20 minutes to melt NaCl as a flux, and then the temperature is lowered to 800 ° C. , And heated at 800 ° C. for about 10 hours, and then cooled to room temperature. Next, NaCl was removed by washing with water, and barium ferrite magnetic powder was recovered.
  • the barium ferrite magnetic powder obtained had a plate ratio of about 1.5 and an average particle size of 16 nm.
  • this barium ferrite magnetic powder the measured saturation magnetization and coercive force by applying a magnetic field of 1,270 kA / m (16,000 Oe), respectively, 37.4Am 2 /kg(37.4emu/g ) And 137.7 kA / m (1,730 oersted).
  • the magnetic coating component having the following composition was kneaded with a kneader, and then dispersed with a sand mill for a residence time of 60 minutes.
  • Polyisocyanate Nippon Polyurethane Industry Co., Ltd.
  • 5 parts of “Coronate L”) was added and stirred and filtered to prepare a magnetic paint.
  • Barium ferrite magnetic powder 74 parts Vinyl chloride-hydroxypropyl acrylate copolymer resin 13 parts (contained -SO 3 Na group: 0.7 ⁇ 10 -4 equivalent / g) Polyester polyurethane resin 8 parts (containing -SO 3 Na group: 1.0 ⁇ 10 -4 equivalent / g) ⁇ -alumina (average particle size: 80 nm) 4 parts cyclohexanone 156 parts toluene 156 parts
  • Iron oxide powder (average particle size: 55 nm) 70 parts Alumina powder (average particle size: 80 nm) 10 parts Carbon black (average particle size: 25 nm) 20 parts Vinyl chloride-hydroxypropyl methacrylate copolymer resin 10 parts (containing -SO 3 Na group: 0.7 ⁇ 10 ⁇ 4 equivalent / g) Polyester polyurethane resin 5 parts (containing -SO 3 Na group: 1.0 ⁇ 10 -4 equivalent / g) Methyl ethyl ketone 130 parts Toluene 80 parts Myristic acid 1 part Butyl stearate 1.5 parts Cyclohexanone 65 parts
  • the lower layer coating material is applied to a polyethylene terephthalate film, which is a nonmagnetic support, so that the lower layer thickness after drying and calendering is 2 ⁇ m, and the magnetic coating material is further added to 238.8 kA / After magnetic field orientation treatment at m, the coating was dried at 90 ° C. while adjusting the coating thickness so that the magnetic layer thickness after calendering was 120 nm.
  • a back coat layer coating is applied on the side opposite to the surface on which the non-magnetic support and the undercoat layer of the non-magnetic support are formed, and the thickness of the back coat layer after drying and calendering is 700 nm. Applied and dried.
  • the coating material for the backcoat layer is prepared by dispersing the following backcoat coating material components with a sand mill with a residence time of 45 minutes, adding 8.5 parts of polyisocyanate, and stirring and filtering.
  • Carbon black (average particle size: 25 nm) 40 parts Carbon black (average particle size: 370 nm) 1 part Barium sulfate 4 parts Nitrocellulose 28 parts Polyurethane resin (containing -SO 3 Na group) 20 parts Cyclohexanone 100 parts Toluene 100 parts Methyl ethyl ketone 100 Part
  • the magnetic sheet thus obtained was mirror-finished with a 5-stage calendar (temperature: 70 ° C., linear pressure: 150 kg / cm), and this was wound on a sheet core at 60 ° C. and 40% RH for 48 hours. Aged. Then, it cut
  • the addition amounts of cobalt chloride and titanium chloride were both changed from 1/20 mol to 1/15 mol, and the addition amount of sodium hydroxide was changed from 2.8 mol to 2.5 mol.
  • the precursor of barium ferrite magnetic powder was prepared in the same manner as in Example 1 except that hydrothermal treatment was performed at 300 ° C. for 4 hours.
  • the processing conditions of this precursor in the flux were first heated at 830 ° C. for 20 minutes to melt the NaCl, which is the flux, and then the temperature was lowered to 820 ° C. and heated at 820 ° C. for about 10 hours.
  • a barium ferrite magnetic powder was produced under the same conditions as in Example 1 except that the treatment was changed.
  • This barium ferrite magnetic powder had a substantially cubic shape with a plate ratio of about 1.1 and an average particle size of 14 nm.
  • the barium ferrite magnetic powder had a saturation magnetization of 35.1 Am 2 / kg (35.1 emu / g) and a coercive force of 125.8 kA / m (1,580 oersted).
  • a magnetic tape was produced in the same manner as in Example 1.
  • barium ferrite magnetic powder in Example 1 In the production of barium ferrite magnetic powder in Example 1, the amount of sodium hydroxide added was changed from 2.8 mol to 3.5 mol, and hydrothermal treatment was performed at 230 ° C. for 4 hours. A precursor of barium ferrite magnetic powder was prepared in the same manner. Next, the processing conditions of the precursor in the flux were first heated at 830 ° C. for 20 minutes to dissolve NaCl as the flux, then the temperature was lowered to 780 ° C. and heated at 780 ° C. for about 10 hours. A barium ferrite magnetic powder was produced under the same conditions as in Example 1 except that the treatment was changed.
  • the barium ferrite magnetic powder had a plate ratio of about 1.8 and an average particle size of 17 nm.
  • the barium ferrite magnetic powder had a saturation magnetization of 39.1 Am 2 / kg (39.1 emu / g) and a coercive force of 149.6 kA / m (1,880 Oersted).
  • a magnetic tape was produced in the same manner as in Example 1.
  • Example 1 In the production of barium ferrite magnetic powder in Example 1, the amount of sodium hydroxide added was changed from 2.8 mol to 5.0 mol, and hydrothermal treatment was performed at 280 ° C. for 4 hours. A precursor of barium ferrite magnetic powder was prepared in the same manner. Next, the processing conditions of the precursor in the flux were first heated at 830 ° C. for 20 minutes to dissolve NaCl as the flux, then the temperature was lowered to 780 ° C. and heated at 780 ° C. for about 10 hours. A barium ferrite magnetic powder was produced under the same conditions as in Example 1 except that the treatment was changed.
  • This barium ferrite magnetic powder was a flat plate having a plate ratio of about 5 and an average particle size of 23 nm.
  • the barium ferrite magnetic powder had a saturation magnetization of 42.3 Am 2 / kg (42.3 emu / g) and a coercive force of 157.6 kA / m (1,980 oersted).
  • a magnetic tape was produced in the same manner as in Example 1.
  • the electromagnetic conversion characteristics were measured using a rotating drum device.
  • the measurement conditions were that a MIG head (track width: 12 ⁇ m, gap length: 0.15 ⁇ m, Bs: 1.2 T) was used as the recording head, and a spin valve type GMR head (track width: 2.5 ⁇ m) as the reproducing head.
  • SH-SH width 0.15 ⁇ m).
  • the relative speed of the tape and the head was 3.4 m / sec.
  • the reproduction output (S) and broadband noise (N) at a recording density of 169 kfci were measured, and the SNR was obtained.
  • the reproduction output, noise level, and SNR are shown as relative values with the value of the tape of Comparative Example 1 being 0 dB.
  • Each of the magnetic tapes of Examples 1 to 3 according to the present invention uses a barium ferrite magnetic powder having a low plate ratio of 1 to 2 as a barium ferrite magnetic powder, and a barium ferrite magnetic powder having a large plate ratio of 5 Compared with the magnetic tape of Comparative Example 1 using No. 1, the output is low because of poor orientation. However, the effect of noise reduction is greater than the reduction in output, and as a result, a higher SNR is obtained compared to the magnetic tape of Comparative Example 1. This is because the bar ratio of the barium ferrite magnetic powder of the present invention is small, so that the particles are not easily laminated and aggregated, and as a result, the inherently low noise of individual particles is realized.
  • the magnetic tape of Comparative Example 1 uses a conventional barium ferrite magnetic powder having a large plate ratio, and a relatively high output can be obtained.
  • noise due to particle agglomeration increases, resulting in a high SNR. I can't get it.
  • the present invention uses, as the magnetic powder, a hexagonal ferrite magnetic powder having a low plate ratio in which the plate ratio is in the range of 1 to 2 and the average particle size is in the range of 10 to 20 nm.

Abstract

Disclosed is a magnetic recording medium comprising a non-magnetic support and a magnetic layer which is provided on the non-magnetic support and contains a magnetic powder and a binder.  In the recording medium, the magnetic powder is a plate-like hexagonal ferrite magnetic powder having a plate ratio in the range of 1 to 2, an average particle size in the range of 10 to 20 nm, a coercivity in the range of 79.6 to 318.4 kA/m (1000 to 4000 oersteds), and a saturation magnetization in the range of 20 to 60 Am2/kg (20 to 60 emu/g).  The magnetic powder can prevent stacking aggregation of a plate-like magnetic powder, whereby noise can be reduced and a large SNR can be obtained.

Description

磁気記録媒体Magnetic recording medium
 本発明は、磁気記録媒体に関し、さらに詳しくは、磁性粉末として六方晶フェライト粉末を用いた、デジタルビデオテープ、コンピユータ用のバックアップテープなどの超高密度記録に適した磁気記録媒体に関する。 The present invention relates to a magnetic recording medium, and more particularly, to a magnetic recording medium suitable for ultrahigh density recording such as a digital video tape and a backup tape for a computer using hexagonal ferrite powder as a magnetic powder.
 非磁性支持体上に磁性粉末と結合剤を含有する磁性層を有する塗布型磁気記録媒体は、記録再生方式がアナログ方式からデジタル方式への移行に伴い、一層の記録密度の向上が要求されている。とくに、高記録密度用のビデオテープやコンピュータ用のバックアップテープなどにおいては、この要求が、年々、高まってきている。 A coating type magnetic recording medium having a magnetic layer containing a magnetic powder and a binder on a non-magnetic support requires a further improvement in recording density as the recording / reproducing method shifts from an analog method to a digital method. Yes. In particular, the demand for video tapes for high recording density and backup tapes for computers is increasing year by year.
 記録密度の向上に不可欠な短波長記録に対応するためには、記録時の厚み損失を小さくするため、磁性層の厚さを200nm以下、特に100nm以下に薄膜化するのが効果的である。このような高記録密度媒体に用いられる再生用磁気ヘッドとしては、高出力が得られるMRヘッドが一般に用いられているが、将来はさらに高感度なGMRヘッドが使用されると考えられる。 In order to cope with the short wavelength recording indispensable for improving the recording density, it is effective to reduce the thickness of the magnetic layer to 200 nm or less, particularly 100 nm or less in order to reduce the thickness loss during recording. As a reproducing magnetic head used in such a high recording density medium, an MR head capable of obtaining a high output is generally used, but it is considered that a GMR head with higher sensitivity will be used in the future.
 また、ノイズ低減のため、これまで、磁性粉末微粒子化がはかられ、現在では、粒子径が45nm程度の針状のメタル磁性粉末が実用化されている。さらに短波長記録時の減磁による出力低下を防止するために、従来から、保磁力の増大がはかられ、鉄-コバルト合金の改良により238.9kA/m(3,000エルステッド)程度の保磁力が実現されている(特開平3-49026号公報、特開平10-83906号公報および特開平10-34085号公報)。 In addition, to reduce noise, magnetic powder particles have been made fine so far, and at present, acicular metal magnetic powder having a particle diameter of about 45 nm has been put into practical use. Furthermore, in order to prevent a decrease in output due to demagnetization during short wavelength recording, the coercive force has been increased conventionally, and the coercive force of about 238.9 kA / m (3,000 Oersted) has been improved by improving the iron-cobalt alloy. Magnetic force is realized (Japanese Patent Laid-Open Nos. 3-49026, 10-83906, and 10-34085).
 しかしながら、針状磁性粒子を用いる磁気記録媒体においては、保磁力が粒子の針状形状に基づく形状磁気異方性に依存することから、上記粒子径からのさらに大幅な微粒子化は困難になってきている。
 即ち、針状メタル磁性粉末は、針状形状にすることによる形状磁気異方性により保磁力を発現しているが、微粒子化に伴い必然的に針状比(粒子長さ/幅)が小さくなり、保磁力が低下する。この保磁力の低下は、記録密度を向上する上で、致命的な問題となる。このように針状メタル磁性粉末は、微粒子化に伴い保磁力が低下する本質的な問題があり、微粒子化に限界がある。
However, in a magnetic recording medium using acicular magnetic particles, since the coercive force depends on the shape magnetic anisotropy based on the acicular shape of the particles, it is difficult to further reduce the particle size from the above particle diameter. ing.
That is, the acicular metal magnetic powder exhibits coercive force due to the shape magnetic anisotropy due to the acicular shape, but the acicular ratio (particle length / width) inevitably decreases as the particle size decreases. Thus, the coercive force is reduced. This reduction in coercive force becomes a fatal problem in improving the recording density. As described above, the acicular metal magnetic powder has an essential problem that the coercive force decreases as the particle size is reduced, and there is a limit to the particle size reduction.
 そこで、上記針状の磁性粉末とは全く異なる磁性粉末として、板状で、かつ板面に垂直な方向に磁化容易軸を有する六方晶系フェライト磁性粉末が提案されている(特開平6-290924号公報、特開2005-340690号公報および特開2002-298331号公報)。
 この板状の六方晶系フェライト磁性粉末は、保磁力が結晶磁気異方性に基づいているため、微粒子になっても高い保磁力を維持できるため、高密度記録領域において高い出力と同時にノイズが低く、その結果、高いノイズ対出力比(SNR)が得られ、高密度記録媒体に適した磁性粉末であることが示されている。
Therefore, a hexagonal ferrite magnetic powder having a plate shape and having an easy axis of magnetization in a direction perpendicular to the plate surface has been proposed as a magnetic powder that is completely different from the needle-shaped magnetic powder (Japanese Patent Laid-Open No. 6-290924). JP, JP-A-2005-340690 and JP-A-2002-298331).
This plate-shaped hexagonal ferrite magnetic powder has a coercive force based on crystal magnetic anisotropy, so that it can maintain a high coercive force even when it becomes a fine particle. As a result, a high noise-to-power ratio (SNR) is obtained, indicating that the magnetic powder is suitable for high-density recording media.
 特開平6-290924号公報、特開2005-340690号公報および特開2002-298331号公報に開示された六方晶系フェライト磁性粉末は、微粒子でありながら高い保磁力を有するため、高密度記録用の磁性粉末として優れた特性を有する。一方、最近は再生ヘッドの感度が著しく高められ、高い再生出力は比較的容易に得られるが、同時にノイズ出力も増加するため、結果として高いSNRが得られないというような問題が発生する。このノイズの増加を防止するためは、磁性粉末の微粒子化が不可欠である。六方晶系フェライト磁性粉末は、微粒子化により、粒子1個の計算上の体積は小さいが、粒子が板状形状を有しているため、粒子同士が積層凝集しやすく、その結果、粒子の体積に見合った低ノイズが実現されていない。 The hexagonal ferrite magnetic powder disclosed in JP-A-6-290924, JP-A-2005-340690, and JP-A-2002-298331 has a high coercive force even though it is a fine particle. It has excellent characteristics as a magnetic powder. On the other hand, recently, the sensitivity of the reproducing head has been remarkably increased, and a high reproduction output can be obtained relatively easily, but at the same time, the noise output also increases, resulting in a problem that a high SNR cannot be obtained. In order to prevent this increase in noise, it is essential to make the magnetic powder fine particles. The hexagonal ferrite magnetic powder has a small calculation volume due to the fine particles, but the particles have a plate-like shape, so that the particles are easily laminated and aggregated. As a result, the volume of the particles Low noise commensurate with is not realized.
 この板状粒子の積層化による磁気凝集力は極めて強く、分散工程での解砕も困難なため、粒子そのものの体積は小さいにも関わらず、十分な低ノイズが実現されていないのが現状である。 The magnetic cohesive force due to the lamination of these plate-like particles is extremely strong, and it is difficult to disintegrate in the dispersion process. Therefore, even though the particles themselves are small, a sufficiently low noise has not been realized. is there.
 本発明の目的は、微粒子の六方晶系フェライト磁性粉末の本来の低ノイズを実現することにより、高いSNRを達成する高密度記録に適した磁気記録媒体を得ることにある。 An object of the present invention is to obtain a magnetic recording medium suitable for high-density recording that achieves a high SNR by realizing the inherent low noise of fine-grained hexagonal ferrite magnetic powder.
 上記目的を達成するために、本発明は、非磁性支持体、および該非磁性支持体上に形成された磁性粉末と結合剤を含有する磁性層を含んでなる磁気記録媒体において、磁性粉末は、1~2の範囲、好ましくは1.1~1.9の範囲の板状比、10~20nmの範囲、好ましくは12~18nmの範囲の平均粒子サイズ、79.6~318.4kA/m(1,000~4,000エルステッド)の範囲、好ましくは95.5~302.4kA/m(1,200~3、800エルステッド)の範囲の保磁力、20~60Am/kg(20~60emu/g)の範囲、好ましくは25~58Am/kg(25~58emu/g)の飽和磁化量を有する板状の六方晶系フェライト磁性粉末である、磁気記録媒体を提供する。
 本発明の顕著な特徴は、従来の板状の六方晶系フェライト磁性粉末は高い板状比を有していたのに対して、用いる六方晶系フェライト磁性粉末の板状比が1~2と小さいことである。
In order to achieve the above object, the present invention provides a magnetic recording medium comprising a nonmagnetic support, and a magnetic layer containing a magnetic powder and a binder formed on the nonmagnetic support. Plate ratio in the range of 1 to 2, preferably 1.1 to 1.9, average particle size in the range of 10 to 20 nm, preferably in the range of 12 to 18 nm, 79.6 to 318.4 kA / m ( 1,000 to 4,000 oersted), preferably in the range of 95.5 to 302.4 kA / m (1,200 to 3,800 oersted), 20 to 60 Am 2 / kg (20 to 60 emu / kg). A magnetic recording medium is provided which is a plate-shaped hexagonal ferrite magnetic powder having a saturation magnetization in the range of g), preferably 25 to 58 Am 2 / kg (25 to 58 emu / g).
The remarkable feature of the present invention is that the conventional plate-shaped hexagonal ferrite magnetic powder has a high plate-like ratio, whereas the plate-like ratio of the hexagonal ferrite magnetic powder used is 1-2. It is small.
 本発明によれば、磁性粉末として、板状比が1~2の六方晶系フェライト磁性粉末を使用することにより、板状六方晶系フェライト磁性粉末の欠点であった磁性粉末同士の積層凝集を防止でき、六方晶系フェライト磁性粉末本来の低ノイズを実現し、GMRヘッド等の高感度ヘッドが用いられるシステムにこの磁気記録媒体を適用した場合、高いSNRを得ることができる。 According to the present invention, by using a hexagonal ferrite magnetic powder having a plate ratio of 1 to 2 as the magnetic powder, the laminated aggregation of magnetic powders, which has been a drawback of the plate hexagonal ferrite magnetic powder, can be achieved. When the magnetic recording medium is applied to a system using a high-sensitivity head such as a GMR head, the inherent low noise of the hexagonal ferrite magnetic powder can be realized.
 本発明に係る磁気記録媒体の磁性層は、磁性粉末として、1~2の範囲の板状比、10~20nmの範囲の平均粒子サイズ、79.6~318.4kA/m(1,000~4,000エルステッド)の範囲の保磁力、20~60Am/kg(20~60emu/g)の範囲の飽和磁化量を有する板状の六方晶系フェライト磁性粉末を使用したことにより、この磁性粉末本来の低ノイズを実現し、GMRヘッド等の高感度ヘッドが用いられるシステムにこの磁気記録媒体を適用した場合、高いSNRを得ることができる。 The magnetic layer of the magnetic recording medium according to the present invention comprises, as a magnetic powder, a plate ratio in the range of 1 to 2, an average particle size in the range of 10 to 20 nm, 79.6 to 318.4 kA / m (1,000 to By using a plate-shaped hexagonal ferrite magnetic powder having a coercive force in the range of 4,000 Oersted) and a saturation magnetization in the range of 20 to 60 Am 2 / kg (20 to 60 emu / g), the magnetic powder When this magnetic recording medium is applied to a system that realizes inherently low noise and uses a high-sensitivity head such as a GMR head, a high SNR can be obtained.
 ここで言う板状比とは、板状粒子の平面方向の最大長さを厚さで割った値(長さ/厚さ)を意味する。平均粒子サイズとは、透過型電子顕微鏡により撮影した写真(倍率10万倍)の粒子サイズを300個の粒子について実測し、測定値を平均して得られる値である。 Here, the plate-like ratio means a value (length / thickness) obtained by dividing the maximum length of the plate-like particles in the plane direction by the thickness. The average particle size is a value obtained by actually measuring the particle size of a photograph (magnification of 100,000 times) taken with a transmission electron microscope for 300 particles and averaging the measured values.
 六方晶系フェライト磁性粉末の板状比が2より大きいと、磁性粉末同士が積層しやすくなり、その結果、積層して凝集した磁性粉末が1個の磁性粉末として挙動する結果、ノイズが高くなる。また板状比が1の磁性粉末は、六角状のみならず、球状、立方体状のものも含む。 When the plate ratio of the hexagonal ferrite magnetic powder is larger than 2, the magnetic powders can be easily laminated with each other, and as a result, the laminated and agglomerated magnetic powder behaves as one magnetic powder, resulting in high noise. . Further, the magnetic powder having a plate ratio of 1 includes not only a hexagonal shape but also a spherical or cubic shape.
 六方晶系フェライト磁性粉末の平均粒子サイズが10nmより小さいと、磁性粉末を磁性層中に均一に分散することが困難になり、ノイズ低減の効果は小さくなる。六方晶系フェライト磁性粉末の平均粒子サイズが20nmを超えると、均一に分散できても、1個の磁性粉末そのものの粒子サイズが大きすぎるため、ノイズが高くなる。 If the average particle size of the hexagonal ferrite magnetic powder is smaller than 10 nm, it becomes difficult to uniformly disperse the magnetic powder in the magnetic layer, and the noise reduction effect becomes small. If the average particle size of the hexagonal ferrite magnetic powder exceeds 20 nm, the noise becomes high because the particle size of one magnetic powder itself is too large even if it can be uniformly dispersed.
 本発明で用いる六方晶系フェライト磁性粉末としては、バリウムフェライト磁性粉末、及びストロンチウムフェライト磁性粉末からなる群から選ばれる少なくとも1種の六方晶系フェライト磁性粉末が好ましく、特にバリウムフェライト磁性粉末が好ましい。これらの六方晶系フェライト磁性粉末は、大きな磁気異方性を有するため、特に短波長領域で出力の低下を抑制できる特徴がある。上記六方晶系フェライト系磁性粉末は、所定の元素以外に、Al、Si、S、Sc、Ti、V、Cr、Cu、Y、Mo、Rh、Pd、Ag、Sn、Sb、Te、Ta、W、Re、Au、Bi、La、Ce、Pr、Nd、P、Co、Mn、Zn、Ni、B、Ge、Nbなどの元素を含んでいてもよい。これら元素の添加は、六方晶系フェライト磁性粉末の粒子サイズや磁気特性を制御する上で必要である。 As the hexagonal ferrite magnetic powder used in the present invention, at least one hexagonal ferrite magnetic powder selected from the group consisting of barium ferrite magnetic powder and strontium ferrite magnetic powder is preferable, and barium ferrite magnetic powder is particularly preferable. Since these hexagonal ferrite magnetic powders have large magnetic anisotropy, they have a feature that can suppress a decrease in output particularly in a short wavelength region. The hexagonal ferrite-based magnetic powder includes Al, Si, S, Sc, Ti, V, Cr, Cu, Y, Mo, Rh, Pd, Ag, Sn, Sb, Te, Ta, in addition to the predetermined elements. Elements such as W, Re, Au, Bi, La, Ce, Pr, Nd, P, Co, Mn, Zn, Ni, B, Ge, and Nb may be included. The addition of these elements is necessary to control the particle size and magnetic properties of the hexagonal ferrite magnetic powder.
 次に、本発明の六方晶系フェライト磁性粉末の製造方法について説明する。製造方法は、特に限定されるものではなく、従来公知の六方晶系フェライト磁性粉末の製造方法を使用することができる。このような製造方法の一例は、次に様に実施される。例えば、六方晶系フェライト磁性粉末の構成元素であるバリウム塩かストロンチウム塩のいずれか一種または両方と鉄塩とを含む金属塩の水溶液にアルカリ水溶液を添加して共沈物を作る。次にこの共沈物を水熱処理することによって、六方晶系フェライト磁性粉末の前駆体を合成する。バリウム塩、ストロンチウム塩、鉄塩としては、これらの金属の塩化物、硫酸塩、硝酸塩、炭酸塩が好適に使用される。 Next, a method for producing the hexagonal ferrite magnetic powder of the present invention will be described. The production method is not particularly limited, and a conventionally known method for producing a hexagonal ferrite magnetic powder can be used. An example of such a manufacturing method is implemented as follows. For example, an alkaline aqueous solution is added to an aqueous solution of a metal salt containing one or both of barium salt and strontium salt, which are constituent elements of hexagonal ferrite magnetic powder, and an iron salt to form a coprecipitate. Next, the coprecipitate is hydrothermally treated to synthesize a precursor of hexagonal ferrite magnetic powder. As barium salts, strontium salts, and iron salts, chlorides, sulfates, nitrates, and carbonates of these metals are preferably used.
 上記製造方法において、上記の金属塩と共に、コバルト、チタン、ニッケル、亜鉛、マンガンなどの金属イオンを適当量添加することにより、保磁力と同時に粒子サイズを任意に制御できる。特に粒子サイズの小さな六方晶系フェライト磁性粉末を得るためには、これらの金属イオンを添加することが好ましい。 In the above production method, the particle size can be arbitrarily controlled simultaneously with the coercive force by adding an appropriate amount of metal ions such as cobalt, titanium, nickel, zinc and manganese together with the above metal salt. In particular, in order to obtain a hexagonal ferrite magnetic powder having a small particle size, it is preferable to add these metal ions.
 アルカリとしては、任意のアルカリ性化合物を使用できるが、通常水酸化ナトリウムが使用される。アルカリ性化合物の量は、添加する金属塩に対して等モル量以上で、過剰アルカリ濃度が0.01モル/L以上であるが好ましい。このアルカリ濃度は、板状比の小さい六方晶系フェライト磁性粉末を得る上で特に重要で、アルカリ濃度が高過ぎると板状比が大きくなる傾向にある。一方、アルカリ濃度が低くなると、板状比の小さいものが生成しやすいが、結晶性が低くなり、磁気特性が低下する傾向にある。特に金属塩に対して等モル量以下になると、六方晶系フェライト磁性粉末以外のものが生成しやすくなる。 As the alkali, any alkaline compound can be used, but sodium hydroxide is usually used. The amount of the alkaline compound is preferably an equimolar amount or more with respect to the metal salt to be added, and the excess alkali concentration is preferably 0.01 mol / L or more. This alkali concentration is particularly important for obtaining a hexagonal ferrite magnetic powder having a small plate ratio. If the alkali concentration is too high, the plate ratio tends to increase. On the other hand, when the alkali concentration is low, those having a small plate ratio are likely to be produced, but the crystallinity is low and the magnetic properties tend to be lowered. In particular, when the amount is less than an equimolar amount with respect to the metal salt, other than hexagonal ferrite magnetic powder is likely to be generated.
 したがって、目的とする板状比が1~2の六方晶系フェライト磁性粉末を得るには、比較的低いアルカリ濃度で、まず六方晶系フェライト磁性粉末の前駆体を合成し、その後の水熱処理の条件を調節して、粒子形状を維持しながら、結晶性を上げて目的とする磁気特性を有する磁性粉末を製造することが有効である。 Therefore, in order to obtain a target hexagonal ferrite magnetic powder having a plate ratio of 1 to 2, a precursor of a hexagonal ferrite magnetic powder is first synthesized at a relatively low alkali concentration, followed by hydrothermal treatment. It is effective to produce a magnetic powder having desired magnetic properties by increasing the crystallinity while maintaining the particle shape by adjusting the conditions.
 水熱処理は、通常オートクレーブを用いて行われる。オートクレーブ中での加熱処理は、200~350℃で1~6時間行うことが好ましい。水熱処理温度が低すぎると、目的とする形状の六方晶系フェライト磁性粉末の前駆体が得られない。水熱処理温度が高すぎても、特に問題は生じないが、エネルギー効率は悪くなる。水熱処理の時間が短かすぎると、目的とする形状の六方晶系フェライト磁性粉末の前駆体が得られない。水熱処理の時間が長すぎても、特に問題は生じないが、エネルギー効率は悪くなる。 Hydrothermal treatment is usually performed using an autoclave. The heat treatment in the autoclave is preferably performed at 200 to 350 ° C. for 1 to 6 hours. If the hydrothermal treatment temperature is too low, a precursor of a hexagonal ferrite magnetic powder having a desired shape cannot be obtained. If the hydrothermal treatment temperature is too high, no particular problem occurs, but the energy efficiency is deteriorated. If the hydrothermal treatment time is too short, a precursor of hexagonal ferrite magnetic powder having a desired shape cannot be obtained. If the hydrothermal treatment time is too long, no particular problem occurs, but the energy efficiency deteriorates.
 このようにして作製された六方晶系フェライト磁性粉末の前駆体は、次に融剤を用いて、融剤の融点以上の温度で加熱処理する。これにより、溶融した融剤中で六方晶系フェライト磁性粉末の結晶が成長する。融剤は六方晶系フェライト磁性粉末を結晶成長させるための母材であると同時に、六方晶系フェライト磁性粉末同士の焼結を防止する。その結果、目的とする粒子形状と磁気特性を有し、かつ粒子サイズ分布の狭い六方晶系フェライト磁性粉末が得られる。 The thus-prepared hexagonal ferrite magnetic powder precursor is then heat-treated with a flux at a temperature equal to or higher than the melting point of the flux. Thereby, crystals of hexagonal ferrite magnetic powder grow in the melted flux. The flux is a base material for crystal growth of the hexagonal ferrite magnetic powder, and at the same time prevents sintering of the hexagonal ferrite magnetic powder. As a result, a hexagonal ferrite magnetic powder having the desired particle shape and magnetic properties and a narrow particle size distribution can be obtained.
 使用される融剤としては、500~1,000℃で溶融し、かつ六方晶系フェライト粒子と固溶しないものが好ましく使用される。溶融温度がこれより低い融剤では、六方晶系フェライト粒子の熱処理が不充分となり、六方晶系フェライト粒子の結晶性を充分に向上して、磁気特性を向上させることができない。一方、溶融温度が高い融剤を用いると、融剤中での六方晶系フェライト粒子の結晶成長が過度になり、粒子が粗大化する傾向になる。また六力晶糸フェライト粒子と固溶する融剤を用いると、得られる磁性粉末の飽和磁化量が低下しやすくなる。このような融剤の好ましい例には、ナットリウム、カリウムおよびリチウムの硫酸塩、塩化物、臭化物および沃化物、ホウ酸などが包含され、特にNaClやKCl、KBrは、水によく溶解するため、加熱処理後、水洗することによりこれらの融剤を容易に除去でき、磁性粉末中に不純物として残らないため、好ましい。 As the flux used, those which melt at 500 to 1,000 ° C. and do not dissolve in hexagonal ferrite particles are preferably used. When the melting temperature is lower than this, the heat treatment of the hexagonal ferrite particles becomes insufficient, so that the crystallinity of the hexagonal ferrite particles can be sufficiently improved and the magnetic properties cannot be improved. On the other hand, when a flux having a high melting temperature is used, crystal growth of hexagonal ferrite particles in the flux becomes excessive, and the particles tend to be coarse. Further, when a flux that is solid-solved with the six-strength crystal ferrite particles is used, the saturation magnetization amount of the obtained magnetic powder tends to be lowered. Preferred examples of such fluxing agents include sulfates of sodium, potassium and lithium, chlorides, bromides and iodides, boric acid and the like, and especially NaCl, KCl and KBr are well soluble in water. After the heat treatment, washing with water is preferable because these fluxes can be easily removed and do not remain as impurities in the magnetic powder.
 融剤を用いる加熱処理は、750~900℃の範囲内の温度で1~4時間行うのが好ましい。処理温度が低すぎたり、処理時間が短かすぎたりすると、熱処理が不充分となり、六方晶系フェライト磁性粉末の結晶性が充分に向上せず、磁気特性の向上も不充分になる。また、処理温度が高すぎたり、処理時間が長すぎたりすると、融剤が粒子表面に固着して、磁気特性、とりわけ飽和磁化量を低下させる傾向がある。 The heat treatment using a flux is preferably performed at a temperature in the range of 750 to 900 ° C. for 1 to 4 hours. If the treatment temperature is too low or the treatment time is too short, the heat treatment is insufficient, the crystallinity of the hexagonal ferrite magnetic powder is not sufficiently improved, and the magnetic properties are not sufficiently improved. On the other hand, if the treatment temperature is too high or the treatment time is too long, the flux will adhere to the particle surface and tend to lower the magnetic properties, particularly the saturation magnetization.
 六方晶系フェライト磁性粉末の他の製造方法では、上述した六方晶系フェライト構成元素の金属塩と融剤と混合物の溶解物を急冷することにより、六方晶系フェライト粒子の成長を抑制し、この急冷物を400~700℃で加熱処理することにより、融剤中で適度な大きさに六方晶系フェライト粒子に結晶成長させ、その後融剤を溶解除去することにより、六方晶系フェライト粒子を得ることもできる。このような方法により、平均粒子サイズが10~20nmの平板状の六方晶系フェライト磁性粉末を得ることができる。 In another method for producing a hexagonal ferrite magnetic powder, the above-described hexagonal ferrite constituent element metal salt, a flux, and a mixture of a mixture are rapidly cooled to suppress the growth of hexagonal ferrite particles. The rapidly cooled product is heat-treated at 400 to 700 ° C. to grow crystals into hexagonal ferrite particles in an appropriate size in the flux, and then the hexagonal ferrite particles are obtained by dissolving and removing the flux. You can also. By such a method, a tabular hexagonal ferrite magnetic powder having an average particle size of 10 to 20 nm can be obtained.
 以下に、本発明の磁気記録媒体について説明する。 The magnetic recording medium of the present invention will be described below.
 本発明の磁気記録媒体で使用する非磁性支持体としては、従来から使用されている磁気記録媒体用非磁性支持体をいずれも使用できる。たとえば、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル類、ポリオレフィン類、セルローストリアセテート、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリスルフオン、アラミド、芳香族ポリアミドなどからなる厚さが通常2~15μm、特に2~7μmのプラスチツクフイルムが好ましく用いられる。 As the nonmagnetic support used in the magnetic recording medium of the present invention, any conventionally used nonmagnetic support for magnetic recording media can be used. For example, the thickness composed of polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins, cellulose triacetate, polycarbonate, polyamide, polyimide, polyamideimide, polysulfone, aramid, aromatic polyamide, etc. is usually 2 to 15 μm, especially 2 to 7 μm. The plastic film is preferably used.
 磁性層の厚さは、長手記録の本質的な問題である減磁による出力低下を解決するため、300nm以下とすることが好ましい。磁性層厚さが300nm以上であると、厚さ損失により再生出力が低下したり、残留磁化(Mr)と磁性層厚さ(t)の積であるMr・tが大きくなりすぎて、特に再生ヘッドにGMRヘッドを使用する場合には、再生出力の飽和による再生出力の歪が起こりやすい。磁性層厚さが10nm未満であると、均一な磁性層が得られにくい。 The thickness of the magnetic layer is preferably 300 nm or less in order to solve the decrease in output due to demagnetization, which is an essential problem in longitudinal recording. When the magnetic layer thickness is 300 nm or more, the reproduction output decreases due to the thickness loss, or Mr · t, which is the product of the residual magnetization (Mr) and the magnetic layer thickness (t), becomes too large. When a GMR head is used as the head, reproduction output distortion is likely to occur due to reproduction output saturation. If the magnetic layer thickness is less than 10 nm, it is difficult to obtain a uniform magnetic layer.
 磁気特性に関して、例えば長手配向媒体とする場合には、長手方向の保磁力(Hc)が119.4~358.2kA/m(1,500~4,500エルステッド)の範囲、好ましくは95.5~318.4kA/m(1,200~4,000エルステッド)の範囲、角形比(Br/Bm)が0.65~0.92の範囲、好ましくは0.62~0.90の範囲、残留磁化(Mr)と磁性層厚さ(t)の積であるMr・tが0.1~2.0memu/cmの範囲、好ましくは0.12~1.98memu/cmの範囲になるように、磁性層厚さと充填度を調節すること好ましい。垂直配向媒体とする場合には、垂直方向の保磁力(Hc)が79.6~318.4kA/m(1,000~4,000エルステッド)の範囲、好ましくは95.5~302.5kA/m(1,200~3,800エルステッド)の範囲、角形比(Br/Bm)が0.60~0.85の範囲、好ましくは0.62~0.83の範囲、Mr・tが0.05~1.5memu/cmの範囲、好ましくは0.06~1.4memu/cmの範囲になるように、磁性層厚さと充填度を調節することが好ましい。さらに無配向媒体とする場合には、長手方向の保磁力(Hc)が79.6~318.4kA/m(1,000~4,000エルステッド)の範囲、好ましくは95.5~302.5kA/m(1,200~3,800エルステッド)の範囲、角形比(Br/Bm)が0.40~0.65の範囲、好ましくは0.42~0.63の範囲、Mr・tが0.08~1.8memu/cmの範囲、好ましくは0.09~1.7memu/cmの範囲になるように、磁性層厚さと充填度を調節することが好ましい。 Regarding the magnetic properties, for example, when a longitudinally oriented medium is used, the longitudinal coercive force (Hc) is in the range of 119.4 to 358.2 kA / m (1,500 to 4,500 oersted), preferably 95. In the range of 5 to 318.4 kA / m (1,200 to 4,000 oersted), the squareness ratio (Br / Bm) in the range of 0.65 to 0.92, preferably in the range of 0.62 to 0.90, Mr · t, which is the product of remanent magnetization (Mr) and magnetic layer thickness (t), is in the range of 0.1 to 2.0 memu / cm 2 , preferably in the range of 0.12 to 1.98 memu / cm 2. Thus, it is preferable to adjust the magnetic layer thickness and the filling degree. When the vertical alignment medium is used, the coercive force (Hc) in the vertical direction is in the range of 79.6 to 318.4 kA / m (1,000 to 4,000 Oersted), preferably 95.5 to 302.5 kA / m (1,200 to 3,800 oersted), squareness ratio (Br / Bm) in the range of 0.60 to 0.85, preferably in the range of 0.62 to 0.83, and Mr · t of 0.1. It is preferable to adjust the thickness of the magnetic layer and the degree of filling so that it is in the range of 05 to 1.5 memu / cm 2 , preferably in the range of 0.06 to 1.4 memu / cm 2 . Further, when the non-oriented medium is used, the longitudinal coercive force (Hc) is in the range of 79.6 to 318.4 kA / m (1,000 to 4,000 Oersted), preferably 95.5 to 302.5 kA. / M (1,200 to 3,800 oersted), squareness ratio (Br / Bm) in the range of 0.40 to 0.65, preferably in the range of 0.42 to 0.63, and Mr · t is 0. .08 ~ 1.8memu / cm 2, preferably in the range to be in the range of 0.09 ~ 1.7memu / cm 2, it is preferable to adjust the magnetic layer thickness and degree of filling.
 保磁力が低過ぎると、短波長領域で反磁界による減磁により出力低下が起こりやすくなり、また保磁力が高過ぎると、磁気ヘッドによる記録が困難になるため、上記の保磁力範囲が好ましい。またMr・tは、上記の範囲より小さいと、GMRヘッドのような高感度ヘッドを使用した場合でも再生出力が小さく、また上記の範囲より大きいと、GMRヘッドのような高感度ヘッドを使用した場合に、出力が飽和して歪みやすくなる。 When the coercive force is too low, output is likely to decrease due to demagnetization in the short wavelength region, and when the coercive force is too high, recording with a magnetic head becomes difficult, so the above coercive force range is preferable. If Mr · t is smaller than the above range, the reproduction output is small even when a high-sensitivity head such as a GMR head is used. If Mr · t is larger than the above range, a high-sensitivity head such as a GMR head is used. In some cases, the output is saturated and distorted easily.
 いずれの配向状態の磁気記録媒体においても、本発明の板状比が1~2の低板状比の六方晶系フェライト磁性粉末を使用することにより、この磁性粉末本来の低ノイズが実現でき、その結果、高いSNRが得ることができる。 In any orientation of the magnetic recording medium, by using the hexagonal ferrite magnetic powder having a low plate ratio of 1 to 2 according to the present invention, the inherent low noise of the magnetic powder can be realized, As a result, a high SNR can be obtained.
 磁性層の平均表面粗さRaは、1.0~3.2nmの範囲が好ましい。Raがこの範囲にあると、ヘッドとのコンタクトがよくなり、高いSNRが得られる。Raがこの範囲より小さくなると、ヘッドの張り付きなどにより摺動性が低下する傾向があり、またこの範囲を超えると、ヘッドのコンタクトが悪くなり、出力が低下しやすくなる。 The average surface roughness Ra of the magnetic layer is preferably in the range of 1.0 to 3.2 nm. When Ra is within this range, contact with the head is improved, and high SNR is obtained. If Ra is smaller than this range, the slidability tends to decrease due to sticking of the head or the like, and if it exceeds this range, the contact of the head becomes poor and the output tends to decrease.
 磁性層には、導電性や表面潤滑性を向上させるカーボンブラックや、研磨性を向上させるアルミナ等の添加物を含ませることが好ましい。カーボンブラックやアルミナとしては従来公知のものを使用できる。 The magnetic layer preferably contains an additive such as carbon black for improving conductivity and surface lubricity and alumina for improving polishing. Conventionally known carbon black and alumina can be used.
 本発明の磁気記録媒体では、下塗層は、必須ではないが、耐久性の向上を目的として、非磁性支持体と磁性層との間に設けることが好ましい。下塗層の厚さは、好ましくは0.1~3.0μmである。下塗層の厚さが0.1μm未満では、磁気テープの耐久性が悪くなる場合があり、3.0μmを超えると、磁気テープの耐久性の向上する効果が飽和するばかりでなく、テープ全厚が厚くなって、1巻当りのテープ長さが短くなり、1巻当りの記憶容量が小さくなる。 In the magnetic recording medium of the present invention, the undercoat layer is not essential, but is preferably provided between the nonmagnetic support and the magnetic layer for the purpose of improving durability. The thickness of the undercoat layer is preferably 0.1 to 3.0 μm. If the thickness of the undercoat layer is less than 0.1 μm, the durability of the magnetic tape may deteriorate, and if it exceeds 3.0 μm, not only the effect of improving the durability of the magnetic tape is saturated but also the entire tape As the thickness increases, the tape length per roll becomes shorter and the storage capacity per roll becomes smaller.
 下塗層に含ませる無機粒子は、特に限定されない。例えば、非磁性酸化鉄を用いる場合には、針状酸化鉄は、好ましくは50~200nmの平均長さを有し、粒状または無定形の酸化鉄は、好ましくは5~200nmの平均粒径を有する。 The inorganic particles included in the undercoat layer are not particularly limited. For example, when nonmagnetic iron oxide is used, acicular iron oxide preferably has an average length of 50 to 200 nm, and granular or amorphous iron oxide preferably has an average particle size of 5 to 200 nm. Have.
 磁性層を垂直配向して垂直記録媒体として使用する場合には、下塗層には磁性粒子を含ませることが好ましい。この場合、磁性粒子の種類は特に限定されず、磁性酸化鉄、磁性金属あるいは磁性合金が使用できるが、磁性層からの磁束を下塗層で閉じて、表面からのみ強い磁束を発生させることが目的であるため、下塗層に使用する磁性粒子はできるだけ保磁力が小さく、かつ飽和磁化の大きいものが好ましい。 When the magnetic layer is vertically oriented and used as a perpendicular recording medium, it is preferable that the undercoat layer contains magnetic particles. In this case, the type of magnetic particles is not particularly limited, and magnetic iron oxide, magnetic metal, or magnetic alloy can be used, but the magnetic flux from the magnetic layer can be closed by the undercoat layer to generate a strong magnetic flux only from the surface. For this purpose, it is preferable that the magnetic particles used in the undercoat layer have as small a coercive force as possible and a large saturation magnetization.
 垂直記録媒体として使用する場合には、下塗層の磁性層と、信号を記録するための上層の磁性層との間に、さらに中間層を形成することもできる。この中間層は、上層と下塗層間の磁気的相互作用を制御し、垂直磁化成分をより効果的に活用するために有効である。 When used as a perpendicular recording medium, an intermediate layer may be further formed between the magnetic layer of the undercoat layer and the upper magnetic layer for recording signals. This intermediate layer is effective for controlling the magnetic interaction between the upper layer and the undercoat layer and more effectively utilizing the perpendicular magnetization component.
 下塗層および磁性層に使用する結合剤は特に限定されるものではなく、従来の磁気記録媒体に使用されているものが使用できる。結合剤の例は、ポリウレタン樹脂と、塩化ビニル樹脂、塩化ビニル-酢酸ビニル共重合樹脂、塩化ビニル-ビニルアルコール共重合樹脂、塩化ビニル-酢酸ビニル-ビニルアルコール共重合樹脂、塩化ビニル-酢酸ビニル-無水マレイン酸共重合樹脂、塩化ビニル-水酸基含有アルキルアクリレート共重合樹脂などの塩化ビニル系樹脂、ニトロセルロース、エポキシ樹脂などの中から選ばれる少なくとも1種との組み合わせである。特に、塩化ビニル系樹脂とポリウレタン樹脂とを併用するのが好ましい。 The binder used in the undercoat layer and the magnetic layer is not particularly limited, and those used in conventional magnetic recording media can be used. Examples of binders are polyurethane resin, vinyl chloride resin, vinyl chloride-vinyl acetate copolymer resin, vinyl chloride-vinyl alcohol copolymer resin, vinyl chloride-vinyl acetate-vinyl alcohol copolymer resin, vinyl chloride-vinyl acetate- It is a combination with at least one selected from vinyl chloride resins such as maleic anhydride copolymer resin, vinyl chloride-hydroxyl group-containing alkyl acrylate copolymer resin, nitrocellulose, epoxy resin and the like. In particular, it is preferable to use a vinyl chloride resin and a polyurethane resin in combination.
 結合剤とともに、結合剤中に含まれる官能基などと結合させて架橋する熱硬化性の架橋剤を併用するのが望ましい。架橋剤の好ましい例は、トリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネートなどのイソシアネートや、これらのイソシアネートと、トリメチロールプロパンなどのポリオールとの反応生成物、上記イソシアネートの縮合生成物などのポリイソシアネートである。 It is desirable to use in combination with a binder a thermosetting crosslinking agent that is bonded to a functional group contained in the binder to crosslink. Preferred examples of the crosslinking agent include isocyanates such as tolylene diisocyanate, hexamethylene diisocyanate and isophorone diisocyanate, reaction products of these isocyanates with polyols such as trimethylolpropane, and polyisocyanates such as condensation products of the above isocyanates. is there.
 磁性層および下塗層に含ませる潤滑剤には、公知の脂肪酸、脂肪酸エステル、脂肪酸アミドなどがいずれも用いられる。それらの中でも、炭素数10以上、好ましくは12~30の脂肪酸と、融点35℃以下、好ましくは10℃以下の脂肪酸エステルとを併用するのが、特に好ましい。 As the lubricant to be included in the magnetic layer and the undercoat layer, any known fatty acid, fatty acid ester, fatty acid amide and the like are used. Among these, it is particularly preferable to use a fatty acid having 10 or more carbon atoms, preferably 12 to 30 carbon atoms, and a fatty acid ester having a melting point of 35 ° C. or lower, preferably 10 ° C. or lower.
 バックコート層も、本発明の磁気記録媒体では必須ではないが、磁気テープの場合、非磁性支持体の磁性層形成面の反対面にバックコート層を形成するのが望ましい。バックコート層の厚さは、好ましく0.2~0.8μm、より好ましくは0.3~0.8μmである。バックコート層の厚さが0.2μm未満では、走行性の向上効果が不十分であり、0.8μmを超えるとテープ全厚が厚くなり、1巻当たりの記憶容量が小さくなる。 The backcoat layer is also not essential in the magnetic recording medium of the present invention, but in the case of a magnetic tape, it is desirable to form a backcoat layer on the surface opposite to the magnetic layer forming surface of the nonmagnetic support. The thickness of the back coat layer is preferably 0.2 to 0.8 μm, more preferably 0.3 to 0.8 μm. If the thickness of the backcoat layer is less than 0.2 μm, the effect of improving running performance is insufficient, and if it exceeds 0.8 μm, the total thickness of the tape is increased and the storage capacity per roll is reduced.
 磁性塗料、下塗塗料およびバックコート塗料の調製に際し、溶剤としては、従来から使用されている有機溶剤をいずれも使用することができる。そのような有機溶剤の例は、ベンゼン、トルエン、キシレンなどの芳香族系溶剤、アセトン、シクロヘキサノン、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶剤、酢酸エチル、酢酸ブチルなどのエステル系溶剤、ジメチルカーボネート、ジエチルカーボネートなどの炭酸エステル系溶剤、エタノール、イソプロパノールなどのアルコール系溶剤などである。これらの他、ヘキサン、テトラヒドロフラン、ジメチルホルムアミドなどの有機溶剤を用いることもできる。 In preparing the magnetic paint, the undercoat paint and the back coat paint, any conventionally used organic solvent can be used as the solvent. Examples of such organic solvents include aromatic solvents such as benzene, toluene and xylene, ketone solvents such as acetone, cyclohexanone, methyl ethyl ketone and methyl isobutyl ketone, ester solvents such as ethyl acetate and butyl acetate, dimethyl carbonate, Carbonate ester solvents such as diethyl carbonate and alcohol solvents such as ethanol and isopropanol. In addition to these, organic solvents such as hexane, tetrahydrofuran, and dimethylformamide can also be used.
 磁性塗料、下塗塗料およびバックコート塗料は、従来の塗料製造方法により調製することができ、特にニーダなどによる混練工程や一次分散工程を用いるのが好ましい。一次分散工程では、サンドミルを使用することにより、磁性粉末などの分散性を改善できるとともに、表面性状を制御できるので、望ましい。 The magnetic paint, undercoat paint and backcoat paint can be prepared by a conventional paint production method, and it is particularly preferable to use a kneading process or a primary dispersion process using a kneader. In the primary dispersion step, the use of a sand mill is desirable because it can improve the dispersibility of magnetic powder and the like and can control the surface properties.
 磁性塗料、下塗塗料および/またはバックコート塗料は、グラビア塗布、ロール塗布、ブレード塗布、エクストルージヨン塗布などの常套の塗布方法により、
非磁性支持体上に塗布される。特に、下塗塗料および磁性塗料の塗布方法としては、非磁性支持体上に下塗塗料を塗布し、乾燥したのちに磁性塗料を塗布する、逐次重層塗布方法、および下塗塗料と磁性塗料とを同時に塗布する、同時重層塗布方法(ウェットオンウェット)のいずれを採用してもよい。塗布時における薄層磁性層のレベリングを考えると、下塗塗料が湿潤状態のうちに磁性塗料を塗布する、同時重層塗布方式を採用するのがとくに好ましい。
Magnetic coating, undercoating and / or back coating can be applied by conventional coating methods such as gravure coating, roll coating, blade coating, and extrusion coating.
It is coated on a nonmagnetic support. In particular, as a method for applying the undercoat paint and the magnetic paint, the undercoat paint is applied on a non-magnetic support, and after drying, the magnetic paint is applied. Any of the simultaneous multilayer coating method (wet-on-wet) may be employed. Considering the leveling of the thin magnetic layer at the time of coating, it is particularly preferable to adopt a simultaneous multilayer coating method in which the magnetic coating is applied while the undercoat coating is wet.
 以下、本発明を、実施例によりさらに具体的に説明する。なお、実施例において「部」は「重量部」を意味する。以下の例では、六方晶系フェライト磁性粉末として、一般式:BaO・6FeOで表されるバリウムフェライト磁性粉末を用いるが、バリウムフェライト磁性粉末に限定されるものではないことは、言うまでもない。 Hereinafter, the present invention will be described more specifically with reference to examples. In the examples, “parts” means “parts by weight”. In the following example, a barium ferrite magnetic powder represented by the general formula: BaO · 6Fe 2 O 3 is used as the hexagonal ferrite magnetic powder, but it goes without saying that the hexagonal ferrite magnetic powder is not limited to the barium ferrite magnetic powder. .
<バリウムフェライト磁性粉末の調製>
 1モルの塩化第二鉄、1/8モルの塩化バリウム、1/20モルの塩化コバルトおよび1/20モルの塩化チタンを1Lの水に溶解し、得られた溶液を、2.8モルの水酸化ナトリウムを溶解した1Lの水酸化ナトリウム水溶液に加えて攪拌した。次いで、この懸濁液を1日間熟成した後、沈機物をオートクレーブ中に入れ、250℃で4時間、加熱反応させてバリウムフェライトの前駆体を得た。
<Preparation of barium ferrite magnetic powder>
1 mol of ferric chloride, 1/8 mol of barium chloride, 1/20 mol of cobalt chloride and 1/20 mol of titanium chloride were dissolved in 1 L of water, and the resulting solution was dissolved in 2.8 mol of The mixture was added to 1 L aqueous sodium hydroxide solution in which sodium hydroxide was dissolved and stirred. The suspension was then aged for 1 day, and the precipitate was placed in an autoclave and heated at 250 ° C. for 4 hours to obtain a barium ferrite precursor.
 このバリウムフェライト前駆体を(洗液の)pHが8以下になるまで十分に水洗した後、バリウムフェライト前駆体の懸濁液を調製し、上澄液を除去した後、この懸濁液中に融剤として500gのNaClを添加して攪拌し、NaClを溶解させた。次に、溶解したNaClを含むバリウムフェライト前駆体の懸濁液を面積の広いバットに入れ、乾燥機で100℃に加熱して、水を蒸発させた。 The barium ferrite precursor is thoroughly washed with water until the pH (of the washing liquid) is 8 or less, and then a barium ferrite precursor suspension is prepared and the supernatant liquid is removed. As a flux, 500 g of NaCl was added and stirred to dissolve NaCl. Next, the barium ferrite precursor suspension containing dissolved NaCl was placed in a vat with a wide area and heated to 100 ° C. with a dryer to evaporate water.
 このようにして得られたバリウムフェライト前駆体とNaClの混合物を解砕し、坩堝に入れ、まず830℃で20分間加熱して融剤であるNaClを融解し、次に温度を800℃まで下げ、800℃で約10時間加熱処理し、その後、室温まで冷却した。次に、水洗によりNaClを除去し、バリウムフェライト磁性粉末を回収した。得られたバリウムフェライト磁性粉末は、約1.5の板状比および16nm平均粒子サイズを有していた。 The mixture of barium ferrite precursor and NaCl thus obtained is crushed, put in a crucible, first heated at 830 ° C. for 20 minutes to melt NaCl as a flux, and then the temperature is lowered to 800 ° C. , And heated at 800 ° C. for about 10 hours, and then cooled to room temperature. Next, NaCl was removed by washing with water, and barium ferrite magnetic powder was recovered. The barium ferrite magnetic powder obtained had a plate ratio of about 1.5 and an average particle size of 16 nm.
 また、このバリウムフェライト磁性粉末について、1,270kA/m(16,000エルステッド)の磁界を印加して飽和磁化および保磁力を測定したところ、それぞれ、37.4Am2/kg(37.4emu/g)および137.7kA/m(1,730エルステッド)であった。 Further, this barium ferrite magnetic powder, the measured saturation magnetization and coercive force by applying a magnetic field of 1,270 kA / m (16,000 Oe), respectively, 37.4Am 2 /kg(37.4emu/g ) And 137.7 kA / m (1,730 oersted).
<磁性塗料の作製>
 磁性粉末として上記で調製したバリウムフェライト磁性粉末を使用し、以下の組成の磁性塗料成分をニーダで混練した後、サンドミルにより60分の滞留時間で分散し、分散体にポリイソシアネート(日本ポリウレタン工業社製「コロネートL」)5部を加え、撹拌ろ過して磁性塗料を調製した。
<Preparation of magnetic paint>
Using the barium ferrite magnetic powder prepared above as the magnetic powder, the magnetic coating component having the following composition was kneaded with a kneader, and then dispersed with a sand mill for a residence time of 60 minutes. Polyisocyanate (Nippon Polyurethane Industry Co., Ltd.) was dispersed in the dispersion. 5 parts of “Coronate L”) was added and stirred and filtered to prepare a magnetic paint.
 バリウムフェライト磁性粉末              74部
 塩化ビニル-ヒドロキシプロピルアクリレート共重合樹脂 13部
   (含有-SONa基:0.7×10-4当量/g)
 ポリエステルポリウレタン樹脂              8部
    (含有-SONa基:1.0×10-4当量/g)
 α-アルミナ(平均粒径:80nm)           4部
 シクロヘキサノン                  156部
 トルエン                      156部
Barium ferrite magnetic powder 74 parts Vinyl chloride-hydroxypropyl acrylate copolymer resin 13 parts (contained -SO 3 Na group: 0.7 × 10 -4 equivalent / g)
Polyester polyurethane resin 8 parts (containing -SO 3 Na group: 1.0 × 10 -4 equivalent / g)
α-alumina (average particle size: 80 nm) 4 parts cyclohexanone 156 parts toluene 156 parts
<下層用塗料の作製>
 下記の下層用塗料成分をニーダで混練したのち、サンドミルにより45分の滞留時間で分散して、下層用塗料を調整した。
<Preparation of paint for lower layer>
The following lower layer paint components were kneaded with a kneader and then dispersed with a sand mill with a residence time of 45 minutes to prepare a lower layer paint.
 酸化鉄粉末(平均粒径:55nm)            70部
 アルミナ粉末(平均粒径:80nm)           10部
 カーボンブラック(平均粒径:25nm)         20部
 塩化ビニル-ヒドロキシプロピルメタクリレート共重合樹脂 10部
   (含有-SONa基:0.7×10-4当量/g)
 ポリエステルポリウレタン樹脂               5部
   (含有-SONa基:1.0×10-4当量/g)
 メチルエチルケトン                  130部
 トルエン                        80部
 ミリスチン酸                       1部
 ステアリン酸ブチル                  1.5部
 シクロヘキサノン                    65部
Iron oxide powder (average particle size: 55 nm) 70 parts Alumina powder (average particle size: 80 nm) 10 parts Carbon black (average particle size: 25 nm) 20 parts Vinyl chloride-hydroxypropyl methacrylate copolymer resin 10 parts (containing -SO 3 Na group: 0.7 × 10 −4 equivalent / g)
Polyester polyurethane resin 5 parts (containing -SO 3 Na group: 1.0 × 10 -4 equivalent / g)
Methyl ethyl ketone 130 parts Toluene 80 parts Myristic acid 1 part Butyl stearate 1.5 parts Cyclohexanone 65 parts
<磁気テープの作製>
 上記下層用塗料を、非磁性支持体であるポリエチレンテレフタレートフイルムに、乾燥およびカレンダ処理後の下層厚さが2μmとなるように塗布し、この上にさらに、上記の磁性塗料を、238.8kA/mで磁場配向処理した後、90℃で乾燥してカレンダ処理後の磁性層厚さが120nmとなるように塗布厚さを調整しながら塗布した。
<Preparation of magnetic tape>
The lower layer coating material is applied to a polyethylene terephthalate film, which is a nonmagnetic support, so that the lower layer thickness after drying and calendering is 2 μm, and the magnetic coating material is further added to 238.8 kA / After magnetic field orientation treatment at m, the coating was dried at 90 ° C. while adjusting the coating thickness so that the magnetic layer thickness after calendering was 120 nm.
 つぎに、この非磁性支持体の下塗層および磁性層の形成面とは反対面側に、バックコート層用塗料を、乾燥およびカレンダ処理後のバックコート層の厚さが700nmとなるように塗布し、乾燥した。バックコート層用塗料は、下記のバックコート塗料成分を、サンドミルにより45分の滞留時間で分散した後、ポリイソシアネート8.5部を加え、撹拌ろ過して調製したものである。 Next, a back coat layer coating is applied on the side opposite to the surface on which the non-magnetic support and the undercoat layer of the non-magnetic support are formed, and the thickness of the back coat layer after drying and calendering is 700 nm. Applied and dried. The coating material for the backcoat layer is prepared by dispersing the following backcoat coating material components with a sand mill with a residence time of 45 minutes, adding 8.5 parts of polyisocyanate, and stirring and filtering.
  カーボンブラック(平均粒径:25nm)         40部
  カーボンブラック(平均粒径:370nm)         1部
  硫酸バリウム                       4部
  ニトロセルロース                    28部
  ポリウレタン樹脂(-SONa基含有)            20部
  シクロヘキサノン                   100部
  トルエン                       100部
  メチルエチルケトン                  100部
Carbon black (average particle size: 25 nm) 40 parts Carbon black (average particle size: 370 nm) 1 part Barium sulfate 4 parts Nitrocellulose 28 parts Polyurethane resin (containing -SO 3 Na group) 20 parts Cyclohexanone 100 parts Toluene 100 parts Methyl ethyl ketone 100 Part
 このようにして得た磁気シートを、5段カレンダ(温度70℃、線圧150kg/cm)で鏡面化処理し、これをシートコアに巻いた状態で、60℃,40%RH下、48時間エージングした。その後、1/2インチ幅に裁断した。 The magnetic sheet thus obtained was mirror-finished with a 5-stage calendar (temperature: 70 ° C., linear pressure: 150 kg / cm), and this was wound on a sheet core at 60 ° C. and 40% RH for 48 hours. Aged. Then, it cut | judged to the 1/2 inch width.
 実施例1におけるバリウムフェライト磁性粉末の作製において、塩化コバルトと塩化チタンの添加量を共に1/20モルから1/15モルに、さらに水酸化ナトリウムの添加量を2.8モルから2.5モルに変更し、水熱処理を300℃で4時間行った以外は、実施例1と同様の方法で、バリウムフェライト磁性粉末の前駆体を作製した。次いで、この前駆体の融剤中での処理条件を、まず830℃で20分間加熱して融剤であるNaClを融解した後、次に温度を820℃まで下げ、820℃で約10時間加熱処理に変更した以外は、実施例1と同条件でバリウムフェライト磁性粉末を作製した。 In the production of the barium ferrite magnetic powder in Example 1, the addition amounts of cobalt chloride and titanium chloride were both changed from 1/20 mol to 1/15 mol, and the addition amount of sodium hydroxide was changed from 2.8 mol to 2.5 mol. The precursor of barium ferrite magnetic powder was prepared in the same manner as in Example 1 except that hydrothermal treatment was performed at 300 ° C. for 4 hours. Next, the processing conditions of this precursor in the flux were first heated at 830 ° C. for 20 minutes to melt the NaCl, which is the flux, and then the temperature was lowered to 820 ° C. and heated at 820 ° C. for about 10 hours. A barium ferrite magnetic powder was produced under the same conditions as in Example 1 except that the treatment was changed.
 このバリウムフェライト磁性粉末は、板状比が約1.1で平均粒子サイズが14nmのほぼ立方体形状であった。また、このバリウムフェライト磁性粉末の飽和磁化は35.1Am2/kg(35.1emu/g)、保磁力は125.8kA/m(1,580エルステッド)であった。このバリウムフェライト磁性粉末を用いて、実施例1と同様にして、磁気テープを作製した。 This barium ferrite magnetic powder had a substantially cubic shape with a plate ratio of about 1.1 and an average particle size of 14 nm. The barium ferrite magnetic powder had a saturation magnetization of 35.1 Am 2 / kg (35.1 emu / g) and a coercive force of 125.8 kA / m (1,580 oersted). Using this barium ferrite magnetic powder, a magnetic tape was produced in the same manner as in Example 1.
 実施例1におけるバリウムフェライト磁性粉末の作製において、水酸化ナトリウムの添加量を2.8モルから、3.5モルに変更し、水熱処理を230℃で4時間行った以外は、実施例1と同様の方法で、バリウムフェライト磁性粉末の前駆体を作製した。次いで、この前駆体の融剤中での処理条件を、まず830℃で20分間加熱して融剤であるNaClを溶解した後、次に温度を780℃まで下げ、780℃で約10時間加熱処理に変更した以外は、実施例1と同条件でバリウムフェライト磁性粉末を作製した。 In the production of barium ferrite magnetic powder in Example 1, the amount of sodium hydroxide added was changed from 2.8 mol to 3.5 mol, and hydrothermal treatment was performed at 230 ° C. for 4 hours. A precursor of barium ferrite magnetic powder was prepared in the same manner. Next, the processing conditions of the precursor in the flux were first heated at 830 ° C. for 20 minutes to dissolve NaCl as the flux, then the temperature was lowered to 780 ° C. and heated at 780 ° C. for about 10 hours. A barium ferrite magnetic powder was produced under the same conditions as in Example 1 except that the treatment was changed.
 このバリウムフェライト磁性粉末は、約1.8の板状比および17nmの平均粒子サイズを有していた。また、このバリウムフェライト磁性粉末の飽和磁化は39.1Am2/kg(39.1emu/g)、保磁力は149.6kA/m(1,880エルステッド)であった。このバリウムフェライト磁性粉末を用いて、実施例1と同様にして、磁気テープを作製した。 The barium ferrite magnetic powder had a plate ratio of about 1.8 and an average particle size of 17 nm. The barium ferrite magnetic powder had a saturation magnetization of 39.1 Am 2 / kg (39.1 emu / g) and a coercive force of 149.6 kA / m (1,880 Oersted). Using this barium ferrite magnetic powder, a magnetic tape was produced in the same manner as in Example 1.
[比較例1]
 実施例1におけるバリウムフェライト磁性粉末の作製において、水酸化ナトリウムの添加量を2.8モルから、5.0モルに変更し、水熱処理を280℃で4時間いった以外は、実施例1と同様の方法で、バリウムフェライト磁性粉末の前駆体を作製した。次いで、この前駆体の融剤中での処理条件を、まず830℃で20分間加熱して融剤であるNaClを溶解した後、次に温度を780℃まで下げ、780℃で約10時間加熱処理に変更した以外は、実施例1と同条件でバリウムフェライト磁性粉末を作製した。
[Comparative Example 1]
In the production of barium ferrite magnetic powder in Example 1, the amount of sodium hydroxide added was changed from 2.8 mol to 5.0 mol, and hydrothermal treatment was performed at 280 ° C. for 4 hours. A precursor of barium ferrite magnetic powder was prepared in the same manner. Next, the processing conditions of the precursor in the flux were first heated at 830 ° C. for 20 minutes to dissolve NaCl as the flux, then the temperature was lowered to 780 ° C. and heated at 780 ° C. for about 10 hours. A barium ferrite magnetic powder was produced under the same conditions as in Example 1 except that the treatment was changed.
 このバリウムフェライト磁性粉末は、板状比が約5で平均粒子サイズが23nmの平板状であった。また、このバリウムフェライト磁性粉末の飽和磁化は42.3Am/kg(42.3emu/g)、保磁力は157.6kA/m(1,980エルステッド)であった。このバリウムフェライト磁性粉末を用いて、実施例1と同様にして、磁気テープを作製した。 This barium ferrite magnetic powder was a flat plate having a plate ratio of about 5 and an average particle size of 23 nm. The barium ferrite magnetic powder had a saturation magnetization of 42.3 Am 2 / kg (42.3 emu / g) and a coercive force of 157.6 kA / m (1,980 oersted). Using this barium ferrite magnetic powder, a magnetic tape was produced in the same manner as in Example 1.
 上記の実施例1~3および比較例1の各磁気テープについて、下記の方法により、磁気特性として長手方向の保磁力(Hc)、角形比(Br/Bm)および電磁変換特性を測定した。これらの結果は、表1にまとめて示す。 For the magnetic tapes of Examples 1 to 3 and Comparative Example 1 described above, the longitudinal coercive force (Hc), squareness ratio (Br / Bm), and electromagnetic conversion characteristics were measured as magnetic characteristics by the following methods. These results are summarized in Table 1.
<電磁変換特性の測定>
 電磁変換特性は回転ドラム装置を用いて測定した。測定条件は、記録ヘッドとして、MIGヘッド(トラック幅:12μm、ギャップ長:0.15μm、Bs:1.2T)を使用し、再生ヘッドとして、スピンバルブタイプのGMRヘッド(トラック幅:2.5μmで、SH-SH幅:0.15μm)を使用した。テープとヘッドの相対速度は3.4m/秒であり、スペクトルアナライザーを使用して169kfciの記録密度における再生出力(S)とブロードバンドノイズ(N)を測定し、SNRを求めた。なお再生出力、ノイズレベルおよびSNRは、比較例1のテープの値を0dBとして、相対値として示した。
<Measurement of electromagnetic conversion characteristics>
The electromagnetic conversion characteristics were measured using a rotating drum device. The measurement conditions were that a MIG head (track width: 12 μm, gap length: 0.15 μm, Bs: 1.2 T) was used as the recording head, and a spin valve type GMR head (track width: 2.5 μm) as the reproducing head. And SH-SH width: 0.15 μm). The relative speed of the tape and the head was 3.4 m / sec. Using a spectrum analyzer, the reproduction output (S) and broadband noise (N) at a recording density of 169 kfci were measured, and the SNR was obtained. The reproduction output, noise level, and SNR are shown as relative values with the value of the tape of Comparative Example 1 being 0 dB.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明による実施例1~3の各磁気テープは、バリウムフェライト磁性粉末として板状比が1~2の低板状比の磁性粉末を用いており、板状比が5と大きいバリウムフェライト磁性粉末を用いた比較例1の磁気テープに比べて、配向性に劣るため出力は低い。しかし、出力の低下以上にノイズ低減の効果が大きく、結果として比較例1の磁気テープに比べて高いSNRが得られる。これは、本発明のバリウムフェライト磁性粉末の板状比が小さいため、粒子同士が積層して凝集しにくく、その結果、個々の粒子が持つ本来の低いノイズが実現されているためである。 Each of the magnetic tapes of Examples 1 to 3 according to the present invention uses a barium ferrite magnetic powder having a low plate ratio of 1 to 2 as a barium ferrite magnetic powder, and a barium ferrite magnetic powder having a large plate ratio of 5 Compared with the magnetic tape of Comparative Example 1 using No. 1, the output is low because of poor orientation. However, the effect of noise reduction is greater than the reduction in output, and as a result, a higher SNR is obtained compared to the magnetic tape of Comparative Example 1. This is because the bar ratio of the barium ferrite magnetic powder of the present invention is small, so that the particles are not easily laminated and aggregated, and as a result, the inherently low noise of individual particles is realized.
 一方、比較例1の磁気テープは、従来の板状比の大きいバリウムフェライト磁性粉末を用いており、比較的高い出力が得られる反面、粒子の積層凝集によるノイズが増加し、結果として高いSNRを得られない。 On the other hand, the magnetic tape of Comparative Example 1 uses a conventional barium ferrite magnetic powder having a large plate ratio, and a relatively high output can be obtained. On the other hand, noise due to particle agglomeration increases, resulting in a high SNR. I can't get it.
 以上のように本発明は、磁性粉末として、板状比が1~2の範囲に、平均粒子サイズが10~20nmの範囲にある低板状比の六方晶系フェライト磁性粉末を用いることにより、板状磁性粉末の欠点である積層凝集を防止しすることにより、ノイズを低減させることができ、その結果、大きなSNRを得ることができる。 As described above, the present invention uses, as the magnetic powder, a hexagonal ferrite magnetic powder having a low plate ratio in which the plate ratio is in the range of 1 to 2 and the average particle size is in the range of 10 to 20 nm. By preventing lamination and aggregation, which is a drawback of the plate-like magnetic powder, noise can be reduced, and as a result, a large SNR can be obtained.

Claims (6)

  1.  非磁性支持体、および該非磁性支持体上に形成された磁性粉末と結合剤を含有する磁性層を含んでなる磁気記録媒体において、磁性粉末は、1~2の範囲の板状比、10~20nmの範囲の平均粒子サイズ、79.6~318.4kA/m(1,000~4,000エルステッド)の範囲の保磁力、20~60Am/kg(20~60emu/g)の範囲の飽和磁化量を有する板状の六方晶系フェライト磁性粉末である、磁気記録媒体。 In a magnetic recording medium comprising a nonmagnetic support and a magnetic layer containing a magnetic powder and a binder formed on the nonmagnetic support, the magnetic powder has a plate-like ratio in the range of 1 to 2, 10 to Average particle size in the range of 20 nm, coercivity in the range of 79.6 to 318.4 kA / m (1,000 to 4,000 Oersted), saturation in the range of 20 to 60 Am 2 / kg (20 to 60 emu / g) A magnetic recording medium, which is a plate-shaped hexagonal ferrite magnetic powder having a magnetization amount.
  2.  前記六方晶系フェライト磁性粉末がバリウムフェライトおよびストロンチウムフェライトから成る群選ばれた少なくとも一種の磁性粉末である請求項1に記載の磁気記録媒体。 The magnetic recording medium according to claim 1, wherein the hexagonal ferrite magnetic powder is at least one magnetic powder selected from the group consisting of barium ferrite and strontium ferrite.
  3.  前記非磁性支持体と前記磁性層の間に、少なくとも一層の無機粉末および結合剤を含有する下塗り層を有し、前記磁性層の厚さが0.3μm以下である請求項1または請求項2に記載の磁気記録媒体。 3. An undercoat layer containing at least one inorganic powder and a binder is provided between the nonmagnetic support and the magnetic layer, and the thickness of the magnetic layer is 0.3 μm or less. 2. A magnetic recording medium according to 1.
  4.  前記下塗り層が、無機粉末として非磁性粉末を含有する請求項3に記載の磁気記録媒体。 The magnetic recording medium according to claim 3, wherein the undercoat layer contains a nonmagnetic powder as an inorganic powder.
  5.  磁気記録媒体が垂直記録媒体であり、前記下塗り層が、無機粉末として磁性粒子を含有する請求項3に記載の磁気記録媒体。 The magnetic recording medium according to claim 3, wherein the magnetic recording medium is a perpendicular recording medium, and the undercoat layer contains magnetic particles as an inorganic powder.
  6.  前記磁性層の厚さが、300nmを超えない請求項1~5のいずれかに記載の磁気記録媒体。 6. The magnetic recording medium according to claim 1, wherein the thickness of the magnetic layer does not exceed 300 nm.
PCT/JP2009/059351 2008-05-23 2009-05-21 Magnetic recording medium WO2009142263A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-135248 2008-05-23
JP2008135248A JP2011181116A (en) 2008-05-23 2008-05-23 Magnetic recording medium

Publications (1)

Publication Number Publication Date
WO2009142263A1 true WO2009142263A1 (en) 2009-11-26

Family

ID=41340190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059351 WO2009142263A1 (en) 2008-05-23 2009-05-21 Magnetic recording medium

Country Status (2)

Country Link
JP (1) JP2011181116A (en)
WO (1) WO2009142263A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011093762A (en) * 2009-10-30 2011-05-12 Toda Kogyo Corp Method for producing hexagonal ferrite particulate powder and hexagonal ferrite particulate powder, and magnetic recording medium
JP2012012253A (en) * 2010-06-30 2012-01-19 Toda Kogyo Corp Method for producing hexagonal ferrite particulate powder, hexagonal ferrite particulate powder, and magnetic recording medium
JP2014232564A (en) * 2014-09-12 2014-12-11 富士フイルム株式会社 Servo signal-written magnetic tape manufacturing method, servo signal-written magnetic tape and servo writer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6433394B2 (en) 2015-09-08 2018-12-05 富士フイルム株式会社 Magnetic recording medium
US10614834B2 (en) 2016-09-30 2020-04-07 Fujifilm Corporation Magnetic tape

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260122A (en) * 1985-09-11 1987-03-16 Tdk Corp Magnetic recording medium
JP2006054000A (en) * 2004-08-12 2006-02-23 Hitachi Maxell Ltd Magnetic recording medium
JP2006107627A (en) * 2004-10-05 2006-04-20 Hitachi Maxell Ltd Magnetic recording medium
JP2007091517A (en) * 2005-09-28 2007-04-12 Fujifilm Corp Hexagonal magnetoplumbite type ferrite, its manufacturing method and magnetic recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260122A (en) * 1985-09-11 1987-03-16 Tdk Corp Magnetic recording medium
JP2006054000A (en) * 2004-08-12 2006-02-23 Hitachi Maxell Ltd Magnetic recording medium
JP2006107627A (en) * 2004-10-05 2006-04-20 Hitachi Maxell Ltd Magnetic recording medium
JP2007091517A (en) * 2005-09-28 2007-04-12 Fujifilm Corp Hexagonal magnetoplumbite type ferrite, its manufacturing method and magnetic recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011093762A (en) * 2009-10-30 2011-05-12 Toda Kogyo Corp Method for producing hexagonal ferrite particulate powder and hexagonal ferrite particulate powder, and magnetic recording medium
JP2012012253A (en) * 2010-06-30 2012-01-19 Toda Kogyo Corp Method for producing hexagonal ferrite particulate powder, hexagonal ferrite particulate powder, and magnetic recording medium
JP2014232564A (en) * 2014-09-12 2014-12-11 富士フイルム株式会社 Servo signal-written magnetic tape manufacturing method, servo signal-written magnetic tape and servo writer

Also Published As

Publication number Publication date
JP2011181116A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JP3886968B2 (en) Magnetic recording medium and magnetic recording cartridge
JP3440741B2 (en) Magnetoplumbite type ferrite particle powder for magnetic card
US6964811B2 (en) Magnetic powder, method for producing the same and magnetic recording medium comprising the same
US20100227201A1 (en) Magnetic recording medium
JP5058889B2 (en) Magnetic recording medium
EP1085506A1 (en) Spindle-shaped goethite particles containing cobalt and process for producing the same
JP2008311518A (en) Manufacturing method of ion nitride-based magnetic powder, iron nitride-based magnetic powder, and magnetic recording medium
JP2008159259A (en) Magnetic recording medium
WO2009142263A1 (en) Magnetic recording medium
JP2008108943A (en) Magnetic powder and magnetic recording medium using it
JP2011100503A (en) Magnetic recording medium
US7074281B2 (en) Magnetic powder for magnetic recording
JP2001181754A (en) Magnetic recording medium, rare earth-iron-boron series magnetic powder used therfor and method for producing the magnetic powder
JP2009223970A (en) Magnetic recording medium and manufacturing method therefor
JP2004005898A (en) Magnetic tape
JP5457260B2 (en) Magnetic recording medium
JP4268629B2 (en) Magnetic recording medium and magnetic recording cartridge
JP5712595B2 (en) Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium
JP5712594B2 (en) Hexagonal ferrite particles for magnetic recording media
JP2620256B2 (en) Magnetic recording media
JP2002327202A (en) Magnetic particulate powder of composite metal mainly including iron, manufacturing method therefor, and magnetic recording medium
JP4162536B2 (en) Magnetic recording medium
JP2009277323A (en) Magnetic recording medium
JP2010061732A (en) Magnetic recording medium
JP5305037B2 (en) Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09750625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09750625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP