JP2002327202A - Magnetic particulate powder of composite metal mainly including iron, manufacturing method therefor, and magnetic recording medium - Google Patents

Magnetic particulate powder of composite metal mainly including iron, manufacturing method therefor, and magnetic recording medium

Info

Publication number
JP2002327202A
JP2002327202A JP2001133692A JP2001133692A JP2002327202A JP 2002327202 A JP2002327202 A JP 2002327202A JP 2001133692 A JP2001133692 A JP 2001133692A JP 2001133692 A JP2001133692 A JP 2001133692A JP 2002327202 A JP2002327202 A JP 2002327202A
Authority
JP
Japan
Prior art keywords
magnetic
particle powder
main component
containing iron
composite metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001133692A
Other languages
Japanese (ja)
Inventor
Mamoru Kamigaki
守 神垣
Hiroko Morii
弘子 森井
Kazuyuki Hayashi
一之 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2001133692A priority Critical patent/JP2002327202A/en
Priority to US10/128,573 priority patent/US20020192504A1/en
Priority to EP02252911A priority patent/EP1253585A1/en
Publication of JP2002327202A publication Critical patent/JP2002327202A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/712Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the surface treatment or coating of magnetic particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/22Compounds of iron
    • C09C1/24Oxides of iron
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/061Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder with a protective layer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Abstract

PROBLEM TO BE SOLVED: To provide magnetic particulate powder of composite metal mainly containing iron, superior in dispersibility and oxidation stability, while maintaining adequate magnetic properties. SOLUTION: The magnetic particulate powder of composite metal mainly containing iron is characterized in that magnetic metal particulate powder mainly containing iron has a mean major axis diameter of 0.02-0.30 μm and sodium content of 10 ppm or less, and that polyether modified polysiloxane of 0.02-10 wt.% in terms of Si adheres to the surface of each magnetic particle powder. The manufacturing method comprises dispersing the metal particulate powder of composite metal mainly containing iron into an aqueous solution, washing it in the suspended state in water, then adding polyether modified polysiloxane of 0.02-10 pts.wt. in terms of Si based on the quantity of the metallic magnetic particles, to the aqueous suspension containing the metallic magnetic particles mainly containing iron, stirring, dehydrating, and filtrating it.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、良好な磁気特性を
維持したまま、優れた分散性を有すると共に、酸化安定
性に優れた鉄を主成分とする複合金属磁性粒子粉末を提
供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a composite metal magnetic particle powder containing iron as a main component which has excellent dispersibility and excellent oxidation stability while maintaining good magnetic properties. is there.

【0002】[0002]

【従来の技術】近年、オーディオ用、ビデオ用、コンピ
ュータ用の磁気記録再生用機器の小型軽量化、長時間記
録化、記録の高密度化、若しくは記憶容量の増大化が著
しく進行しており、磁気記録媒体である磁気テープ、磁
気ディスクに対する高性能化、高密度記録化の要求が益
々高まってきている。
2. Description of the Related Art In recent years, devices for magnetic recording / reproducing for audio, video, and computers have been significantly reduced in size and weight, long-time recording, high-density recording, or an increase in storage capacity. Demands for higher performance and higher density recording of magnetic tapes and magnetic disks as magnetic recording media are increasing more and more.

【0003】即ち、磁気記録媒体の高画像高画質、高出
力特性、殊に周波数特性の向上及び保存安定性、耐久性
の向上が要求されている。
[0003] That is, there is a demand for a magnetic recording medium to have high image quality, high image quality, high output characteristics, especially improved frequency characteristics, and improved storage stability and durability.

【0004】磁気記録媒体のこれらの諸特性は磁気記録
媒体に使用される磁性粒子粉末と密接な関係を有してお
り、近年においては、従来の酸化鉄磁性粒子粉末に比較
して高い保磁力値と大きな飽和磁化値を有する鉄を主成
分とする金属磁性粒子粉末が注目され、デジタルオーデ
ィオテープ(DAT)、8mmビデオテープ、Hi−8
テープ、更にハイビジョン用のW−VHSテープ、デジ
タル記録方式のDVCテープ等に使用され、コンピュー
ター用ではZip、スーパーディスク等のリムーバブル
ディスクやHi−FDで採用されている。
[0004] These characteristics of the magnetic recording medium are closely related to the magnetic particle powder used in the magnetic recording medium, and in recent years, the coercive force is higher than that of the conventional iron oxide magnetic particle powder. Magnetic metal particles containing iron as a main component having a large saturation magnetization value have attracted attention, digital audio tape (DAT), 8 mm video tape, Hi-8
It is used for tapes, W-VHS tapes for high vision, DVC tapes of digital recording system, etc., and for computers, removable disks such as Zips and super disks and Hi-FDs.

【0005】しかしながら、磁気記録媒体に使用される
鉄を主成分とする金属磁性粒子粉末は、1μm以下、殊
に、0.02〜0.20μm程度の非常に微細な粒子で
あるため、酸化しやすく、磁気特性が劣化し、殊に、保
磁力値及び飽和磁化値の減少をきたすという欠点があ
る。
However, iron-based metal magnetic particles used for magnetic recording media are very fine particles of 1 μm or less, especially about 0.02 to 0.20 μm. This is disadvantageous in that the magnetic properties are deteriorated, and in particular, the coercive force value and the saturation magnetization value are reduced.

【0006】この事実は、特開平5−81648号公報
における「・・・前記強磁性金属微粒子は表面活性が高
く、大気中で酸化され易い特性を有しており、場合によ
っては発火を伴う恐れがある。このような性質は磁気記
録媒体の低ノイズ化に伴い磁性粉末の微細化が進められ
るにともない、ますます強くなる傾向がある。このため
に、前記強磁性金属微粒子を磁気記録媒体の磁性粉末と
して用いた場合には、強磁性金属微粒子の保存中、ある
いは樹脂や有機溶剤等との組み合わせによる塗料化の行
程中、さらにはポリエステルフィルム等の支持体上に塗
布してシート化した後、所定の雰囲気や温度、湿度等の
条件下での保管中に、主として酸素やある種のガス及び
水分等の影響による酸化が進行して、飽和磁化等の磁気
特性に経時劣化がもたらされ、保存安定性に問題があっ
た。・・・」なる記載の通りである。
This fact is described in Japanese Unexamined Patent Publication No. Hei 5-81648. "... The ferromagnetic metal fine particles have a high surface activity and are easily oxidized in the atmosphere, and may be accompanied by ignition. Such a property tends to become stronger as the magnetic powder becomes finer with the reduction in noise of the magnetic recording medium. When used as a magnetic powder, during storage of the ferromagnetic metal fine particles, or during the process of coating with a resin or an organic solvent, etc., and further after application on a support such as a polyester film to form a sheet. During storage under conditions such as a predetermined atmosphere, temperature, humidity, etc., oxidation mainly due to the influence of oxygen, a certain gas, moisture, etc. progresses, and magnetic properties such as saturation magnetization deteriorate over time. Thalassa is, it is as described there was a problem with the storage stability. ... "become.

【0007】従って、磁性粒子粉末として鉄を主成分と
する金属磁性粒子粉末を使用している磁気記録媒体の特
性を長期にわたって維持するためには、鉄を主成分とす
る金属磁性粒子粉末が酸化安定性に優れていることが強
く要求される。
Accordingly, in order to maintain the characteristics of a magnetic recording medium using iron-based metal magnetic particle powder as the magnetic particle powder for a long period of time, the iron-based metal magnetic particle powder must be oxidized. Excellent stability is strongly required.

【0008】更に、磁気記録媒体の磁気特性、保存安定
性及び塗料の分散安定性を低下させる一因として、磁気
記録媒体中に含有されている可溶性のアルカリ金属、殊
に、可溶性のナトリウムの含有量が多いことが指摘され
ている。
[0008] Further, as one of the causes for lowering the magnetic properties, storage stability and dispersion stability of the coating material of the magnetic recording medium, the content of soluble alkali metal, especially soluble sodium, contained in the magnetic recording medium is considered. It is pointed out that the amount is large.

【0009】以下、この事実について詳述する。Hereinafter, this fact will be described in detail.

【0010】即ち、一般に、鉄を主成分とする金属磁性
粒子粉末は、第一鉄塩水溶液と水酸化ナトリウム、水酸
化カリウム、炭酸ナトリウムなどのアルカリ水溶液とを
反応して得られる鉄含有沈殿物を含む懸濁液を空気等の
酸素含有ガスを通気して酸化反応を行い得られるゲータ
イト粒子粉末、該ゲータイト粒子粉末を加熱脱水して得
られるヘマタイト粒子粉末、又は、これら粒子粉末に鉄
以外の異種元素を含有させた粒子粉末を出発原料として
用い、該出発原料を還元性ガス雰囲気下で加熱還元する
ことにより得られている。
That is, generally, the magnetic metal particles containing iron as a main component are iron-containing precipitates obtained by reacting an aqueous ferrous salt solution with an aqueous alkali solution such as sodium hydroxide, potassium hydroxide, and sodium carbonate. Goethite particles obtained by performing an oxidation reaction by passing an oxygen-containing gas such as air through a suspension containing air, hematite particles obtained by heating and dehydrating the goethite particles, or, in addition to iron, It is obtained by using a particle powder containing a different element as a starting material and heating and reducing the starting material in a reducing gas atmosphere.

【0011】前記製造法に由来して、鉄を主成分とする
金属磁性粒子粉末はナトリウムや製法上不可避的に混入
するカルシウムを含有しており、可溶性ナトリウム塩や
可溶性カルシウム塩を含有している場合には、磁気記録
媒体に使用したときに含有している可溶性ナトリウム塩
や可溶性カルシウム塩などの可溶性塩に起因した化合物
が磁性塗膜及び磁気ヘッドに析出するため問題となって
いる。この事実は、特開平9−305958号公報の
「各層に使用される磁性体、非磁性体、カーボンブラッ
ク、フィラーが含有している水溶性イオンの総和がある
量を超えると高温高湿条件で保存後走行させると摩擦係
数が増加し、極端な場合は張り付き現象が発生し走行停
止する現象が認められた。さらに極端な場合、析出物が
スペーシングロスとなり、磁気テープの再生出力が低下
する。また金属ヘッドを腐食し、記録再生特性を劣化さ
せてしまう。」という記載からも明らかである。
Due to the above-mentioned production method, metal magnetic particle powder containing iron as a main component contains sodium and calcium which is unavoidably mixed in the production method, and contains a soluble sodium salt and a soluble calcium salt. In this case, there is a problem because a compound derived from a soluble salt such as a soluble sodium salt or a soluble calcium salt contained when used in a magnetic recording medium is deposited on a magnetic coating film and a magnetic head. This fact is described in Japanese Unexamined Patent Publication No. Hei 9-305958, "When the total amount of the water-soluble ions contained in the magnetic material, the non-magnetic material, the carbon black and the filler used in each layer exceeds a certain amount, under high temperature and high humidity conditions When running after storage, the coefficient of friction increased, and in extreme cases, the phenomenon of sticking occurred and the running was stopped, and in extreme cases, the precipitates resulted in spacing loss and the reproduction output of the magnetic tape was reduced. Further, the metal head is corroded and the recording / reproducing characteristics are deteriorated. "

【0012】鉄を主成分とする金属磁性粒子粉末中の可
溶性塩を低減させる方法としては、 1)出発原料として水酸化ナトリウム等のアルカリ金属
を含むアルカリ水溶液を用いない、2)水洗によって可
溶性塩を低減する、のどちらかの方法が採られている。
本発明は、2)の方法に関するものである。
The method of reducing the soluble salt in the metal magnetic particle powder containing iron as a main component is as follows: 1) Do not use an alkaline aqueous solution containing an alkali metal such as sodium hydroxide as a starting material; 2) Wash the soluble salt with water Either of these methods has been adopted.
The present invention relates to the method 2).

【0013】水洗による場合には、鉄を主成分とする金
属磁性粒子粉末の製造過程における各生成物ごとに水洗
する場合及び得られた鉄を主成分とする金属磁性粒子粉
末を水洗する場合が考えられるが、前記鉄を主成分とす
る金属磁性粒子粉末の製造法において、出発原料である
ゲータイト粒子粉末及びヘマタイト粒子粉末の段階で水
洗を行った場合には、除去されるのは粒子粉末中の水可
溶性塩だけであるため、還元して鉄を主成分とする金属
磁性粒子粉末としたときに、粒子中に含有されている不
溶性不純物が粒子表面に移動し可溶性塩となって析出し
てくる。この事実は、特開平7−22224号公報の
「周期表第1a族元素を0.05重量%以下にするに
は、これらの元素が製造過程で不可避的に混入する場合
にはその除去処理を行うことが必要である。……特にオ
キシ水酸化鉄、酸化鉄、金属磁性粉と工程が進むに伴っ
て該元素は粒子表面に偏析してくる…」という記載から
も明らかである。
In the case of washing with water, there are a case where each product in the process of manufacturing metal magnetic particle powder containing iron as a main component is washed with water and a case where the obtained metal magnetic particle powder containing iron as a main component is washed with water. It is conceivable that, in the method for producing the metal magnetic particle powder containing iron as a main component, when washing is performed at the stage of the goethite particle powder and the hematite particle powder, which are the starting materials, what is removed is the particle powder. Since it is only a water-soluble salt of, when reduced to iron-based metal magnetic particle powder, insoluble impurities contained in the particles move to the particle surface and precipitate as a soluble salt. come. This fact is described in Japanese Unexamined Patent Publication No. 7-22224, "In order to reduce the content of Group 1a elements in the periodic table to 0.05% by weight or less, if these elements are inevitably mixed in the production process, they must be removed. It is evident from the description that iron oxide oxyhydroxide, iron oxide, and metal magnetic powder are segregated on the particle surface as the process proceeds. "

【0014】また、鉄を主成分とする金属磁性粒子粉末
を水洗する場合には、鉄を主成分とする金属磁性粒子と
しての保磁力値などの磁気特性が低下するため、高い磁
気特性を維持することが困難である。更に、水の表面張
力が高いため、水洗後の鉄を主成分とする金属磁性粒子
粉末は固い凝集体となり、磁性塗料作製時に分散性が悪
く、磁性塗膜にした場合に、鉄を主成分とする金属磁性
粒子が本来有している高い磁気特性を発揮させることが
できない。
When the metal magnetic particles containing iron as the main component are washed with water, the magnetic characteristics such as the coercive force of the metal magnetic particles containing iron as the main component are reduced, so that the high magnetic characteristics are maintained. Is difficult to do. Furthermore, since the surface tension of water is high, the metal magnetic particle powder containing iron as a main component after washing becomes a hard agglomerate, has poor dispersibility at the time of preparing a magnetic paint, and when a magnetic coating film is used, iron is the main component. Cannot exhibit the high magnetic properties originally possessed by the metallic magnetic particles.

【0015】なお、可溶性ナトリウムなどの不純物を低
減させる技術が特開昭56−51029号公報、特開平
7−22224号公報、特開平8−172005号公
報、特開平9−231546号公報、特開平9−305
958号公報、特開平10−69629号公報等に記載
されている。一方、鉄を主成分とする金属磁性粒子粉末
の酸化安定性及び分散性を改善するためにポリシロキサ
ンで表面処理する技術が特開昭52−155398号公
報、特開昭59−23801号公報、特開昭63−52
327号公報等に記載されている。
Incidentally, techniques for reducing impurities such as soluble sodium are disclosed in JP-A-56-51029, JP-A-7-22224, JP-A-8-172005, JP-A-9-231546 and JP-A-9-231546. 9-305
958, JP-A-10-69629 and the like. On the other hand, in order to improve the oxidation stability and dispersibility of metal magnetic particle powder containing iron as a main component, a technique of performing a surface treatment with polysiloxane is disclosed in JP-A-52-155398, JP-A-59-23801, JP-A-63-52
No. 327, etc.

【0016】[0016]

【発明が解決しようとする課題】良好な磁気特性を維持
したまま、優れた分散性を有すると共に、酸化安定性に
優れた鉄を主成分とする金属磁性粒子粉末を製造するこ
とは、現在最も要求されているところであるが、前記諸
特性を十分満足する鉄を主成分とする金属磁性粒子は未
だ提供されていない。
It is currently the most difficult to produce iron-based metal magnetic particles having excellent dispersibility and excellent oxidation stability while maintaining good magnetic properties. Although required, metal magnetic particles containing iron as a main component that sufficiently satisfy the above-mentioned properties have not been provided yet.

【0017】即ち、前出特開昭56−51029号公報
には、強磁性金属粒子粉末を水性溶媒(水又は水と有機
溶媒を混和した水が50%以上のもの)で洗浄すること
が記載されているが、水で洗浄した場合には、得られる
強磁性金属粒子粉末は固い凝集体となり、また、水と有
機溶剤とを混和して洗浄した場合には、可溶性金属塩が
有機溶媒には溶けないため、可溶性ナトリウム塩を十分
に低減できるとは言い難いものである。また、水洗後に
界面活性剤で表面処理することが記載されているが、バ
インダーとのぬれを改良することを目的としており、酸
化安定性性に優れた磁性粒子粉末とは言い難いものであ
る。
That is, JP-A-56-51029 discloses that the ferromagnetic metal particles are washed with an aqueous solvent (water or a mixture of water and an organic solvent containing 50% or more of water). However, when washed with water, the resulting ferromagnetic metal particle powder becomes hard agglomerates, and when washed with a mixture of water and an organic solvent, the soluble metal salt becomes an organic solvent. Is not soluble, and it is difficult to say that the soluble sodium salt can be sufficiently reduced. In addition, although surface treatment with a surfactant is described after washing with water, it is intended to improve the wetting with a binder, and cannot be said to be a magnetic particle powder having excellent oxidation stability.

【0018】また、前出特開平7−22224号公報、
特開平8−172005号公報、特開平9−23154
6号公報、特開平9−305958号公報、特開平10
−69629号公報には、鉄を主成分とする金属磁性粒
子粉末として水洗することが記載されているが、水で洗
浄した場合には、得られる鉄を主成分とする金属磁性粒
子粉末は、固い凝集体となる。
Also, the above-mentioned Japanese Patent Application Laid-Open No. 7-22224,
JP-A-8-172005, JP-A-9-23154
No. 6, JP-A-9-305958, JP-A-9-305
Japanese Patent Application Laid-Open No. 69629/1992 describes washing with water as metal magnetic particle powder containing iron as a main component. However, when washing with water, the obtained metal magnetic particle powder containing iron as a main component is: It becomes a hard aggregate.

【0019】また、前出特開昭52−155398号公
報、特開昭59−23801号公報及び特開昭63−5
2327号公報には、磁性粒子粉末の表面をシリコン化
合物で被覆することが記載されているが、水洗によって
可溶性ナトリウム塩を十分に除去されていないので、酸
化安定性が十分とは言い難い。
The above-mentioned JP-A-52-155398, JP-A-59-23801 and JP-A-63-5
No. 2327 describes that the surface of the magnetic particle powder is coated with a silicon compound. However, since the soluble sodium salt is not sufficiently removed by washing with water, it cannot be said that the oxidation stability is sufficient.

【0020】そこで、本発明は、良好な磁気特性を維持
したまま、優れた分散性を有していると共に可及的に可
溶性塩が低減されていることによって酸化安定性に優れ
た鉄を主成分とする金属磁性粒子を得ることを技術的課
題とする。
Therefore, the present invention mainly provides iron which has excellent dispersibility and excellent oxidation stability due to the reduction of soluble salts as much as possible while maintaining good magnetic properties. It is a technical object to obtain metal magnetic particles as components.

【0021】[0021]

【課題を解決するための手段】前記技術的課題は、次の
通りの本発明によって達成できる。
The above technical objects can be achieved by the present invention as described below.

【0022】即ち、本発明は、平均長軸径が0.02〜
0.30μmであってナトリウム含有量が10ppm以
下である鉄を主成分とする金属磁性粒子粉末の各粒子表
面にポリエーテル変性ポリシロキサンが該金属磁性粒子
粉末に対してSi換算で0.02〜10重量%付着して
いることを特徴とする鉄を主成分とする複合金属磁性粒
子粉末である(本発明1)。
That is, according to the present invention, the average major axis diameter is 0.02 to 0.02.
0.30 μm and a polyether-modified polysiloxane having a sodium content of 10 ppm or less on each particle surface of iron-based metal magnetic particle powder having a sodium content of 0.02 to It is a composite metal magnetic particle powder containing iron as a main component, which is characterized by being attached by 10% by weight (Invention 1).

【0023】また、本発明は、鉄を主成分とする金属磁
性粒子粉末を水溶液中に分散させて水懸濁液の状態で水
洗した後、前記鉄を主成分とする金属磁性粒子を含有す
る水懸濁液に該水懸濁液中の鉄を主成分とする金属磁性
粒子量に対してSi換算で0.02〜10重量部のポリ
エーテル変性ポリシロキサンを添加して攪拌した後、脱
水、濾過することを特徴とする本発明1の鉄を主成分と
する複合金属磁性粒子粉末の製造法である(本発明
2)。
In the present invention, the metal magnetic particles mainly composed of iron are dispersed in an aqueous solution, washed with an aqueous suspension, and then washed with water. After adding 0.02 to 10 parts by weight of a polyether-modified polysiloxane in terms of Si with respect to the amount of metal magnetic particles containing iron as a main component in the aqueous suspension and stirring, the mixture is dehydrated. The present invention provides a method for producing a composite metal magnetic particle powder containing iron as a main component according to the first aspect of the present invention, which is characterized by filtration (Invention 2).

【0024】また、本発明は、非磁性支持体、該非磁性
支持体上に形成される磁性粒子粉末と結合剤樹脂とを含
む磁気記録層からなる磁気記録媒体において、前記磁性
粒子粉末が本発明1の鉄を主成分とする複合金属磁性粒
子粉末であることを特徴とする磁気記録媒体である(本
発明3)。
The present invention also relates to a magnetic recording medium comprising a non-magnetic support, a magnetic recording layer containing a magnetic particle powder formed on the non-magnetic support and a binder resin, wherein the magnetic particle powder is a magnetic recording medium. A magnetic recording medium characterized in that it is a composite metal magnetic particle powder containing iron as a main component (Invention 3).

【0025】また、本発明は、非磁性支持体、該非磁性
支持体上に形成される非磁性粒子粉末と結合剤樹脂とを
含む非磁性下地層及び該非磁性下地層の上に形成される
磁性粒子粉末と結合剤樹脂とを含む磁気記録層からなる
磁気記録媒体において、前記磁性粒子粉末が本発明1の
鉄を主成分とする複合金属磁性粒子粉末であることを特
徴とする磁気記録媒体である(本発明4)。
The present invention also provides a non-magnetic support, a non-magnetic underlayer containing non-magnetic particle powder and a binder resin formed on the non-magnetic support, and a non-magnetic under layer formed on the non-magnetic under layer. A magnetic recording medium comprising a magnetic recording layer containing particle powder and a binder resin, wherein the magnetic particle powder is a composite metal magnetic particle powder containing iron as a main component according to the first aspect of the present invention. (The present invention 4).

【0026】次に、本発明の構成をより詳しく説明すれ
ば次の通りである。
Next, the configuration of the present invention will be described in more detail.

【0027】先ず、本発明に係る鉄を主成分とする複合
金属磁性粒子粉末について述べる。
First, the composite metal magnetic particles containing iron as a main component according to the present invention will be described.

【0028】本発明に係る鉄を主成分とする複合金属磁
性粒子粉末におけるポリエーテル変性ポリシロキサンの
付着量が、鉄を主成分とする金属磁性粒子粉末に対して
Si換算で0.02重量%未満の場合には、酸化安定性
に優れた鉄を主成分とする複合金属磁性粒子粉末を得る
ことが困難である。10重量%を超える場合には、酸化
安定性効果が飽和しており、必要以上に添加する意味が
ない。また、非磁性成分の増加により、得られる鉄を主
成分とする複合金属磁性粒子粉末の磁気特性が低下する
ため好ましくない。好ましくは鉄を主成分とする金属磁
性粒子粉末に対してSi換算で0.04〜5重量%であ
る。
The adhesion amount of the polyether-modified polysiloxane in the composite metal magnetic particles containing iron as the main component according to the present invention is 0.02% by weight in terms of Si with respect to the metal magnetic particles containing iron as the main component. If it is less than 10, it is difficult to obtain composite metal magnetic particles having iron as a main component and having excellent oxidation stability. If it exceeds 10% by weight, the oxidation stability effect is saturated and there is no point in adding more than necessary. Further, an increase in the non-magnetic component is not preferable because the magnetic properties of the obtained composite metal magnetic particle powder containing iron as a main component are deteriorated. Preferably, the content is 0.04 to 5% by weight in terms of Si with respect to the metal magnetic particle powder containing iron as a main component.

【0029】本発明に係る鉄を主成分とする複合金属磁
性粒子粉末の平均長軸径が0.30μmを超える場合に
は、鉄を主成分とする複合金属磁性粒子粉末が大粒子と
なり、これを用いて磁気記録層を形成した場合には、塗
膜の表面平滑性が損なわれやすい。平均長軸径が0.0
2μm未満の場合には、粒子の微細化による分子間力の
増大により凝集を起こしやすいため、磁性塗料製造時に
おけるビヒクル中への分散性が低下する。塗膜の表面平
滑性及び磁性塗料製造時におけるビヒクル中への分散性
を考慮すれば、平均長軸径は0.03〜0.25μmが
好ましい。
When the average major axis diameter of the composite metal magnetic particles containing iron as the main component according to the present invention exceeds 0.30 μm, the composite metal magnetic particles containing iron as the main component become large particles. When the magnetic recording layer is formed by using, the surface smoothness of the coating film tends to be impaired. Average major axis diameter is 0.0
When the particle size is less than 2 μm, aggregation tends to occur due to an increase in intermolecular force due to finer particles, so that dispersibility in a vehicle at the time of manufacturing a magnetic coating material is reduced. In consideration of the surface smoothness of the coating film and the dispersibility in a vehicle during the production of the magnetic paint, the average major axis diameter is preferably from 0.03 to 0.25 μm.

【0030】本発明に係る鉄を主成分とする複合金属磁
性粒子粉末の可溶性ナトリウム塩の含有量は10ppm
以下である。可溶性ナトリウム塩の含有量が10ppm
を超える場合には、鉄を主成分とする複合金属磁性粒子
粉末の酸化安定性及び分散性が低下すると共に、磁気記
録媒体の保存安定性が低下する。好ましくは8ppm以
下である。
The content of the soluble sodium salt in the composite metal magnetic particles containing iron as a main component according to the present invention is 10 ppm.
It is as follows. Soluble sodium salt content is 10ppm
When the ratio exceeds 1, the oxidation stability and dispersibility of the composite metal magnetic particles containing iron as a main component decrease, and the storage stability of the magnetic recording medium decreases. Preferably it is 8 ppm or less.

【0031】本発明に係る鉄を主成分とする複合金属磁
性粒子の粒子形状は針状である。ここで「針状」とは、
文字どおりの針状はもちろん、紡錘状や米粒状などを含
む意味である。
The particle shape of the composite metal magnetic particles containing iron as a main component according to the present invention is acicular. Here, “needle”
Needless to say, the shape includes a spindle shape, a rice grain shape, and the like, as well as a literal needle shape.

【0032】本発明に係る鉄を主成分とする複合金属磁
性粒子粉末の平均短軸径は0.001〜0.15μmが
好ましく、より好ましくは0.0015〜0.125μ
mである。平均短軸径が0.001μm未満の場合に
は、粒子の微細化による分子間力の増大により凝集を起
こしやすいため、磁性塗料製造時におけるビヒクル中へ
の分散性が低下する。平均短軸径が0.15μm以上の
ものは工業的に得ることが困難である。
The average short axis diameter of the composite metal magnetic particles containing iron as a main component according to the present invention is preferably 0.001 to 0.15 μm, more preferably 0.0015 to 0.125 μm.
m. When the average minor axis diameter is less than 0.001 μm, aggregation tends to occur due to an increase in intermolecular force due to finer particles, so that dispersibility in a vehicle at the time of producing a magnetic paint is reduced. Those having an average minor axis diameter of 0.15 μm or more are difficult to obtain industrially.

【0033】本発明に係る鉄を主成分とする複合金属磁
性粒子粉末の軸比は2以上が好ましく、より好ましくは
3以上であり、その上限値は20、好ましくは15であ
る。軸比が20を超える場合には、粒子の絡み合いが多
くなり、磁性塗料製造時におけるビヒクル中への分散性
が低下する。軸比が2未満の場合には、得られる磁気記
録媒体の塗膜強度が小さくなる。
The axial ratio of the composite metal magnetic particles containing iron as a main component according to the present invention is preferably 2 or more, more preferably 3 or more, and the upper limit thereof is 20, preferably 15. When the axial ratio exceeds 20, the entanglement of the particles increases, and the dispersibility in the vehicle during the production of the magnetic paint decreases. When the axial ratio is less than 2, the coating strength of the obtained magnetic recording medium decreases.

【0034】本発明に係る鉄を主成分とする複合金属磁
性粒子粉末の幾何標準偏差値は2.5以下が好ましく、
より好ましくは2.3以下である。幾何標準偏差値が
2.5を超える場合には、存在する粗大粒子によって均
一な分散が阻害されるため、磁性塗料製造時におけるビ
ヒクル中への分散性が低下する。幾何標準偏差値の下限
値は1.01であり、1.01未満のものは工業的に得
られ難い。
The composite metal magnetic particles mainly composed of iron according to the present invention preferably have a geometric standard deviation of 2.5 or less,
More preferably, it is 2.3 or less. If the geometric standard deviation value exceeds 2.5, the uniform dispersion is hindered by the existing coarse particles, so that the dispersibility in the vehicle during the production of the magnetic paint decreases. The lower limit of the geometric standard deviation value is 1.01, and a value less than 1.01 is difficult to obtain industrially.

【0035】本発明に係る鉄を主成分とする複合金属磁
性粒子粉末のBET比表面積値は35〜100m2/g
が好ましく、より好ましくは38〜90m2/g、最も
好ましくは40〜80m2/gである。BET比表面積
値が35m2/g未満の場合には、鉄を主成分とする複
合金属磁性粒子粉末が粗大であったり、粒子相互間で焼
結が生じた粒子となっており、これを用いて磁気記録層
を形成した場合には、塗膜の表面平滑性が損なわれやす
い。BET比表面積値が100m2/gを超える場合に
は、粒子の微細化による分子間力の増大により凝集を起
こしやすいため、磁性塗料製造時におけるビヒクル中へ
の分散性が低下する。
The BET specific surface area of the composite metal magnetic particles containing iron as a main component according to the present invention has a BET specific surface area of 35 to 100 m 2 / g.
Is more preferable, more preferably 38 to 90 m < 2 > / g, and most preferably 40 to 80 m < 2 > / g. When the BET specific surface area value is less than 35 m 2 / g, the composite metal magnetic particle powder containing iron as a main component is coarse or particles that have been sintered between particles. When the magnetic recording layer is formed by this, the surface smoothness of the coating film tends to be impaired. When the BET specific surface area exceeds 100 m 2 / g, aggregation tends to occur due to an increase in intermolecular force due to finer particles, so that dispersibility in a vehicle at the time of manufacturing a magnetic coating material is reduced.

【0036】本発明に係る鉄を主成分とする複合金属磁
性粒子粉末の酸化安定性を示す保磁力値の変化率は12
%以下が好ましく、より好ましくは10%以下であり、
飽和磁化値の変化率は12%以下が好ましく、より好ま
しくは10%以下である。
The change rate of the coercive force value indicating the oxidation stability of the composite metal magnetic particles containing iron as a main component according to the present invention is 12
% Or less, more preferably 10% or less,
The rate of change of the saturation magnetization is preferably 12% or less, more preferably 10% or less.

【0037】本発明に係る鉄を主成分とする複合金属磁
性粒子粉末のほぐれ易さは、後述する評価法の5又は4
が好ましく、より好ましくは5である。
The ease of unraveling of the composite metal magnetic particles containing iron as a main component according to the present invention is determined by the evaluation method 5 or 4 described later.
And more preferably 5.

【0038】本発明に係る鉄を主成分とする複合金属磁
性粒子粉末は全Feに対してCo換算で0.5〜50原
子%のコバルト、Al換算で0.5〜30原子%のアル
ミニウム、希土類元素換算で0.5〜30原子%の希土
類元素を含有することが好ましい。
The composite metal magnetic particles containing iron as a main component according to the present invention contain 0.5 to 50 atomic% of cobalt in terms of Co, 0.5 to 30 atomic% of aluminum in terms of Al, It is preferable to contain a rare earth element in an amount of 0.5 to 30 atomic% in terms of the rare earth element.

【0039】本発明に係る鉄を主成分とする複合金属磁
性粒子粉末の磁気特性は、保磁力値63.7〜278.
5kA/m(800〜3500Oe)が好ましく、より
好ましくは71.6〜278.5kA/m(900〜3
500Oe)であり、飽和磁化値90〜170Am2
kg(90〜170emu/g)が好ましく、より好ま
しくは100〜170Am2/kg(100〜170e
mu/g)である。
The magnetic characteristics of the composite metal magnetic particles containing iron as a main component according to the present invention have a coercive force value of 63.7 to 278.
5 kA / m (800-3500 Oe) is preferred, and more preferably 71.6-278.5 kA / m (900-3).
500 Oe) and a saturation magnetization value of 90 to 170 Am 2 /
kg (90-170 emu / g), more preferably 100-170 Am 2 / kg (100-170 emu).
mu / g).

【0040】次に、本発明に係る鉄を主成分とする複合
金属磁性粒子粉末の製造法について述べる。
Next, a method for producing the composite metal magnetic particles containing iron as a main component according to the present invention will be described.

【0041】本発明に用いる鉄を主成分とする金属磁性
粒子粉末は、磁気記録媒体用として通常用いられるもの
であればよく、例えば、第一鉄塩水溶液と水酸化ナトリ
ウム、水酸化カリウム、炭酸ナトリウムなどのアルカリ
水溶液とを反応して得られる鉄含有沈殿物を含む懸濁液
を空気等の酸素含有ガスを通気して酸化反応を行い得ら
れるゲータイト粒子粉末、該ゲータイト粒子粉末を加熱
脱水して得られるヘマタイト粒子粉末、又は、これら粒
子粉末に鉄以外の異種元素を含有させた粒子粉末を出発
原料とし、該出発原料を還元性ガス雰囲気下で350〜
700℃の温度範囲で加熱還元した後、表面酸化処理し
た鉄を主成分とする金属磁性粒子粉末を用いればよい。
The metal magnetic particle powder containing iron as a main component used in the present invention may be any of those usually used for magnetic recording media. For example, ferrous salt aqueous solution, sodium hydroxide, potassium hydroxide, carbonate A goethite particle powder obtained by performing an oxidation reaction by passing an oxygen-containing gas such as air through a suspension containing an iron-containing precipitate obtained by reacting with an aqueous alkali solution such as sodium, and heating and dehydrating the goethite particle powder. Hematite particle powder obtained as described above, or a particle powder containing a different element other than iron in the particle powder as a starting material, and the starting material is 350 to
After heat-reduction in a temperature range of 700 ° C., a metal magnetic particle powder mainly composed of iron whose surface is oxidized may be used.

【0042】なお、前記表面酸化処理の雰囲気は、酸素
を含んだ不活性ガス雰囲気で表面酸化処理を行う。不活
性ガス雰囲気としては、窒素ガス、ヘリウムガス、アル
ゴンガス等が好ましく、殊に窒素ガスが好適である。酸
素の含有量は0.1〜5vol%が好ましく、所定量ま
で徐々に酸素量を増加させることが好ましい。また、不
活性ガス雰囲気としては水蒸気を含有させてもよい。水
蒸気を含有させた場合は、高い保磁力値を有する鉄を主
成分とする金属磁性粒子粉末が得られやすい。
The surface oxidation treatment is performed in an atmosphere of an inert gas containing oxygen. As the inert gas atmosphere, nitrogen gas, helium gas, argon gas and the like are preferable, and nitrogen gas is particularly preferable. The oxygen content is preferably 0.1 to 5 vol%, and it is preferable to gradually increase the oxygen content to a predetermined amount. Further, the inert gas atmosphere may contain water vapor. When water vapor is contained, metal magnetic particle powder containing iron as a main component and having a high coercive force value is easily obtained.

【0043】また、前記表面酸化温度は40〜200℃
が好ましく、より好ましくは40〜180℃である。4
0℃未満の場合には、十分な厚さを有する表面酸化層を
形成することが困難となり、水洗による磁気特性の低下
が顕著となる。200℃を超える場合には、粒子の形骸
変化、特に酸化物が多量に生成されるため短軸が極端に
膨張し、場合によっては、形骸破壊が起こりやすいため
好ましくない。
The surface oxidation temperature is 40 to 200 ° C.
And more preferably 40 to 180 ° C. 4
If the temperature is lower than 0 ° C., it is difficult to form a surface oxide layer having a sufficient thickness, and the magnetic properties are significantly reduced by washing with water. When the temperature is higher than 200 ° C., the shape of the particles is changed, particularly, a large amount of oxide is generated, so that the short axis is extremely expanded, and in some cases, the shape is easily broken, which is not preferable.

【0044】鉄を主成分とする金属磁性粒子粉末は、粗
粉砕して水洗を行う。
The magnetic metal particles containing iron as a main component are roughly pulverized and washed with water.

【0045】本発明2における水洗は、鉄を主成分とす
る金属磁性粒子を水中に投入して分散させ水懸濁液の状
態で水洗する。水洗は、ろ液の電気伝導度を測定し、1
0μS/cm以下となるまで水洗することが好ましい。
In the water washing according to the second aspect of the invention, metal magnetic particles containing iron as a main component are put into water, dispersed, and washed in a water suspension state. Rinsing measures the electrical conductivity of the filtrate and
It is preferable to wash with water until it becomes 0 μS / cm or less.

【0046】水洗に使用する水は、イオン交換水を用い
る。水温は高い方が可溶性塩をより低減することができ
る。
The water used for washing is ion-exchanged water. The higher the water temperature, the more the soluble salts can be reduced.

【0047】次いで、前記水洗後の鉄を主成分とする金
属磁性粒子を含有する水懸濁液に所定量のポリエーテル
変性ポリシロキサンを添加して攪拌する。
Next, a predetermined amount of a polyether-modified polysiloxane is added to the water suspension containing the metal magnetic particles containing iron as a main component after the water washing, followed by stirring.

【0048】ポリエーテル変性ポリシロキサンを添加す
る前に、あらかじめ水懸濁液の濃度を1〜500g/l
に調整しておくことが好ましい。
Before the addition of the polyether-modified polysiloxane, the concentration of the aqueous suspension is previously adjusted to 1 to 500 g / l.
It is preferable to adjust it.

【0049】本発明2におけるポリエーテル変性ポリシ
ロキサンとしては、化1に示されるポリエーテル変成ポ
リシロキサンから選ばれる1種又は2種以上を用いるこ
とができる。
As the polyether-modified polysiloxane in the present invention 2, one or more kinds selected from the polyether-modified polysiloxane shown in Chemical formula 1 can be used.

【0050】ポリエーテル変成ポリシロキサンの分子量
は、350〜500000の範囲が好ましく、より好ま
しくは1000〜100000の範囲であり、最も好ま
しくは2000〜50000の範囲である。
The molecular weight of the polyether-modified polysiloxane is preferably in the range of 350 to 500,000, more preferably in the range of 1000 to 100,000, and most preferably in the range of 2000 to 50,000.

【0051】[0051]

【化1】 Embedded image

【0052】ポリエーテル変性ポリシロキサンの添加量
は、前記水懸濁液中の鉄を主成分とする金属磁性粒子量
に対してSi換算で0.02〜10重量%である。0.
02重量%未満の場合には分散性及び酸化安定性が低下
する。10重量%を超える場合には効果が飽和するので
必要以上に添加する意味がない。好ましくは0.04〜
5重量部である。
The amount of the polyether-modified polysiloxane added is 0.02 to 10% by weight in terms of Si with respect to the amount of metal magnetic particles containing iron as a main component in the aqueous suspension. 0.
If it is less than 02% by weight, the dispersibility and the oxidative stability decrease. If the content exceeds 10% by weight, the effect is saturated, and there is no point in adding more than necessary. Preferably 0.04 to
5 parts by weight.

【0053】また、0.02重量%未満の場合には、ス
ラリーの表面張力を十分に低減することができないた
め、可溶性塩を十分に低減することが困難となると共
に、得られる鉄を主成分とする複合金属磁性粒子粉末の
ほぐれ易さをを改善することができない。
When the amount is less than 0.02% by weight, the surface tension of the slurry cannot be sufficiently reduced, so that it is difficult to sufficiently reduce the soluble salt, and the obtained iron is the main component. Cannot improve the ease of loosening of the composite metal magnetic particles.

【0054】ポリエーテル変性ポリシロキサンを添加し
て撹拌した後、常法によって、脱水、濾過、乾燥する。
After adding and stirring the polyether-modified polysiloxane, dehydration, filtration and drying are carried out in a conventional manner.

【0055】本発明の方法によって得られた鉄を主成分
とする複合金属磁性粒子粉末は、水洗処理後においても
良好な磁気特性を維持しており、水洗処理前後の保磁力
値の変化率は5%以下が好ましく、より好ましくは4.
5%以下であり、飽和磁化値の変化率は5%以下が好ま
しく、より好ましくは4.5%以下である。
The composite metal magnetic particles containing iron as a main component obtained by the method of the present invention maintain good magnetic properties even after the water washing treatment, and the rate of change of the coercive force before and after the water washing treatment is as follows. It is preferably at most 5%, more preferably 4.
It is 5% or less, and the rate of change of the saturation magnetization is preferably 5% or less, more preferably 4.5% or less.

【0056】次に、本発明に係る磁気記録媒体について
述べる。
Next, the magnetic recording medium according to the present invention will be described.

【0057】本発明における非磁性支持体としては、磁
気記録媒体に汎用されているポリエチレンテレフタレー
ト、ポリエチレン、ポリプロピレン、ポリカーボネー
ト、ポリエチレンナフタレート、ポリアミド、ポリアミ
ドイミド、ポリイミド等の合成樹脂フィルム、アルミニ
ウム、ステンレス等金属の箔や板及び各種の紙を使用す
ることができ、その厚みは、その材質により種々異なる
が、通常1.0〜300μm、好ましくは2.0〜20
0μmである。
Examples of the non-magnetic support in the present invention include synthetic resin films such as polyethylene terephthalate, polyethylene, polypropylene, polycarbonate, polyethylene naphthalate, polyamide, polyamide imide, and polyimide commonly used for magnetic recording media, aluminum, stainless steel, and the like. Metal foils and plates and various types of paper can be used, and the thickness varies depending on the material, but is usually 1.0 to 300 μm, preferably 2.0 to 20 μm.
0 μm.

【0058】磁気ディスクの場合、通常ポリエチレンテ
レフタレートが用いられ、その厚みは、通常50〜30
0μm、好ましくは60〜200μmである。磁気テー
プの場合、ポリエチレンテレフタレートを用いるときに
は、その厚みは、通常3〜100μm、好ましくは4〜
20μmであり、ポリエチレンナフタレートを用いると
きには、その厚みは、通常3〜50μm、好ましくは4
〜20μmであり、ポリアミドを用いるときには、その
厚みは、通常2〜10μm、好ましくは3〜7μmであ
る。
In the case of a magnetic disk, polyethylene terephthalate is usually used, and its thickness is usually 50 to 30.
0 μm, preferably 60 to 200 μm. In the case of a magnetic tape, when polyethylene terephthalate is used, its thickness is usually 3 to 100 μm, preferably 4 to 100 μm.
When polyethylene naphthalate is used, its thickness is usually 3 to 50 μm, preferably 4 to 50 μm.
When a polyamide is used, its thickness is usually 2 to 10 µm, preferably 3 to 7 µm.

【0059】結合剤樹脂としては、磁気記録媒体の製造
にあたって汎用されている塩化ビニル−酢酸ビニル共重
合体、ウレタン樹脂、塩化ビニル−酢酸ビニル−マレイ
ン酸共重合体、ウレタンエラストマー、ブタジエン−ア
クリロニトリル共重合体、ポリビニルブチラール、ニト
ロセルロース等セルロース誘導体、ポリエステル樹脂、
ポリブタジエン等の合成ゴム系樹脂、エポキシ樹脂、ポ
リアミド樹脂、ポリイソシアネート、電子線硬化型アク
リルウレタン樹脂等とその混合物を使用することができ
る。
As binder resins, vinyl chloride-vinyl acetate copolymers, urethane resins, vinyl chloride-vinyl acetate-maleic acid copolymers, urethane elastomers, butadiene-acrylonitrile copolymers commonly used in the production of magnetic recording media are used. Polymers, polyvinyl butyral, cellulose derivatives such as nitrocellulose, polyester resins,
Synthetic rubber resins such as polybutadiene, epoxy resins, polyamide resins, polyisocyanates, electron beam-curable acrylic urethane resins and the like and mixtures thereof can be used.

【0060】また、前記各結合剤樹脂には−OH、−C
OOH、−SOM、−OPO 、−NH等の極
性基(但し、MはH、Na、Kである。)が含まれてい
てもよい。磁性塗料製造時における鉄を主成分とする複
合金属磁性粒子粉末のビヒクル中への分散性を考慮すれ
ば、極性基として−COOH、−SOMを含有してい
る結合剤樹脂が好ましい。
Further, each of the binder resins has -OH, -C
OOH, -SO3M, -OPO2M 2, -NH2Etc pole
(Where M is H, Na, K)
You may. Iron-based composites in the production of magnetic paints
Consider the dispersibility of the composite metal magnetic particles in the vehicle
If the polar groups are -COOH, -SO3Contains M
Binder resins are preferred.

【0061】非磁性支持体上に形成された磁気記録層の
塗膜厚さは、0.01〜5.0μmの範囲が好ましい。
0.01μm未満の場合には、均一な塗布が困難で塗り
むら等が生じやすく、5.0μmを超える場合には、反
磁界の影響のため、所望の電磁変換特性が得られにくく
なる。より好ましくは0.05〜4.0μmの範囲であ
る。
The coating thickness of the magnetic recording layer formed on the nonmagnetic support is preferably in the range of 0.01 to 5.0 μm.
When the thickness is less than 0.01 μm, uniform coating is difficult and uneven coating easily occurs. When the thickness exceeds 5.0 μm, it is difficult to obtain desired electromagnetic conversion characteristics due to the influence of a demagnetizing field. More preferably, it is in the range of 0.05 to 4.0 μm.

【0062】磁気記録層中における鉄を主成分とする複
合金属磁性粒子粉末と結合剤樹脂との配合割合は、結合
剤樹脂100重量部に対して鉄を主成分とする複合金属
磁性粒子粉末が5〜2000重量部が好ましく、より好
ましくは100〜1000重量部である。
The mixing ratio of the composite metal magnetic particle powder containing iron as a main component and the binder resin in the magnetic recording layer is such that the composite metal magnetic particle powder containing iron as a main component is added to 100 parts by weight of the binder resin. The amount is preferably 5 to 2000 parts by weight, more preferably 100 to 1000 parts by weight.

【0063】鉄を主成分とする複合金属磁性粒子粉末が
5重量部未満の場合には、磁性塗料中の鉄を主成分とす
る複合金属磁性粒子粉末が少なすぎるため、塗膜を形成
した時に、鉄を主成分とする複合金属磁性粒子粉末の連
続分散した層が得られず、塗膜表面の平滑性及び塗膜強
度が不十分となる。2000重量部を超える場合には、
結合剤樹脂の量に対して鉄を主成分とする複合金属磁性
粒子粉末が多すぎるため、磁性塗料中で鉄を主成分とす
る複合金属磁性粒子粉末が十分に分散されず、その結
果、塗膜にした時に、表面が十分平滑な塗膜が得られ難
い。また、鉄を主成分とする複合金属磁性粒子粉末が結
合剤樹脂によって十分にバインドされないために、得ら
れた塗膜はもろいものとなりやすい。
When the amount of the composite metal magnetic particles containing iron as the main component is less than 5 parts by weight, the amount of the composite metal magnetic particles containing iron as the main component in the magnetic paint is too small, so that when the coating film is formed, In addition, a layer in which the composite metal magnetic particles containing iron as the main component is continuously dispersed cannot be obtained, and the smoothness of the coating film surface and the coating film strength become insufficient. If it exceeds 2000 parts by weight,
Since the amount of the composite metal magnetic particles containing iron as the main component is too large relative to the amount of the binder resin, the composite metal magnetic particles containing iron as the main component are not sufficiently dispersed in the magnetic paint. When formed into a film, it is difficult to obtain a coating film having a sufficiently smooth surface. Further, since the composite metal magnetic particles containing iron as a main component are not sufficiently bound by the binder resin, the obtained coating film tends to be brittle.

【0064】なお、磁気記録層に、磁気記録媒体に用い
られている周知の潤滑剤、研磨剤、帯電防止剤等が必要
により結合剤樹脂100重量部に対して0.1〜50重
量部程度含まれていてもよい。
In the magnetic recording layer, known lubricants, abrasives, antistatic agents and the like used for the magnetic recording medium are required, and if necessary, about 0.1 to 50 parts by weight with respect to 100 parts by weight of the binder resin. May be included.

【0065】本発明3に係る磁気記録媒体は、保磁力値
63.7〜278.5kA/m(800〜3500O
e)が好ましく、より好ましくは71.6〜278.5
kA/m(900〜3500Oe)、角形比(残留磁束
密度Br/飽和磁束密度Bm)0.85〜0.95が好
ましく、より好ましくは0.86〜0.95であり、塗
膜の光沢度195〜300%が好ましく、より好ましく
は200〜300%であり、塗膜の表面粗度Ra8.5
nm以下が好ましく、より好ましくは2.0〜8.0n
m、最も好ましくは2.0〜7.5nmであり、ヤング
率130〜160が好ましく、より好ましくは132〜
160であり、保存安定性は、保磁力値の変化率7%以
下が好ましく、より好ましくは5%以下であり、飽和磁
化値の変化率7%以下が好ましく、より好ましくは5%
以下である。
The magnetic recording medium according to the present invention 3 has a coercive force value of 63.7 to 278.5 kA / m (800 to 3500O
e) is preferred, more preferably 71.6 to 278.5.
kA / m (900 to 3500 Oe), squareness ratio (residual magnetic flux density Br / saturated magnetic flux density Bm) of 0.85 to 0.95, preferably 0.86 to 0.95, and the glossiness of the coating film It is preferably 195 to 300%, more preferably 200 to 300%, and the surface roughness Ra 8.5 of the coating film.
nm or less, more preferably 2.0 to 8.0 n
m, most preferably 2.0 to 7.5 nm, Young's modulus of 130 to 160 is preferable, and 132 to 160 is more preferable.
The storage stability is preferably 7% or less, more preferably 5% or less, in the coercive force value, and preferably 7% or less, more preferably 5% or less in the saturation magnetization value.
It is as follows.

【0066】本発明に係る磁気記録媒体は、必要に応じ
て非磁性支持体と磁気記録層との間に非磁性粒子粉末と
結合剤樹脂とを含む非磁性下地層が形成される(本発明
4)。
In the magnetic recording medium according to the present invention, a non-magnetic underlayer containing non-magnetic particle powder and a binder resin is formed between the non-magnetic support and the magnetic recording layer, if necessary. 4).

【0067】本発明における非磁性下地層用非磁性粒子
粉末としては、磁気記録媒体用非磁性下地層に汎用され
ている非磁性無機質粉末を使用することができる。具体
的には、ヘマタイト、含水酸化鉄、酸化チタン、酸化亜
鉛、酸化スズ、酸化タングステン、二酸化ケイ素、α−
アルミナ、β−アルミナ、γ−アルミナ、酸化クロム、
酸化セリウム、炭化ケイ素、チタンカーバイト、窒化ケ
イ素、窒化ホウ素、炭酸カルシウム、炭酸バリウム、炭
酸マグネシウム、炭酸ストロンチウム、硫酸カルシウ
ム、硫酸バリウム、二硫化モリブデン、チタン酸バリウ
ム等を単独又は組み合わせて用いることができ、殊に、
ヘマタイト、含水酸化鉄、酸化チタン等が好ましい。
As the non-magnetic particle powder for the non-magnetic underlayer in the present invention, a non-magnetic inorganic powder generally used for the non-magnetic under layer for a magnetic recording medium can be used. Specifically, hematite, hydrous iron oxide, titanium oxide, zinc oxide, tin oxide, tungsten oxide, silicon dioxide, α-
Alumina, β-alumina, γ-alumina, chromium oxide,
Cerium oxide, silicon carbide, titanium carbide, silicon nitride, boron nitride, calcium carbonate, barium carbonate, magnesium carbonate, strontium carbonate, calcium sulfate, barium sulfate, molybdenum disulfide, barium titanate, etc. may be used alone or in combination. Yes, especially
Hematite, hydrous iron oxide, titanium oxide and the like are preferred.

【0068】なお、非磁性塗料製造時におけるビヒクル
中での分散性改善のため、前記各非磁性粒子粉末の粒子
表面をアルミニウムの水酸化物、アルミニウムの酸化
物、ケイ素の水酸化物、ケイ素の酸化物等で表面処理し
てもよく、また、得られる磁気記録媒体の光透過率、表
面電気抵抗値、機械的強度、表面平滑性、耐久性等の諸
特性改善のため、粒子内部にAl、Ti、Zr、Mn、
Sn、Sb等を含有させてもよい。
In order to improve the dispersibility in the vehicle during the production of the non-magnetic paint, the surface of each of the non-magnetic particles was coated with aluminum hydroxide, aluminum oxide, silicon hydroxide and silicon hydroxide. The surface may be treated with an oxide or the like.Also, in order to improve various properties such as light transmittance, surface electric resistance, mechanical strength, surface smoothness, and durability of the obtained magnetic recording medium, Al is contained inside the particles. , Ti, Zr, Mn,
Sn, Sb, etc. may be contained.

【0069】前記各非磁性粒子粉末には各種形状の粒子
があり、球状、粒状、八面体状、六面体状、多面体状等
の粒状粒子粉末、針状、紡錘状、米粒状等の針状粒子粉
末及び板状粒子粉末等がある。磁気記録媒体の表面平滑
性を考慮すれば、針状が好ましい。
Each non-magnetic particle powder includes particles of various shapes, such as spherical, granular, octahedral, hexahedral, polyhedral, etc., and acicular particles such as acicular, spindle-shaped, rice-granular, etc. Powder and plate-like particle powder. Considering the surface smoothness of the magnetic recording medium, a needle shape is preferable.

【0070】前記各非磁性粒子粉末の粒子サイズは、粒
子形状が粒状の場合、平均粒子径0.01〜0.3μm
が好ましく、より好ましくは0.02〜0.2μmであ
り、粒子形状が針状の場合、平均長軸径0.01〜0.
3μmが好ましく、より好ましくは0.02〜0.2μ
mであり、粒子形状が板状の場合、平均板面径0.01
〜0.3μmが好ましく、より好ましくは0.02〜
0.2μmである。
The particle size of each of the non-magnetic particle powders is, when the particle shape is granular, an average particle diameter of 0.01 to 0.3 μm.
Is preferably 0.02 to 0.2 μm, and when the particle shape is acicular, the average major axis diameter is 0.01 to 0.1 μm.
3 μm is preferable, and more preferably 0.02 to 0.2 μm
m, and when the particle shape is plate-like, the average plate surface diameter is 0.01
To 0.3 μm, more preferably 0.02 to
0.2 μm.

【0071】また、粒子形状が針状の場合、軸比が2〜
20が好ましく、より好ましくは3〜10であり、粒子
形状が板状の場合、板状比(平均板面径と平均厚みの
比)(以下、「板状比」という。)2〜50が好まし
く、より好ましくは3〜10である。
Further, when the particle shape is acicular, the axial ratio is 2 to 2.
20 is more preferable, and 3 to 10 is more preferable. When the particle shape is plate-like, the plate-like ratio (the ratio of the average plate surface diameter to the average thickness) (hereinafter, referred to as "plate-like ratio") is 2 to 50. Preferably, it is more preferably 3 to 10.

【0072】本発明における非磁性下地層の塗膜厚さは
0.2〜10.0μmの範囲が好ましい。0.2μm未
満の場合には、非磁性支持体の表面粗さを改善すること
が困難となる。磁気記録媒体の薄層化及び塗膜の表面平
滑性を考慮すれば、より好ましくは0.5〜5.0μm
の範囲である。
In the present invention, the coating thickness of the nonmagnetic underlayer is preferably in the range of 0.2 to 10.0 μm. If it is less than 0.2 μm, it becomes difficult to improve the surface roughness of the non-magnetic support. In consideration of the thinning of the magnetic recording medium and the surface smoothness of the coating film, more preferably 0.5 to 5.0 μm
Range.

【0073】本発明における非磁性下地層における結合
剤樹脂は、磁気記録層を形成する場合に用いた前記結合
剤樹脂が使用できる。
The binder resin used in forming the magnetic recording layer can be used as the binder resin in the non-magnetic underlayer according to the present invention.

【0074】本発明における非磁性下地層の非磁性粒子
粉末及び結合剤樹脂との配合割合は、結合剤樹脂100
重量部に対して非磁性粒子粉末が5〜2000重量部が
好ましく、より好ましくは100〜1000重量部であ
る。
In the present invention, the mixing ratio of the nonmagnetic particle powder of the nonmagnetic underlayer and the binder resin is 100
The amount of the non-magnetic particle powder is preferably 5 to 2,000 parts by weight, more preferably 100 to 1000 parts by weight, based on parts by weight.

【0075】非磁性粒子粉末が5重量部未満の場合に
は、非磁性塗料中の非磁性粒子粉末が少なすぎるため、
塗膜を形成した際に、非磁性粒子粉末の連続分散した層
が得られず、塗膜表面の平滑性が不十分となる。200
0重量部を超える場合には、結合剤樹脂の量に対して非
磁性粒子粉末が多すぎるため、非磁性塗料中で非磁性粒
子粉末が十分に分散されず、その結果、塗膜を形成した
際に、表面が十分平滑な塗膜が得られ難い。また、非磁
性粒子粉末が結合剤樹脂によって十分にバインドされな
いために、得られた塗膜はもろいものとなりやすい。
When the amount of the non-magnetic particles is less than 5 parts by weight, the amount of the non-magnetic particles in the non-magnetic paint is too small.
When a coating film is formed, a layer in which a nonmagnetic particle powder is continuously dispersed cannot be obtained, and the smoothness of the coating film surface becomes insufficient. 200
When the amount exceeds 0 parts by weight, the nonmagnetic particle powder is not sufficiently dispersed in the nonmagnetic paint because the amount of the nonmagnetic particle powder is too large relative to the amount of the binder resin, and as a result, a coating film is formed. In this case, it is difficult to obtain a coating film having a sufficiently smooth surface. Further, since the nonmagnetic particle powder is not sufficiently bound by the binder resin, the obtained coating film tends to be brittle.

【0076】なお、非磁性下地層には、磁気記録媒体に
汎用されている潤滑剤、研磨剤、帯電防止剤等が必要に
より結合剤樹脂100重量部に対し0.1〜50重量部
程度含まれていてもよい。
The nonmagnetic underlayer contains a lubricant, an abrasive, an antistatic agent and the like generally used for a magnetic recording medium, if necessary, in an amount of about 0.1 to 50 parts by weight based on 100 parts by weight of the binder resin. It may be.

【0077】本発明における非磁性下地層は、塗膜の光
沢度176〜300%が好ましく、より好ましくは18
0〜300%、最も好ましくは184〜300%であ
り、塗膜表面粗度Ra0.5〜8.5nmが好ましく、
より好ましくは0.5〜8.0nmであり、塗膜の強度
は、ヤング率(相対値)124〜160が好ましく、よ
り好ましくは126〜160である。
The nonmagnetic underlayer in the present invention preferably has a glossiness of the coating film of 176 to 300%, more preferably 18%.
0 to 300%, most preferably 184 to 300%, and the coating film surface roughness Ra is preferably 0.5 to 8.5 nm,
More preferably, it is 0.5 to 8.0 nm, and the strength of the coating film is preferably Young's modulus (relative value) of 124 to 160, more preferably 126 to 160.

【0078】本発明4に係る磁気記録媒体は、保磁力値
63.7〜278.5kA/m(800〜3500O
e)が好ましく、より好ましくは71.6〜278.5
kA/m(900〜3500Oe)、角形比(残留磁束
密度Br/飽和磁束密度Bm)0.85〜0.95が好
ましく、より好ましくは0.86〜0.95であり、塗
膜の光沢度200〜300%が好ましく、より好ましく
は205〜300%であり、塗膜の表面粗度Ra8.0
nm以下が好ましく、より好ましくは2.0〜7.5n
m、最も好ましくは2.0〜7.0nmであり、ヤング
率132〜160が好ましく、より好ましくは134〜
160であり、保存安定性のうち、保磁力値の変化率7
%以下が好ましく、より好ましくは5%以下であり、飽
和磁束密度の変化率7%以下が好ましく、より好ましく
は5%以下である。
The magnetic recording medium according to the fourth aspect of the present invention has a coercive force value of 63.7 to 278.5 kA / m (800 to 3500O
e) is preferred, more preferably 71.6 to 278.5.
kA / m (900 to 3500 Oe), squareness ratio (residual magnetic flux density Br / saturated magnetic flux density Bm) of 0.85 to 0.95, preferably 0.86 to 0.95, and the glossiness of the coating film It is preferably from 200 to 300%, more preferably from 205 to 300%, and the surface roughness Ra of the coating film is Ra 8.0.
nm or less, and more preferably 2.0 to 7.5 n
m, most preferably 2.0 to 7.0 nm, and a Young's modulus of 132 to 160 is preferable, and 134 to 160 is more preferable.
160, which is a change rate of the coercive force value of the storage stability of 7
% Or less, more preferably 5% or less, and the rate of change of the saturation magnetic flux density is preferably 7% or less, more preferably 5% or less.

【0079】[0079]

【発明の実施の形態】本発明の代表的な実施の形態は次
の通りである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A typical embodiment of the present invention is as follows.

【0080】粒子の平均長軸径、平均短軸径は、電子顕
微鏡写真(×30,000)を縦方向及び横方向にそれ
ぞれ4倍に拡大した写真に示される粒子約350個につ
いて長軸径、短軸径をそれぞれ測定し、その平均値で示
した。
The average major axis diameter and average minor axis diameter of the particles were determined for the approximately 350 particles shown in the electron micrograph (× 30,000) enlarged four times in the vertical and horizontal directions, respectively. And the minor axis diameter were measured, and the average value was shown.

【0081】軸比は、平均長軸径と平均短軸径との比で
示した。
The axial ratio was shown by the ratio between the average major axis diameter and the average minor axis diameter.

【0082】粒子の長軸径の粒度分布は、下記の方法に
より求めた幾何標準偏差値で示した。
The particle size distribution of the major axis of the particles was represented by a geometric standard deviation value obtained by the following method.

【0083】即ち、前記拡大写真に示される粒子の長軸
径を測定した値を、その測定値から計算して求めた粒子
の実際の長軸径と個数から、統計学的手法に従って、対
数正規確率紙上に横軸に長軸径を、縦軸に所定の長軸径
区間のそれぞれに属する粒子の累積個数(積算フルイ
下)を百分率でプロットする。そして、このグラフから
粒子の個数が50%及び84.13%のそれぞれに相当
する長軸径の値を読みとり、幾何標準偏差値=積算フル
イ下84.13%における長軸径/積算フルイ下50%
における長軸径(幾何平均径)に従って算出した値で示
した。幾何標準偏差値が1に近いほど、粒子の長軸径の
粒度分布が優れていることを意味する。
That is, the value obtained by measuring the major axis diameter of the particles shown in the enlarged photograph was calculated from the actual major axis diameter and the number of the particles calculated from the measured values, and the logarithmic normal On the probability paper, the horizontal axis represents the major axis diameter, and the vertical axis represents the percentage of the cumulative number of particles (under the integrated screen) belonging to each of the predetermined major axis diameter sections. Then, the value of the major axis diameter corresponding to 50% and 84.13% of the number of particles is read from this graph, and the geometric standard deviation value = the major axis diameter at 84.13% under the integrated screen / 50 under the integrated screen. %
The values calculated in accordance with the major axis diameter (geometric mean diameter) are shown. The closer the geometric standard deviation value is to 1, the better the particle size distribution of the major axis diameter of the particles.

【0084】比表面積値はBET法により測定した値で
示した。
The specific surface area was indicated by a value measured by the BET method.

【0085】鉄を主成分とする金属磁性粒子粉末の粒子
内部に存在するCo量、Al量、希土類元素及び鉄を主
成分とする複合金属磁性粒子に被覆されているポリエー
テル変成ポリシロキサンが含有するSi量のそれぞれ
は、「蛍光X線分析装置3063M型」(理学電機工業
株式会社製)を使用し、JIS K0119の「けい光
X線分析通則」に従って測定した。
The amount of Co and the amount of Al present inside the metal magnetic particle powder containing iron as a main component, the polyether modified polysiloxane coated on the composite metal magnetic particles containing a rare earth element and iron as a main component are contained. Each of the amounts of Si to be measured was measured using "X-ray fluorescence spectrometer 3063M" (manufactured by Rigaku Denki Kogyo Co., Ltd.) in accordance with JIS K0119 "General rules for X-ray fluorescence analysis".

【0086】鉄を主成分とする金属磁性粒子粉末及び鉄
を主成分とする複合金属磁性粒子粉末中の可溶性ナトリ
ウム塩は、試料5gを300mlの三角フラスコに秤り
取り、煮沸した純水100mlを加え、加熱して煮沸状
態を約5分間保持した後、栓をして常温まで放冷し、減
量に相当する水を加えて再び栓をして1分間振り混ぜ、
5分間静置した後、得られた上澄み液をNo.5Cの濾
紙を用いて濾過し、濾液中のNaを「誘導結合プラズ
マ発光分光分析装置」(セイコー電子工業株式会社製)
を用いて測定した。
For the soluble sodium salt in the metal magnetic particle powder containing iron as a main component and the composite metal magnetic particle powder containing iron as a main component, 5 g of a sample was weighed into a 300 ml Erlenmeyer flask, and 100 ml of boiling pure water was added. In addition, after heating and maintaining the boiling state for about 5 minutes, stopper and cool to room temperature, add water corresponding to the weight loss, stopper again and shake for 1 minute,
After standing for 5 minutes, the resulting supernatant was The solution was filtered using a 5C filter paper, and Na + in the filtrate was subjected to “inductively coupled plasma emission spectroscopy” (manufactured by Seiko Instruments Inc.).
It measured using.

【0087】鉄を主成分とする複合金属磁性粒子粉末の
ほぐれ易さの評価は、鉄を主成分とする複合金属磁性粒
子粉末を指又はローラーで押し潰し、そのときの感触
で、下記の5段階の評価を行った。 5:指で押すだけですぐに潰れ、つぶが残らない。 4:指で押すだけで潰れるが、若干つぶが残る。 3:指で押すだけで潰れるが、つぶが多く残る。 2:ローラーで押し潰すと潰れるが、若干粒が残る。 1:ローラーで押し潰すと潰れるが、粒が多く残る。
The evaluation of the ease of loosening of the composite metal magnetic particles containing iron as a main component was carried out by crushing the composite metal magnetic particles containing iron as a main component with a finger or a roller, and by touching the powder at the time. A rating was given on a scale. 5: Squeezed immediately by just pressing with finger, no crush left. 4: It is crushed just by pressing with a finger, but a slight crush remains. 3: It is crushed just by pushing with a finger, but many crushes remain. 2: When crushed with a roller, it is crushed, but some grains remain. 1: When crushed with a roller, it is crushed, but many grains remain.

【0088】鉄を主成分とする金属磁性粒子粉末及び鉄
を主成分とする複合金属磁性粒子粉末の磁気特性は、
「振動試料型磁力計VSM−3S−15」(東英工業株
式会社製)を用いて外部磁場795.8kA/m(10
kOe)の下で測定し、磁気テープの諸特性は外部磁場
795.8kA/m(10kOe)の下で測定した。
The magnetic properties of the metal magnetic particles containing iron as a main component and the composite metal magnetic particles containing iron as a main component are as follows.
Using a “vibrating sample magnetometer VSM-3S-15” (manufactured by Toei Industry Co., Ltd.), an external magnetic field of 795.8 kA / m (10
kOe), and the properties of the magnetic tape were measured under an external magnetic field of 795.8 kA / m (10 kOe).

【0089】鉄を主成分とする金属磁性粒子粉末及び鉄
を主成分とする複合金属磁性粒子粉末の酸化安定性は、
試料粉体を温度60℃、相対湿度90%の環境下に15
日間放置し、放置前後の保磁力値を測定し、その変化量
を放置前の値で除した値を変化率として百分率で示し
た。
The oxidation stability of the metal magnetic particles containing iron as a main component and the composite metal magnetic particles containing iron as a main component is as follows.
The sample powder was placed in an environment at a temperature of 60 ° C and a relative humidity of 90% for 15 minutes.
The sample was left for a few days, the coercive force values before and after the test were measured, and the value obtained by dividing the change by the value before the test was expressed as a percentage change rate.

【0090】水洗処理前後の磁気特性の変化率は、水洗
処理前後の保磁力値及び飽和磁化値を測定し、その変化
量を水洗前の値で除した値で示した。
The rate of change of the magnetic properties before and after the rinsing treatment was indicated by a value obtained by measuring the coercive force value and the saturation magnetization before and after the rinsing treatment, and dividing the change by the value before the rinsing.

【0091】磁気記録媒体の保存安定性は、磁気記録媒
体を温度60℃、相対湿度90%の環境下に15日間放
置し、放置前後の保磁力値及び飽和磁化値を測定し、そ
の変化量を放置前の値で除した値を変化率として百分率
で示した。
The storage stability of the magnetic recording medium is determined by measuring the coercive force value and the saturation magnetization value before and after leaving the magnetic recording medium in an environment at a temperature of 60 ° C. and a relative humidity of 90% for 15 days. Was divided by the value before standing, and expressed as a percentage as a change rate.

【0092】塗料粘度は、得られた塗料の25℃におけ
る塗料粘度を、「E型粘度計EMD−R」(株式会社東
京計器製)を用いて測定し、ずり速度D=1.92se
における値で示した。
The viscosity of the paint was measured at 25 ° C. using an “E-type viscometer EMD-R” (manufactured by Tokyo Keiki Co., Ltd.), and the shear rate D was 1.92 sec.
It was shown by the value at c - 1 .

【0093】塗膜の表面光沢は、グロスメーター 「U
GV−5D」(スガ試験器株式会社製)を用いて入射角
45°で測定した値であり、標準板光沢を86.3%と
した時の値を%で示したものである。
The surface gloss of the coating film was measured using a gloss meter “U
GV-5D "(manufactured by Suga Test Instruments Co., Ltd.) at an incident angle of 45 °, and the value when the standard plate gloss is 86.3% is shown in%.

【0094】表面粗度Raは、「Surfcom−57
5A」(東京精密株式会社製)を用いて塗膜の中心線平
均粗さを測定した。
The surface roughness Ra is expressed as “Surfcom-57
The center line average roughness of the coating film was measured using “5A” (manufactured by Tokyo Seimitsu Co., Ltd.).

【0095】塗膜の強度は、「オートグラフ」(株式会
社島津製作所製)を用いて塗膜のヤング率を測定して求
めた。ヤング率は市販ビデオテープ「AV T−12
0」(日本ビクター株式会社製)との相対値で表した。
相対値が高いほど塗膜の強度が良好であることを示す。
The strength of the coating film was determined by measuring the Young's modulus of the coating film using “Autograph” (manufactured by Shimadzu Corporation). Young's Modulus is a commercially available videotape "AV T-12."
0 "(manufactured by Victor Company of Japan, Ltd.).
The higher the relative value, the better the strength of the coating film.

【0096】磁気記録媒体を構成する非磁性支持体、非
磁性下地層及び磁気記録層の各層の厚みは、下記の方法
によって測定した。
The thickness of each of the nonmagnetic support, the nonmagnetic underlayer, and the magnetic recording layer constituting the magnetic recording medium was measured by the following method.

【0097】デジタル電子マイクロメーターK351C
(安立電気株式会社製)を用いて、先ず、非磁性支持体
の膜厚(A)を測定する。次に、非磁性支持体と該非磁
性支持体上に形成された非磁性下地層との厚み(B)
(非磁性支持体の厚みと非磁性下地層の厚みとの総和)
を同様にして測定する。
Digital electronic micrometer K351C
First, the film thickness (A) of the nonmagnetic support is measured using (manufactured by Anritsu Electric Co., Ltd.). Next, the thickness (B) of the nonmagnetic support and the nonmagnetic underlayer formed on the nonmagnetic support
(Sum of the thickness of the nonmagnetic support and the thickness of the nonmagnetic underlayer)
Is measured in the same manner.

【0098】次に、非磁性下地層上に磁気記録層を形成
することにより得られた磁気記録媒体の厚み(C)(非
磁性支持体の厚みと非磁性下地層の厚みと磁気記録層の
厚みとの総和)を同様にして測定する。そして、非磁性
下地層の厚みは(B)−(A)で示し、磁気記録層の厚
みは(C)−(B)で示した。
Next, the thickness (C) of the magnetic recording medium obtained by forming the magnetic recording layer on the nonmagnetic underlayer (the thickness of the nonmagnetic support, the thickness of the nonmagnetic underlayer, and the thickness of the magnetic recording layer) Is measured in the same manner. The thickness of the nonmagnetic underlayer is shown by (B)-(A), and the thickness of the magnetic recording layer is shown by (C)-(B).

【0099】なお、非磁性下地層を有さない磁気記録媒
体の各層の厚みは、前記非磁性支持体の膜厚(A)と磁
気記録媒体の厚み(C)を測定して、磁気記録層の厚み
を(C)−(A)として求めた。
The thickness of each layer of the magnetic recording medium having no nonmagnetic underlayer is determined by measuring the thickness (A) of the nonmagnetic support and the thickness (C) of the magnetic recording medium. Was determined as (C)-(A).

【0100】水溶液の表面張力は、デヌイ表面張力測定
器(日本油試験機工業株式会社製)を用い、20mlシ
ャーレに測定水溶液15mlを入れ、その中に細い白金
環を浸し、白金環を引き上げて測定水溶液の液面と離れ
る際の力を測定し、得られた値を下記数1に挿入するこ
とによって求めた。
The surface tension of the aqueous solution was measured by using a Denui surface tension meter (manufactured by Nippon Oil Testing Machine Co., Ltd.), placing 15 ml of the measured aqueous solution in a 20 ml petri dish, immersing a thin platinum ring therein, and pulling up the platinum ring. The force at which the measured aqueous solution was separated from the liquid surface was measured, and the obtained value was obtained by inserting the obtained value into the following equation (1).

【0101】[0101]

【数1】表面張力(mN/m)=T×(T/T) T:72.0mN/m (25℃における水の表面張
力) T:68.2° (25℃における水の測定値) T:25℃における測定水溶液液の測定値
## EQU1 ## Surface tension (mN / m) = T 0 × (T 2 / T 1 ) T 0 : 72.0 mN / m (surface tension of water at 25 ° C.) T 1 : 68.2 ° (at 25 ° C.) (Measured value of water) T 2 : Measured value of aqueous solution at 25 ° C.

【0102】<鉄を主成分とする複合金属磁性粒子粉末
の製造>予め表面酸化処理が施されている鉄を主成分と
する針状金属磁性粒子粉末(粒子形状:紡錘状、平均長
軸径0.121μm、平均短軸径0.0195μm、軸
比6.2、幾何標準偏差値1.42、BET比表面積値
46.3m2/g、保磁力値149.3kA/m(1,
876Oe)、飽和磁化値131.3Am2/kg(1
31.3emu/g)、保磁力値の変化率22.6%、
飽和磁化値の変化率19.4%、可溶性ナトリウム塩2
65ppm、Co含有量2.10重量%、Al含有量
0.70重量%、Nd含有量1.31重量%)10kg
を、純水100lに添加して、鉄を主成分とする金属磁
性粒子粉末を含むスラリーを得た。
<Production of composite metal magnetic particles containing iron as a main component> Needle-like metal magnetic particles containing iron as a main component and having been subjected to a surface oxidation treatment in advance (particle shape: spindle-shaped, average major axis diameter) 0.121 μm, average short axis diameter 0.0195 μm, axial ratio 6.2, geometric standard deviation value 1.42, BET specific surface area value 46.3 m 2 / g, coercive force value 149.3 kA / m (1,
876 Oe) and a saturation magnetization value of 131.3 Am 2 / kg (1
31.3 emu / g), the change rate of the coercive force value is 22.6%,
Change rate of saturation magnetization 19.4%, soluble sodium salt 2
65 ppm, Co content 2.10 wt%, Al content 0.70 wt%, Nd content 1.31 wt%) 10 kg
Was added to 100 l of pure water to obtain a slurry containing metal magnetic particle powder containing iron as a main component.

【0103】フィルタシックナを用いて、上記鉄を主成
分とする金属磁性粒子粉末を含むスラリーの濃縮及び純
水の通水を行い、洗浄濾液の電気伝導度が10μS/c
m以下になるまで洗浄を行った。
Using a filter thickener, the slurry containing the metal magnetic particles containing iron as a main component is concentrated and pure water is passed through, and the washing filtrate has an electric conductivity of 10 μS / c.
m or less.

【0104】次いで、上記鉄を主成分とする金属磁性粒
子粉末を含むスラリーに純水を加えてスラリー濃度を1
00g/lに調整した後、このスラリー80lにポリエ
ーテル変性ポリシロキサン(商品名:BYK−080:
ビックケミー・ジャパン株式会社製)を80g添加し、
15分間攪拌を行った。
Next, pure water is added to the slurry containing the metal magnetic particle powder containing iron as a main component to adjust the slurry concentration to 1%.
After adjusting to 00 g / l, 80 l of this slurry was added to a polyether-modified polysiloxane (trade name: BYK-080:
80g of Big Chemie Japan Co., Ltd.)
Stirring was performed for 15 minutes.

【0105】ポリエーテル変性ポリシロキサンにより表
面処理された鉄を主成分とする金属磁性粒子粉末を含む
スラリーを濾過後、窒素気流下、乾燥機を用いて60℃
で12時間乾燥させることにより鉄を主成分とする複合
金属磁性粒子粉末を得た。
A slurry containing iron-based metal magnetic particle powder surface-treated with a polyether-modified polysiloxane was filtered, and then dried at 60 ° C. in a nitrogen stream using a dryer.
For 12 hours to obtain composite metal magnetic particle powder containing iron as a main component.

【0106】得られた複合金属磁性粒子粉末の形状は針
状であり、平均長軸径は0.121μm、平均短軸径は
0.0195μm、軸比は6.2であった。幾何標準偏
差値は1.42、BET比表面積値は41.9m2
g、保磁力値は145.0kA/m(1,822O
e)、飽和磁化値は128.4Am2/kg(128.
4emu/g)、可溶性ナトリウム塩は7ppm、酸化
安定性における保磁力値の変化率は7.1%、飽和磁化
値の変化率は5.8%、ほぐれ易さは5、Co含有量は
2.08重量%、Al含有量は0.69重量%、Nd含
有量は1.28重量%であり、ポリエーテル変性ポリシ
ロキサンの被覆量はSi換算で0.24重量%であっ
た。また、水洗処理前後の保磁力値の変化率は2.9%
であり、飽和磁化値の変化率は2.2%であった。
The obtained composite metal magnetic particles had a needle shape, an average major axis diameter of 0.121 μm, an average minor axis diameter of 0.0195 μm, and an axial ratio of 6.2. The geometric standard deviation value is 1.42, and the BET specific surface area value is 41.9 m 2 /
g, the coercive force value is 145.0 kA / m (1,822 O
e), the saturation magnetization value is 128.4 Am 2 / kg (128.
4 emu / g), 7 ppm of soluble sodium salt, change rate of coercive force value in oxidation stability of 7.1%, change rate of saturation magnetization value of 5.8%, ease of unraveling of 5, and Co content of 2 0.08 wt%, the Al content was 0.69 wt%, the Nd content was 1.28 wt%, and the coating amount of the polyether-modified polysiloxane was 0.24 wt% in terms of Si. The rate of change of the coercive force before and after the water washing treatment was 2.9%.
And the rate of change of the saturation magnetization was 2.2%.

【0107】なお、鉄を主成分とする金属磁性粒子を含
有する水懸濁液の表面張力は直接測定することができな
いため、予備実験として、純水80mlにポリエーテル
変性ポリシロキサン80mgを添加した溶液の表面張力
を測定したところ、44.0mN/mであり、水の表面
張力(72.0mN/m)に対して低減したものであっ
た。
Since the surface tension of an aqueous suspension containing iron-based metal magnetic particles cannot be directly measured, as a preliminary experiment, 80 mg of polyether-modified polysiloxane was added to 80 ml of pure water. When the surface tension of the solution was measured, it was 44.0 mN / m, which was lower than the surface tension of water (72.0 mN / m).

【0108】<磁気記録媒体の製造>ここに得られた鉄
を主成分とする複合金属磁性粒子粉末100.0重量
部、塩化ビニル−酢酸ビニル共重合樹脂(商品名:MR
−110、日本ゼオン株式会社製)10.0重量部、シ
クロヘキサノン23.3重量部、メチルエチルケトン1
0.0重量部、カーボンブラック微粒子粉末(三菱化学
株式会社製、平均粒子径26nm、BET比表面積値1
30m2/g)1.0重量部とアルミナ粒子粉末(AK
P−30、住友化学株式会社製、平均粒子径0.4μ
m)7.0重量部とをニーダーを用いて20分間混練し
た後、該混練物にトルエン79.6重量部及びメチルエ
チルケトン110.2重量部及びシクロヘキサノン1
7.8重量部を添加して希釈し、次いで、サンドグライ
ンダーによって3時間混合、分散させて混合分散物を得
た。
<Production of magnetic recording medium> 100.0 parts by weight of the obtained composite metal magnetic particles containing iron as a main component and a vinyl chloride-vinyl acetate copolymer resin (trade name: MR)
-110, manufactured by Zeon Corporation) 10.0 parts by weight, 23.3 parts by weight of cyclohexanone, methyl ethyl ketone 1
0.0 parts by weight, carbon black fine particle powder (manufactured by Mitsubishi Chemical Corporation, average particle diameter 26 nm, BET specific surface area 1
30 m 2 / g) and 1.0 part by weight of alumina particles (AK
P-30, manufactured by Sumitomo Chemical Co., Ltd., average particle diameter 0.4 μ
m) After kneading 7.0 parts by weight with a kneader for 20 minutes, 79.6 parts by weight of toluene, 110.2 parts by weight of methyl ethyl ketone and 1 part by weight of cyclohexanone 1 were added to the kneaded product.
7.8 parts by weight were added for dilution, and then mixed and dispersed by a sand grinder for 3 hours to obtain a mixed dispersion.

【0109】上記混合分散物に、ポリウレタン樹脂の固
形分10.0重量部を含むメチルエチルケトン/トルエ
ンの1/1溶液33.3重量部を添加して、更に30分
間サンドグラインダーを用いて混合・分散した後、目開
き1μmのフィルターで濾過して得られた濾過物にミリ
スチン酸1.0重量部及びブチルステアレート3.0重
量部を含むメチルエチルケトン/トルエン/シクロヘキ
サノンの5/3/2溶液12.1重量部及び三官能性低
分子量ポリイソシアネート(商品名:E−31、武田薬
品工業株式会社製)5.0重量部を含むメチルエチルケ
トン/トルエン/シクロヘキサノンの5/3/2溶液1
5.2重量部を攪拌しながら混合して磁性塗料を得た。
To the above mixed dispersion, 33.3 parts by weight of a 1/1 solution of methyl ethyl ketone / toluene containing 10.0 parts by weight of a polyurethane resin solid content was added, and the mixture was further mixed and dispersed using a sand grinder for 30 minutes. Then, a 5/3/2 solution of methyl ethyl ketone / toluene / cyclohexanone containing 1.0 part by weight of myristic acid and 3.0 parts by weight of butyl stearate is added to the filtrate obtained by filtration through a filter having an opening of 1 μm. Methyl ethyl ketone / toluene / cyclohexanone 5/3/2 solution 1 containing 1 part by weight and 5.0 parts by weight of a trifunctional low molecular weight polyisocyanate (trade name: E-31, manufactured by Takeda Pharmaceutical Co., Ltd.) 1
5.2 parts by weight were mixed with stirring to obtain a magnetic paint.

【0110】得られた磁性塗料の組成は下記の通りであ
った。 鉄を主成分とする複合金属磁性粒子粉末 100.0重量部、 塩化ビニル−酢酸ビニル共重合樹脂 10.0重量部、 ポリウレタン樹脂 10.0重量部、 アルミナ粒子粉末 7.0重量部、 カーボンブラック微粒子粉末 1.0重量部、 ミリスチン酸 1.0重量部、 ステアリン酸ブチル 3.0重量部、 三官能性低分子量ポリイソシアネート 5.0重量部、 シクロヘキサノン 56.6重量部、 メチルエチルケトン 141.5重量部、 トルエン 85.4重量部。
The composition of the obtained magnetic paint was as follows. Composite metal magnetic particle powder containing iron as a main component 100.0 parts by weight, vinyl chloride-vinyl acetate copolymer resin 10.0 parts by weight, polyurethane resin 10.0 parts by weight, alumina particle powder 7.0 parts by weight, carbon black 1.0 part by weight of fine particle powder, 1.0 part by weight of myristic acid, 3.0 parts by weight of butyl stearate, 5.0 parts by weight of trifunctional low molecular weight polyisocyanate, 56.6 parts by weight of cyclohexanone, 141.5 parts by weight of methyl ethyl ketone Parts, 85.4 parts by weight of toluene.

【0111】得られた磁性塗料の塗料粘度は8,159
cPであった。
The viscosity of the obtained magnetic paint was 8,159.
cP.

【0112】ここに得た磁性塗料を目開き1μmのフィ
ルターで濾過した後、厚さ12μmのポリエチレンテレ
フタレートフィルム上にギャップ幅45μmのスリット
コーターを用いて塗布し、次いで、乾燥することによっ
て磁性層を形成させ、常法によりカレンダー処理を行っ
て表面平滑化した後、1.27cm(1/2インチ)の
幅に裁断した。得られた磁気テープを60℃の硬化炉で
24時間静置させ、十分に硬化させて、磁気テープを得
た。得られた塗膜の膜厚は3.5μmであった。
After the obtained magnetic coating material was filtered through a filter having a mesh size of 1 μm, it was applied on a polyethylene terephthalate film having a thickness of 12 μm using a slit coater having a gap width of 45 μm, and then dried to form a magnetic layer. After being formed and calendered by a conventional method to smooth the surface, it was cut into a width of 1.27 cm (1 / inch). The obtained magnetic tape was allowed to stand in a curing oven at 60 ° C. for 24 hours, and was sufficiently cured to obtain a magnetic tape. The thickness of the obtained coating film was 3.5 μm.

【0113】ここに得た磁気テープの磁気特性は、保磁
力値が155.3kA/m(1,951Oe)、角型比
(Br/Bm)が0.89であった。光沢度は220
%、表面粗度Raは6.1nm、ヤング率は134、保
存安定性のうち、保磁力値の変化率は3.6%、飽和磁
束密度の変化率は4.1%であった。
The magnetic properties of the magnetic tape obtained here were a coercive force value of 155.3 kA / m (1,951 Oe) and a squareness ratio (Br / Bm) of 0.89. Gloss 220
%, Surface roughness Ra was 6.1 nm, Young's modulus was 134, and among storage stability, the rate of change in coercive force was 3.6% and the rate of change in saturation magnetic flux density was 4.1%.

【0114】[0114]

【作用】本発明において最も重要な点は、鉄を主成分と
する金属磁性粒子を水洗した後、該粒子にポリエーテル
変性ポリシロキサンを表面処理することによって、良好
な磁気特性を維持したまま、優れた分散性を有している
と共に可及的に可溶性塩が低減された、酸化安定性に優
れた鉄を主成分とする複合金属磁性粒子粉末が得られる
という事実である。
The most important point in the present invention is that the metal magnetic particles containing iron as a main component are washed with water, and then the particles are subjected to a surface treatment with a polyether-modified polysiloxane to maintain good magnetic properties. This is a fact that a composite metal magnetic particle powder containing iron as a main component and having excellent oxidation stability, which has excellent dispersibility and reduced soluble salts as much as possible.

【0115】本発明においては、表面酸化処理を行って
安定化させた鉄を主成分とする金属磁性粒子粉末を水懸
濁液の状態で水洗するので、途中の生成物であるゲータ
イト粒子粉末、ヘマタイト粒子粉末の段階で水洗する場
合に比べて、可溶性ナトリウム塩を効率よく、より低減
することができる。
In the present invention, the metal magnetic particle powder containing iron as a main component, which has been stabilized by performing a surface oxidation treatment, is washed with water in the form of an aqueous suspension. The soluble sodium salt can be reduced more efficiently than in the case of washing with hematite particles in water.

【0116】また、前述した予備実験の通り、ポリエー
テル変性ポリシロキサンを添加することによって溶液の
表面張力を小さくすることができるので、水可溶性塩の
洗浄効率が向上するとともに、水洗後の鉄を主成分とす
る金属磁性粒子を含有する水懸濁液の表面張力が小さく
なり、粒子間凝集を抑制することができ、ほぐれ易い鉄
を主成分とする複合金属磁性粒子を得ることができる。
なお、アルコールを添加した水溶液でも表面張力を低下
させることができるが、アルコールを用いて表面張力を
45mN/m以下に低減させる場合には、10重量%以
上添加する必要があり、水可溶性塩は有機溶剤には不溶
であること及びアルコールと水との水素結合による相互
作用でアルコールを添加した溶液では水可溶性塩の溶解
度が低下することとにより、より一層水洗効率が低下す
る傾向にあるため、本発明の目的である可溶性塩の低減
が困難となる。本発明においては、少量のポリエーテル
変性ポリシロキサンの添加で本発明の目的とする効果が
発揮できるため、効果的に水可溶性塩を低減することが
できる。
Further, as described in the preliminary experiment described above, the surface tension of the solution can be reduced by adding the polyether-modified polysiloxane, so that the washing efficiency of the water-soluble salt is improved and the iron after the water washing is removed. The surface tension of the aqueous suspension containing the metal magnetic particles as the main component is reduced, the cohesion between the particles can be suppressed, and the composite metal magnetic particles containing iron as the main component that can be easily loosened can be obtained.
The surface tension can be reduced by an aqueous solution to which alcohol is added. However, when the surface tension is reduced to 45 mN / m or less by using alcohol, it is necessary to add 10% by weight or more. Because the solubility of the water-soluble salt is reduced in the solution in which the alcohol is added by the insolubility in the organic solvent and the interaction between the alcohol and water by the hydrogen bond, the washing efficiency tends to be further reduced. It is difficult to reduce the soluble salt, which is the object of the present invention. In the present invention, the desired effect of the present invention can be exhibited by adding a small amount of the polyether-modified polysiloxane, so that the water-soluble salt can be effectively reduced.

【0117】酸化安定性に優れた鉄を主成分とする複合
金属磁性粒子粉末が得られる理由として、本発明者は、
鉄を主成分とする複合金属磁性粒子粉末中の可溶性ナト
リウム塩含有量を可及的に低減できたこと及びポリエー
テル変性ポリシロキサンを表面処理することによって鉄
を主成分とする複合金属磁性粒子粉末の酸化が抑制でき
たことによるものと考えている。
The reason why the composite metal magnetic particles containing iron as a main component and having excellent oxidation stability can be obtained is as follows.
The content of the soluble sodium salt in the composite metal magnetic particles containing iron as the main component can be reduced as much as possible, and the composite metal magnetic particles containing iron as the main component by subjecting the polyether-modified polysiloxane to a surface treatment It is believed that the oxidation of the compound could be suppressed.

【0118】また、酸化安定性が向上した鉄を主成分と
する複合金属磁性粒子粉末を磁性粒子粉末として用いる
ことにより、得られた磁気記録媒体もまた、保存安定性
に優れている。
Further, by using the composite metal magnetic particle powder containing iron as a main component having improved oxidation stability as the magnetic particle powder, the obtained magnetic recording medium also has excellent storage stability.

【0119】[0119]

【実施例】次に、実施例及び比較例を挙げる。Next, examples and comparative examples will be described.

【0120】磁性粒子粉末(a)〜(c):磁性粒子粉
末として、表1に示した特性を有する鉄を主成分とする
金属磁性粒子粉末を準備した。
Magnetic Particle Powders (a) to (c): As magnetic particle powders, metal magnetic particle powders containing iron as a main component and having the characteristics shown in Table 1 were prepared.

【0121】[0121]

【表1】 [Table 1]

【0122】実施例1〜3、比較例1〜2:磁性粒子の
種類、ポリエーテル変性ポリシロキサンの有無及び添加
量を種々変化させた以外は前記発明の実施の形態と同様
にして鉄を主成分とする複合金属磁性粒子粉末を得た。
Examples 1 to 3 and Comparative Examples 1 and 2: Iron was mainly used in the same manner as in the embodiment of the present invention except that the type of magnetic particles, the presence or absence of the polyether-modified polysiloxane, and the amount of addition were varied. A composite metal magnetic particle powder as a component was obtained.

【0123】このときの製造条件を表2に、得られた鉄
を主成分とする複合金属磁性粒子粉末の諸特性を表3に
示す。なお、表2の表面張力の値は、水100重量部に
対して所定の割合となるようにポリエーテル変性ポリシ
ロキサンを添加した溶液の表面張力の値である。
The production conditions at this time are shown in Table 2, and various characteristics of the obtained composite metal magnetic particles containing iron as a main component are shown in Table 3. The surface tension values in Table 2 are the surface tension values of a solution to which a polyether-modified polysiloxane was added so as to have a predetermined ratio with respect to 100 parts by weight of water.

【0124】[0124]

【表2】 [Table 2]

【0125】[0125]

【表3】 [Table 3]

【0126】<磁気記録媒体の製造> 実施例4〜6、比較例3〜5:磁性粒子の種類を種々変
化させた以外は、前記本発明の実施の形態と同様にして
磁気記録媒体を得た。
<Manufacture of Magnetic Recording Medium> Examples 4 to 6, Comparative Examples 3 to 5: A magnetic recording medium was obtained in the same manner as in the embodiment of the present invention, except that the types of magnetic particles were variously changed. Was.

【0127】このときの製造条件及び得られた磁気記録
媒体の諸特性を表4に示した。
Table 4 shows the manufacturing conditions and various characteristics of the obtained magnetic recording medium.

【0128】[0128]

【表4】 [Table 4]

【0129】<非磁性下地層の製造> 非磁性粒子1〜6:実施例及び比較例で用いた各種の非
磁性粒子粉末の諸特性を表5に示す。
<Production of Non-Magnetic Underlayer> Non-Magnetic Particles 1 to 6: Various properties of various non-magnetic particle powders used in Examples and Comparative Examples are shown in Table 5.

【0130】[0130]

【表5】 [Table 5]

【0131】下地層1:表6に示す非磁性粒子1のヘマ
タイト粒子粉末12gと結合剤樹脂溶液(スルホン酸ナ
トリウム基を有する塩化ビニル−酢酸ビニル共重合樹脂
30重量%とシクロヘキサノン70重量%)及びシクロ
ヘキサノンとを混合して混合物(固形分率72%)を
得、この混合物を更にプラストミルで30分間混練して
混練物を得た。
Underlayer 1: 12 g of hematite particles of nonmagnetic particles 1 shown in Table 6, a binder resin solution (30% by weight of a vinyl chloride-vinyl acetate copolymer resin having a sodium sulfonate group and 70% by weight of cyclohexanone), and A mixture (solid content: 72%) was obtained by mixing with cyclohexanone, and the mixture was further kneaded with a plastmill for 30 minutes to obtain a kneaded product.

【0132】この混練物を1.5mmφガラスビーズ9
5g、追加の結合剤樹脂溶液(スルホン酸ナトリウム基
を有するポリウレタン樹脂30重量%、溶剤(メチルエ
チルケトン:トルエン=1:1)70重量%)、シクロ
ヘキサノン、メチルエチルケトン及びトルエンとともに
140mlガラス瓶に添加し、ペイントシェーカーで6
時間混合・分散を行って塗料組成物を得た。その後、潤
滑剤を加え、更に、ペイントシェーカーで15分間混合
・分散した。
This kneaded material was mixed with 1.5 mmφ glass beads 9
5 g, additional binder resin solution (30% by weight of polyurethane resin having sodium sulfonate group, 70% by weight of solvent (methyl ethyl ketone: toluene = 1: 1)), cyclohexanone, methyl ethyl ketone and toluene were added to a 140 ml glass bottle, and then added to a paint shaker. At 6
Mixing and dispersion were performed for a time to obtain a coating composition. Thereafter, a lubricant was added, and the mixture was further mixed and dispersed with a paint shaker for 15 minutes.

【0133】得られた非磁性塗料の組成は、下記の通り
であった。
The composition of the obtained non-magnetic paint was as follows.

【0134】 非磁性粒子粉末 100重量部、 スルホン酸ナトリウム基を有する 塩化ビニル−酢酸ビニル共重合樹脂 10重量部、 スルホン酸ナトリウム基を有するポリウレタン樹脂 10重量部、 潤滑剤(ミリスチン酸:ステアリン酸ブチル=1:1) 2重量部、 シクロヘキサノン 56.9重量部、 メチルエチルケトン 142.3重量部、 トルエン 85.4重量部。100 parts by weight of nonmagnetic particle powder, 10 parts by weight of a vinyl chloride-vinyl acetate copolymer resin having a sodium sulfonate group, 10 parts by weight of a polyurethane resin having a sodium sulfonate group, a lubricant (myristic acid: butyl stearate) = 1: 1) 2 parts by weight, 56.9 parts by weight of cyclohexanone, 142.3 parts by weight of methyl ethyl ketone, 85.4 parts by weight of toluene.

【0135】次いで、上記非磁性塗料を厚さ12μmの
ポリエチレンテレフタレートフィルム上にスリットコー
ターを用いて塗布し、次いで、乾燥させることにより非
磁性下地層を形成した。
Next, the above non-magnetic paint was applied on a polyethylene terephthalate film having a thickness of 12 μm using a slit coater, and then dried to form a non-magnetic underlayer.

【0136】このときの製造条件及び得られた非磁性下
地層の諸特性を表6に示す。
Table 6 shows the manufacturing conditions and various characteristics of the obtained nonmagnetic underlayer.

【0137】下地層2〜6:非磁性粒子粉末の種類を種
々変えた以外は、下地層1と同様にして非磁性下地層を
得た。
Underlayers 2 to 6: Nonmagnetic underlayers were obtained in the same manner as underlayer 1, except that the type of nonmagnetic particle powder was changed in various ways.

【0138】このときの製造条件及び得られた非磁性下
地層の諸特性を表6に示す。
Table 6 shows the manufacturing conditions and various characteristics of the obtained nonmagnetic underlayer.

【0139】[0139]

【表6】 [Table 6]

【0140】<非磁性下地層を有する磁気記録媒体の製
造> 実施例7:実施例1の鉄を主成分とする複合金属磁性粒
子粉末を用いて、実施の形態と同様にして磁性塗料を得
た。
<Manufacture of Magnetic Recording Medium Having Non-Magnetic Underlayer> Example 7: A magnetic paint was obtained in the same manner as in the embodiment using the composite metal magnetic particle powder containing iron as a main component of Example 1. Was.

【0141】磁性塗料を下地層1の上にスリットコータ
ーを用いて15μmの厚さに塗布した後、磁場中におい
て配向・乾燥し、次いで、1.27cm(0.5イン
チ)幅にスリットし、カレンダー処理を行った後、60
℃で24時間硬化反応を行い磁気テープを得た。
After applying a magnetic coating material on the base layer 1 to a thickness of 15 μm using a slit coater, orienting and drying in a magnetic field, and then slitting to a width of 1.27 cm (0.5 inch), After performing the calendar process, 60
A curing reaction was performed at 24 ° C. for 24 hours to obtain a magnetic tape.

【0142】このときの製造条件及び得られた磁気記録
媒体の諸特性を表7に示す。
Table 7 shows the manufacturing conditions and various characteristics of the obtained magnetic recording medium.

【0143】実施例8〜12、比較例6〜8 非磁性下地層の種類及び磁性粒子の種類を種々変えた以
外は、実施例7と同様にして磁気記録媒体を得た。
Examples 8 to 12 and Comparative Examples 6 to 8 Magnetic recording media were obtained in the same manner as in Example 7, except that the type of the nonmagnetic underlayer and the type of the magnetic particles were variously changed.

【0144】このときの製造条件及び得られた磁気記録
媒体の諸特性を表7に示した。
Table 7 shows the manufacturing conditions and various characteristics of the obtained magnetic recording medium.

【0145】[0145]

【表7】 [Table 7]

【0146】[0146]

【発明の効果】本発明によれば、良好な磁気特性を維持
したまま、優れた分散性を有すると共に可及的に可溶性
塩が低減されていることによって酸化安定性に優れた鉄
を主成分とする複合金属磁性粒子粉末を得ることができ
る。
According to the present invention, iron having excellent oxidative stability due to having excellent dispersibility and reducing the soluble salt as much as possible while maintaining good magnetic properties can be obtained. Composite metal magnetic particle powder can be obtained.

【0147】また、本発明により得られた鉄を主成分と
する複合金属磁性粒子粉末を用いて得られる磁気記録媒
体は、高い保磁力値、高い飽和磁化値及び優れた分散性
を有するので、高密度記録、高出力を有しており、しか
も、保存安定性が向上した磁気記録媒体として好適であ
る。
The magnetic recording medium obtained by using the composite metal magnetic particles containing iron as a main component obtained by the present invention has a high coercive force value, a high saturation magnetization value and excellent dispersibility. It is suitable as a magnetic recording medium having high-density recording, high output, and improved storage stability.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K018 BA13 BC29 BD02 5D006 BA04 BA07 EA01 FA01 FA09 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K018 BA13 BC29 BD02 5D006 BA04 BA07 EA01 FA01 FA09

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 平均長軸径が0.02〜0.30μmで
あってナトリウム含有量が10ppm以下である鉄を主
成分とする金属磁性粒子粉末の各粒子表面にポリエーテ
ル変性ポリシロキサンが該金属磁性粒子粉末に対してS
i換算で0.02〜10重量%付着していることを特徴
とする鉄を主成分とする複合金属磁性粒子粉末。
1. A polyether-modified polysiloxane having a mean major axis diameter of 0.02 to 0.30 μm and a sodium content of 10 ppm or less is coated on each particle surface of iron-based metal magnetic particle powder. S for metal magnetic particles
A composite metal magnetic particle powder containing iron as a main component, which is attached in an amount of 0.02 to 10% by weight in terms of i.
【請求項2】 鉄を主成分とする金属磁性粒子粉末を水
溶液中に分散させて、水懸濁液の状態で水洗した後、前
記鉄を主成分とする金属磁性粒子を含有する水懸濁液に
該水懸濁液中の鉄を主成分とする金属磁性粒子量に対し
てSi換算で0.02〜10重量部のポリエーテル変性
ポリシロキサンを添加して攪拌した後、脱水、濾過する
ことを特徴とする請求項1記載の鉄を主成分とする複合
金属磁性粒子粉末の製造法。
2. An aqueous suspension containing the iron-based metal magnetic particles after dispersing the iron-based metal magnetic particles in an aqueous solution and washing with an aqueous suspension. The solution is added with 0.02 to 10 parts by weight of a polyether-modified polysiloxane in terms of Si based on the amount of metal magnetic particles containing iron as a main component in the aqueous suspension, stirred, dehydrated and filtered. The method for producing a composite metal magnetic particle powder containing iron as a main component according to claim 1.
【請求項3】 非磁性支持体、該非磁性支持体上に形成
される磁性粒子粉末と結合剤樹脂とを含む磁気記録層か
らなる磁気記録媒体において、前記磁性粒子粉末が請求
項1記載の鉄を主成分とする複合金属磁性粒子粉末であ
ることを特徴とする磁気記録媒体。
3. A magnetic recording medium comprising a non-magnetic support and a magnetic recording layer comprising a magnetic resin powder and a binder resin formed on the non-magnetic support, wherein the magnetic particle powder is the iron according to claim 1. A magnetic recording medium characterized by being a composite metal magnetic particle powder containing as a main component.
【請求項4】 非磁性支持体、該非磁性支持体上に形成
される非磁性粒子粉末と結合剤樹脂とを含む非磁性下地
層及び該非磁性下地層の上に形成される磁性粒子粉末と
結合剤樹脂とを含む磁気記録層からなる磁気記録媒体に
おいて、前記磁性粒子粉末が請求項1記載の鉄を主成分
とする複合金属磁性粒子粉末であることを特徴とする磁
気記録媒体。
4. A non-magnetic support, a non-magnetic underlayer comprising a non-magnetic particle powder formed on the non-magnetic support and a binder resin, and a magnetic particle powder formed on the non-magnetic under layer A magnetic recording medium comprising a magnetic recording layer containing a dispersing agent resin, wherein the magnetic particle powder is the composite metal magnetic particle powder containing iron as a main component according to claim 1.
JP2001133692A 2001-04-27 2001-04-27 Magnetic particulate powder of composite metal mainly including iron, manufacturing method therefor, and magnetic recording medium Pending JP2002327202A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001133692A JP2002327202A (en) 2001-04-27 2001-04-27 Magnetic particulate powder of composite metal mainly including iron, manufacturing method therefor, and magnetic recording medium
US10/128,573 US20020192504A1 (en) 2001-04-27 2002-04-24 Composite magnetic metal particles containing iron as a main component, process for producing the same and magnetic recording medium
EP02252911A EP1253585A1 (en) 2001-04-27 2002-04-25 Composite magnetic particles containing iron, process for producing the same and magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001133692A JP2002327202A (en) 2001-04-27 2001-04-27 Magnetic particulate powder of composite metal mainly including iron, manufacturing method therefor, and magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2002327202A true JP2002327202A (en) 2002-11-15

Family

ID=18981504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001133692A Pending JP2002327202A (en) 2001-04-27 2001-04-27 Magnetic particulate powder of composite metal mainly including iron, manufacturing method therefor, and magnetic recording medium

Country Status (3)

Country Link
US (1) US20020192504A1 (en)
EP (1) EP1253585A1 (en)
JP (1) JP2002327202A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110125190A (en) * 2010-05-12 2011-11-18 도와 일렉트로닉스 가부시키가이샤 Metallic magnetic powder and manufacturing method of the same, magnetic painting, magnetic powder for magnetic therapy and magnetic recording medium

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004024357D1 (en) * 2003-08-28 2010-01-14 Dowa Electronics Materials Co Magnetic powder and manufacturing process
US20080213853A1 (en) * 2006-02-27 2008-09-04 Antonio Garcia Magnetofluidics
US20090202867A1 (en) * 2008-02-06 2009-08-13 Toda Kogyo Corporation Process for producing magnetic metal particles for magnetic recording, and magnetic recording medium
JP6816663B2 (en) * 2017-06-30 2021-01-20 Tdk株式会社 Composite magnetic material and magnetic core

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089331A (en) * 1988-10-14 1992-02-18 Fuji Photo Film Co., Ltd. Magnetic recording medium
JPH06100317A (en) * 1992-02-05 1994-04-12 Toda Kogyo Corp Magnetic iron oxide grain powder and its production
US5670245A (en) * 1993-07-13 1997-09-23 Konica Corporation Magnetic recording medium comprising a magnetic layer containing ferromagnetic metallic powder, binder, and aliphatic acid
EP0699721B1 (en) * 1994-09-01 2002-05-15 Toda Kogyo Corporation Modified polysiloxane coated inorganic particles
US5955189A (en) * 1994-09-30 1999-09-21 Fuji Photo Film Co., Ltd. Magnetic recording medium
US6120596A (en) * 1997-01-23 2000-09-19 Marconi Data Systems Inc. Method for treating pigment particles to improve dispersibility and particle size distribution
EP0957474A1 (en) * 1998-05-15 1999-11-17 Toda Kogyo Corporation Magnetic recording medium
EP0982715A1 (en) * 1998-08-28 2000-03-01 Toda Kogyo Corp. Black plate-shaped ferrite composite particles with magnetoplumbite structure and magnetic recording medium using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110125190A (en) * 2010-05-12 2011-11-18 도와 일렉트로닉스 가부시키가이샤 Metallic magnetic powder and manufacturing method of the same, magnetic painting, magnetic powder for magnetic therapy and magnetic recording medium
KR101892294B1 (en) 2010-05-12 2018-08-28 도와 일렉트로닉스 가부시키가이샤 Metallic magnetic powder and manufacturing method of the same, magnetic painting, magnetic powder for magnetic therapy and magnetic recording medium

Also Published As

Publication number Publication date
US20020192504A1 (en) 2002-12-19
EP1253585A1 (en) 2002-10-30

Similar Documents

Publication Publication Date Title
US6964811B2 (en) Magnetic powder, method for producing the same and magnetic recording medium comprising the same
US5968226A (en) Process of making goethite or iron-based alloy particles
JP2872227B2 (en) Underlayer for magnetic recording media
EP0660309B1 (en) Non-magnetic undercoat layer for magnetic recording medium, magnetic recording medium and non-magnetic particles
JP2000123354A (en) Particulate powder for nonmagnetic underlayer of magnetic recording medium, its production and magnetic recording medium
JP2001068322A (en) Compound magnetic particle powder for magnetic recording medium, its manufacturing method and recording medium
JP2002327202A (en) Magnetic particulate powder of composite metal mainly including iron, manufacturing method therefor, and magnetic recording medium
JP4577467B2 (en) Composite metal magnetic particle powder and magnetic recording medium
JP5712595B2 (en) Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium
JP4870860B2 (en) Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium
JP2924941B2 (en) Underlayer for magnetic recording media
JP2002329310A (en) Surface reforming magnetic particle powder for magnetic recording medium, surface reforming filler material for magnetic recording medium and surface reforming nonmagnetic particle powder for nonmagnetic ground surface layer for magnetic recording medium as well as magnetic recording medium
US5989516A (en) Spindle-shaped geothite particles
JP3763353B2 (en) Hematite powder for nonmagnetic underlayer of magnetic recording medium, nonmagnetic underlayer and magnetic recording medium of magnetic recording medium using hematite powder for nonmagnetic underlayer
JP2002008915A (en) Composite magnetic grain powder for magnetic recording medium, its manufacturing method, and the magnetic recording medium
US6153296A (en) Acicular hematite particles and magnetic recording medium
JP3661738B2 (en) Magnetic recording medium substrate having non-magnetic underlayer and magnetic recording medium using the substrate
JP2002146404A (en) Composite metal magnetic grain powder and magnetic recording medium
JP3952171B2 (en) Hematite particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium
JP3661733B2 (en) Magnetic recording medium
JP2918013B2 (en) Underlayer for magnetic recording media
JP4352270B2 (en) Hematite particle powder for nonmagnetic underlayer of magnetic recording medium and magnetic recording medium
JP3654406B2 (en) Magnetic recording medium
JP5305037B2 (en) Hexagonal ferrite particle powder for magnetic recording medium and magnetic recording medium
JP3661730B2 (en) Magnetic recording medium substrate having non-magnetic underlayer and magnetic recording medium using the substrate