JPH0583971B2 - - Google Patents

Info

Publication number
JPH0583971B2
JPH0583971B2 JP57225995A JP22599582A JPH0583971B2 JP H0583971 B2 JPH0583971 B2 JP H0583971B2 JP 57225995 A JP57225995 A JP 57225995A JP 22599582 A JP22599582 A JP 22599582A JP H0583971 B2 JPH0583971 B2 JP H0583971B2
Authority
JP
Japan
Prior art keywords
reflective layer
recording medium
layer
film thickness
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57225995A
Other languages
Japanese (ja)
Other versions
JPS59116990A (en
Inventor
Hajime Machida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP22599582A priority Critical patent/JPS59116990A/en
Publication of JPS59116990A publication Critical patent/JPS59116990A/en
Publication of JPH0583971B2 publication Critical patent/JPH0583971B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/04Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using optical elements ; using other beam accessed elements, e.g. electron or ion beam
    • G11C13/06Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using optical elements ; using other beam accessed elements, e.g. electron or ion beam using magneto-optical elements

Description

【発明の詳細な説明】 技術分野 本発明は新規な層構成を有する書きかえ可能な
光磁気記録媒体に関する。さらに詳しくは、本発
明は断熱性反射層を有する光磁気記録媒体に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a rewritable magneto-optical recording medium having a novel layer structure. More specifically, the present invention relates to a magneto-optical recording medium having a heat insulating reflective layer.

従来技術 各種光メモリ装置のうち特に記憶材料として
種々の垂直磁化膜を用いた磁気光学装置は情報の
書きかえが可能であることから注目されている。
BACKGROUND OF THE INVENTION Among various optical memory devices, magneto-optical devices using various perpendicular magnetization films as storage materials are attracting attention because information can be rewritten.

しかし、この種の材料は再生信号レベルが低
い、特にカー効果再生方式においてカー回転角が
小さいためS/Nを高めることが困難であるなど
の欠点を有する。そこで、上記欠点を解消するた
めに、磁性材料を改良したりSiOやSiO2などの断
熱層やAlなどの反射層を設けることが提案され
ている(例えば、特開昭57−66549号公報参照)
が、多層であるため膜作製が複雑であつて制御が
困難である。また、断熱層の膜厚によつて記録エ
ネルギーが大きく変動しさらに光学的干渉効果に
よる吸収、反射および断熱効果が大きく変動する
という問題がある。
However, this type of material has drawbacks such as a low reproduction signal level and, especially in the Kerr effect reproduction method, it is difficult to increase the S/N because the Kerr rotation angle is small. Therefore, in order to eliminate the above-mentioned drawbacks, it has been proposed to improve the magnetic material or provide a heat insulating layer such as SiO or SiO 2 or a reflective layer such as Al (for example, see Japanese Patent Laid-Open No. 57-66549). )
However, since the film is multilayered, the film fabrication is complicated and control is difficult. Another problem is that recording energy varies greatly depending on the thickness of the heat insulating layer, and absorption, reflection and heat insulating effects due to optical interference effects also vary greatly.

目 的 本発明は上記問題に鑑みてなされたものであつ
て、その一つの目的は光磁気記録媒体にレーザ記
録する場合に記録媒体の特性変動によつてレーザ
記録エネルギーが大きく変動しない光磁気記録媒
体を提供することである。
Purpose The present invention has been made in view of the above-mentioned problems, and one of its objects is to provide magneto-optical recording in which the laser recording energy does not vary significantly due to fluctuations in the characteristics of the recording medium when laser recording is performed on a magneto-optical recording medium. It is to provide a medium.

また、本発明の別の目的は記録信号を記録媒体
からレーザ光で読み出す場合に記録媒体の特性変
動によつて磁気光学効果、フアラデー回転角が大
きく変動しない光磁気記録媒体を提供することで
ある。
Another object of the present invention is to provide a magneto-optical recording medium in which the magneto-optic effect and the Faraday rotation angle do not vary greatly due to variations in the characteristics of the recording medium when a recorded signal is read out from the recording medium using a laser beam. .

構 成 上記目的を達成するために、本発明は断熱層の
機能と反射層の機能と兼備した断熱性反射層を用
いることを特徴とするものである。
Configuration In order to achieve the above object, the present invention is characterized by using a heat insulating reflective layer that has both the function of a heat insulating layer and the function of a reflective layer.

すなわち、本発明の光磁気記録媒体は透明基板
上に磁性膜層および反射率20%以上の窒化物から
なる断熱性反射層を順次に設けたものである。必
要に応じて、保護層を断熱性反射層の上に設けて
もよい。
That is, the magneto-optical recording medium of the present invention is one in which a magnetic film layer and a heat-insulating reflective layer made of nitride having a reflectance of 20% or more are sequentially provided on a transparent substrate. If necessary, a protective layer may be provided on the heat insulating reflective layer.

本発明における磁性膜厚としては、例えば遷移
金属(Fe、Co、Ni、Mnなど)と希土類金属
(Gd、Tb、Dy、Ho、Er、Y、Sm、Euなど)と
の種々の組合せから得られた磁性合金膜例えば
Tb−Fe、Gd−Fe、Gd−Tb−Fe、Gd−Dy−
Fe、Tb−Fe−Co、Tb−Dy−Fe−Co、Gd−Tb
−Fe−Coなどを用いることができる。この際こ
れらの磁性合金膜の吸光度が大きいので膜厚は
500Å以下でなければならない。また、酸化物磁
性体を用いることもできるがキユリー温度が低い
物が選ばれる。酸化物磁性体は一般にキユリー温
度が40℃以上と高いのでキユリー温度を下げる組
成に変えねばならない。例えば、BaFe12O19はキ
ユリー温度が450℃以上と使用できないので
BaCoTiF10O19のようにFeの1部を他の原子に置
き換えてキユリー温度を下げる方法がとられる。
さらに、本発明の磁性膜層として以下の酸化物磁
性体を用いることもできるがFeの1部を他の原
子に置き換えてキユリー温度を下げる必要があ
る。
The magnetic film thickness in the present invention can be obtained from various combinations of transition metals (Fe, Co, Ni, Mn, etc.) and rare earth metals (Gd, Tb, Dy, Ho, Er, Y, Sm, Eu, etc.), for example. For example, magnetic alloy film
Tb−Fe, Gd−Fe, Gd−Tb−Fe, Gd−Dy−
Fe, Tb−Fe−Co, Tb−Dy−Fe−Co, Gd−Tb
-Fe-Co etc. can be used. At this time, since the absorbance of these magnetic alloy films is large, the film thickness is
Must be less than 500Å. Although oxide magnetic materials can also be used, those with a low Curie temperature are selected. Oxide magnetic materials generally have a high Curie temperature of 40°C or higher, so the composition must be changed to lower the Curie temperature. For example, BaFe 12 O 19 cannot be used if its Kyrie temperature is higher than 450℃.
One method is to lower the Curie temperature by replacing part of the Fe with other atoms, as in BaCoTiF 10 O 19 .
Further, the following oxide magnetic material can be used as the magnetic film layer of the present invention, but it is necessary to lower the Curie temperature by replacing a part of Fe with other atoms.

MeMxFe12-xO19、MeMxMyFe12-(x+y)O19また
はCoMZFe2-zO8 上記各式中、MeはBa、Sr、Sc、Pb、Caなど
を示し、MxはCo、Zn、Al、Cr、Mn、Ni、Ti、
Sn、Cu、Pbなどを示し、MyはCo、Al、Cr、
Mn、Ni、Ti、Sn、Cu、Pbなどを示し(但しMx
≠My)そしてMZはAl、Zn、Cr、Mn、Ni、Ti、
Sn、Pbなどを示す。酸化物磁性体は磁性合金膜
より透過性がよく膜厚は300〜10000Åの範囲であ
る。
MeM x Fe 12-x O 19 , MeM x M y Fe 12-(x+y) O 19 or CoM Z Fe 2-z O 8In each of the above formulas, Me represents Ba, Sr, Sc, Pb, Ca, etc. and M x is Co, Zn, Al, Cr, Mn, Ni, Ti,
Indicates Sn, Cu, Pb, etc., and M y is Co, Al, Cr,
Indicates Mn, Ni, Ti, Sn, Cu, Pb, etc. (However, M x
≠M y ) and M Z is Al, Zn, Cr, Mn, Ni, Ti,
Indicates Sn, Pb, etc. The oxide magnetic material has better permeability than the magnetic alloy film, and the film thickness is in the range of 300 to 10,000 Å.

また、本発明における断熱性反射層は293°Kで
測定したときの熱伝導率Kが30(W/m・deg)
以下および反射率が20%以上(800nmのレーザ
光に対して)の窒化物によつて構成される。かか
る窒化物材料の例としえは、BN(K=11)、ZrN
(K=14)、TaN(K=10)、TiN(K=29)、AlN
(K=15)、MgN(K≒30)、CrN(K≒30)、HfN
(K≒20)、NbN(K≒20)などをあげることがで
きる。
Furthermore, the heat insulating reflective layer in the present invention has a thermal conductivity K of 30 (W/m・deg) when measured at 293°K.
It is made of nitride with a reflectance of 20% or more (with respect to 800 nm laser light). Examples of such nitride materials are BN (K=11), ZrN
(K=14), TaN (K=10), TiN (K=29), AlN
(K=15), MgN (K≒30), CrN (K≒30), HfN
(K≒20), NbN (K≒20), etc.

実施例 以下本発明に係る一実施例を従来技術の例と対
比して図面により詳しく説明する。
Embodiment Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings in comparison with an example of the prior art.

第1図は従来技術に係る光磁気記録媒体の層構
成を示す模式図であり、ガラスまたはプラスチツ
ク(例えばポリメチルメタクリレート、ポリカー
ボネートなど)の基板1の上に磁性膜層2(例え
ばGd−Fe)、断熱層3(例えばSiO2)、反射層4
(例えばAl)を順次スパツタリング、蒸着などに
よつて積層することにより形成し、基板側からレ
ーザ光を照射する。この場合、断熱層3の膜厚に
よつて記録エネルギーが大きく影響し、膜厚によ
つて光学的干渉効果による吸収、反射および断熱
効果が大きく変動する。また膜作製が多層で複雑
であり制御することが困難である。
FIG. 1 is a schematic diagram showing the layer structure of a magneto-optical recording medium according to the prior art. , a heat insulating layer 3 (e.g. SiO 2 ), a reflective layer 4
It is formed by sequentially stacking layers (for example, Al) by sputtering, vapor deposition, etc., and is irradiated with laser light from the substrate side. In this case, the recording energy is greatly influenced by the film thickness of the heat insulating layer 3, and the absorption, reflection and heat insulating effects due to optical interference effects vary greatly depending on the film thickness. Furthermore, the membrane fabrication is multi-layered and complex, making it difficult to control.

第2図は本発明に係る光磁気記録媒体の層構成
を示す模式図であつて基板1に磁性膜膜2を設け
ることは第1図に示したと同様であるが、図示の
ように本発明では反射率20%以上の窒化物からな
る断熱性反射層5が従来の断熱層の機能と反射層
の機能とを兼備している点が異なり、これによつ
て断熱性反射層の膜厚は例えばデイスク状に形成
した場合その厚さが片面3mm以内であれば何等制
約されないのでデイスクの作製が容易である。
FIG. 2 is a schematic diagram showing the layer structure of the magneto-optical recording medium according to the present invention. The provision of the magnetic film 2 on the substrate 1 is the same as that shown in FIG. The difference is that the heat-insulating reflective layer 5 made of nitride with a reflectance of 20% or more has both the functions of a conventional heat-insulating layer and a reflective layer, and as a result, the thickness of the heat-insulating reflective layer can be reduced. For example, when formed into a disk shape, there are no restrictions as long as the thickness is within 3 mm on one side, so the disk can be easily manufactured.

効 果 次に、本発明における反射率20%以上の窒化物
からなる断熱性反射層の材料としてTaNを使用
した場合を例にとつてその効果を従来技術のもの
と対比して説明する。
Effects Next, the effects will be explained in comparison with those of the prior art, taking as an example the case where TaN is used as the material of the heat insulating reflective layer made of nitride with a reflectance of 20% or more in the present invention.

従来技術に対しては、第1図に示すようにガラ
ス基板に膜厚200ÅのTb−Fe磁性膜層と膜厚
3000Åの反射層を設け、SiO2断熱層の膜厚を変
化させて記録媒体を作成し、これに半導体レーザ
(790nm)を用いて1MHzの周波数で記録した結
果を第3図に示す。第3図において実線は膜厚と
記録に必要なエネルギー(レーザパワー)との関
係を示しそして点線は膜厚とフアラデー回転角と
の関係を示す。これからSiO2膜厚によつて、レ
ーザ記録エネルギーが大きく変動することが明ら
かである。SiO2の膜厚のバラツキを±10%に制
御することは困難であり、記録エネルギーを高い
レベルに設定しなければならない。
In contrast to the conventional technology, as shown in Figure 1, a Tb-Fe magnetic film layer with a thickness of 200 Å and a film thickness of
A recording medium was prepared by providing a reflective layer of 3000 Å and varying the thickness of the SiO 2 heat insulating layer, and recording was performed on this medium at a frequency of 1 MHz using a semiconductor laser (790 nm). The results are shown in Figure 3. In FIG. 3, the solid line shows the relationship between the film thickness and the energy (laser power) required for recording, and the dotted line shows the relationship between the film thickness and the Faraday rotation angle. It is clear from this that the laser recording energy varies greatly depending on the SiO 2 film thickness. It is difficult to control the variation in SiO 2 film thickness to ±10%, and the recording energy must be set at a high level.

一方、本発明の記録媒体を、第2図に示すよう
にガラス基板上に膜厚200ÅのTb−Fe磁性膜層
を設け、TaN断熱性反射層の膜厚を変化させて
作成し、これに半導体レーザ(900nm)を用い
て1MHzの周波数で記録しても第4図に示すよう
にTaNの膜厚によつてレーザパワーは変化しな
い。ここで第4図における実線および点線の意味
は第3図と同様である。
On the other hand, the recording medium of the present invention was prepared by providing a Tb-Fe magnetic film layer with a thickness of 200 Å on a glass substrate and varying the film thickness of the TaN heat-insulating reflective layer, as shown in FIG. Even when recording at a frequency of 1 MHz using a semiconductor laser (900 nm), the laser power does not change depending on the TaN film thickness, as shown in FIG. Here, the meanings of the solid lines and dotted lines in FIG. 4 are the same as in FIG. 3.

また、第3図に示すように従来技術ではSiO2
の膜厚によつてフアラデー回転角(θF)が著しく
変化するが、これはSiO2の光学的干渉効果によ
るものであつて大きな問題点である。これに対し
て、第4図に示すように本発明ではフアラデー回
転角(θF)は殆ど変化しない。また、断熱性反射
層としてTaNに代えて、CrN、AlNおよびMgN
のそれぞれを用いて記録媒体を膜厚を変えて調整
し特性を調べたところ、それぞれθFが0.54°、0.46°
および0.68°であり膜厚依存性が殆どなかつた。
Furthermore, as shown in Fig. 3, in the conventional technology SiO 2
The Faraday rotation angle (θ F ) changes significantly depending on the film thickness, but this is due to the optical interference effect of SiO 2 and is a major problem. On the other hand, as shown in FIG. 4, in the present invention, the Faraday rotation angle (θ F ) hardly changes. Also, instead of TaN, CrN, AlN and MgN can be used as the heat insulating reflective layer.
When we adjusted the recording medium by changing the film thickness and examined the characteristics using each, we found that θ F was 0.54° and 0.46°, respectively.
and 0.68°, and there was almost no film thickness dependence.

以上本発明の効果を説明の都合上TaNを例に
とつて述べてきたが、他の材料についても同様の
結果が得られることはもちろんである。
Although the effects of the present invention have been described above using TaN as an example for convenience of explanation, it goes without saying that similar results can be obtained with other materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術の光磁気記録媒体の構成を示
す模式図であり、第2図は本発明の光磁気記録媒
体の構成を示す模式図であり、第3図および第4
図は膜厚と記録エネルギーとフアラデー回転角と
の関係を示すグラフである。 1……基板、2……磁性膜層、3……断熱層、
4……反射層、5……断熱性反射層。
FIG. 1 is a schematic diagram showing the structure of a magneto-optical recording medium of the prior art, FIG. 2 is a schematic diagram showing the structure of a magneto-optical recording medium of the present invention, and FIGS.
The figure is a graph showing the relationship between film thickness, recording energy, and Faraday rotation angle. 1... Substrate, 2... Magnetic film layer, 3... Heat insulation layer,
4... Reflective layer, 5... Heat insulating reflective layer.

Claims (1)

【特許請求の範囲】[Claims] 1 透明基板上に磁性膜層および反射率20%以上
の窒化物からなる断熱性反射層を順次に設けたこ
とを特徴とする光磁気記録媒体。
1. A magneto-optical recording medium characterized in that a magnetic film layer and an adiabatic reflective layer made of nitride having a reflectance of 20% or more are sequentially provided on a transparent substrate.
JP22599582A 1982-12-24 1982-12-24 Photomagnetic recording medium Granted JPS59116990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22599582A JPS59116990A (en) 1982-12-24 1982-12-24 Photomagnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22599582A JPS59116990A (en) 1982-12-24 1982-12-24 Photomagnetic recording medium

Publications (2)

Publication Number Publication Date
JPS59116990A JPS59116990A (en) 1984-07-06
JPH0583971B2 true JPH0583971B2 (en) 1993-11-30

Family

ID=16838138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22599582A Granted JPS59116990A (en) 1982-12-24 1982-12-24 Photomagnetic recording medium

Country Status (1)

Country Link
JP (1) JPS59116990A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264944A (en) * 1988-08-30 1990-03-05 Mitsubishi Electric Corp Magneto-optical recording medium
JPH0323532A (en) * 1989-06-20 1991-01-31 Nec Home Electron Ltd Optical disk and its production
CA2038785C (en) * 1990-03-27 1998-09-29 Atsushi Oyamatsu Magneto-optical recording medium
DE4223850A1 (en) * 1991-07-23 1993-01-28 Mitsubishi Chem Ind Improved magneto=optical recording medium - has rare-earth element transition metal element alloy recording layer and tantalum pent:oxide adhesion promoting and interference layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104602A (en) * 1974-01-21 1975-08-18
JPS57105839A (en) * 1980-12-24 1982-07-01 Ricoh Co Ltd Photo-thermal magnetic recording medium
JPS57169996A (en) * 1981-04-09 1982-10-19 Sharp Corp Magnetooptic storage element
JPS598150A (en) * 1982-07-02 1984-01-17 Sharp Corp Magnetooptical storage element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104602A (en) * 1974-01-21 1975-08-18
JPS57105839A (en) * 1980-12-24 1982-07-01 Ricoh Co Ltd Photo-thermal magnetic recording medium
JPS57169996A (en) * 1981-04-09 1982-10-19 Sharp Corp Magnetooptic storage element
JPS598150A (en) * 1982-07-02 1984-01-17 Sharp Corp Magnetooptical storage element

Also Published As

Publication number Publication date
JPS59116990A (en) 1984-07-06

Similar Documents

Publication Publication Date Title
US4797331A (en) Magneto-optical recording material
JPS6227459B2 (en)
JPH0583971B2 (en)
US4777082A (en) Optical magnetic recording medium
JP2556563B2 (en) Magneto-optical recording medium
JPH0519213B2 (en)
JPS5952443A (en) Photomagnetic recording medium
US5095350A (en) Magneto-optic memory medium
JPS61258353A (en) Photomagnetic recording medium
JPS59201247A (en) Photomagnetic recording medium
JP2550633B2 (en) Photothermal magnetic recording medium
JPS60219655A (en) Optical recording medium
JPS63282944A (en) Thermomagneto-optical recording medium
JPS6132242A (en) Optothermomagnetic recording medium
JPS60246041A (en) Photo thermomagnetic recording medium
JP2729962B2 (en) Magneto-optical recording medium
JPH06349137A (en) Amorphous or quasi-amorphous film structure for optical or magneto-optical data storage medium, optical data storage device and its manufacture
JPS6122454A (en) Photomagnetic recording medium
JPH0664761B2 (en) Magneto-optical recording medium
KR950006415B1 (en) Making method of optical magneto
JP2705066B2 (en) Photothermal magnetic recording media
JPS61278061A (en) Photomagnetic recording medium
JPH0660452A (en) Magneto-optical recording medium
JPS62267949A (en) Magneto-optical recording medium
JP2876062B2 (en) Magnetic film