JP2510131B2 - Magneto-optical storage device - Google Patents
Magneto-optical storage deviceInfo
- Publication number
- JP2510131B2 JP2510131B2 JP6184990A JP18499094A JP2510131B2 JP 2510131 B2 JP2510131 B2 JP 2510131B2 JP 6184990 A JP6184990 A JP 6184990A JP 18499094 A JP18499094 A JP 18499094A JP 2510131 B2 JP2510131 B2 JP 2510131B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- beam splitter
- reflected
- magneto
- laser beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Description
【0001】本発明は、膜面に垂直な方向に磁化容易軸
をもつ磁気記録媒体にレーザビーム等の光ビームを照射
して部分的に記録媒体を昇温させ、照射部分での保磁力
を減少させることによって、該領域に作用する磁界の方
向に対応して磁区を配列させて情報の記録と消去を行
い、一方磁気光学効果により記録情報の再生を行う光磁
気記憶装置に関する。According to the present invention, a magnetic recording medium having an easy axis of magnetization in the direction perpendicular to the film surface is irradiated with a light beam such as a laser beam to partially raise the temperature of the recording medium, and the coercive force at the irradiated portion is increased. The present invention relates to a magneto-optical storage device in which magnetic domains are arrayed in accordance with the direction of a magnetic field acting on the region to record and erase information, while reproducing information by the magneto-optical effect.
【0002】近年、光記憶装置は高密度化、大容量化、
及び高速アクセス化が可能なメモリ装置として広く研究
されており、このうち記憶ディスクに微細ピット列を形
成し、該ピット部における光ビームの回折現象を利用し
て再生する装置、及び記憶媒体の反射率変化を利用して
再生する装置について一部実用化の域に達している。し
かしながら上記装置は再生専用あるいは情報の追加記録
が可能であるという機能をもつに留まっており、メモリ
装置の一大特徴である情報の消去機能をも有する光記憶
装置については未だ研究開発段階にある。In recent years, optical storage devices have become higher in density and capacity,
Also, it has been widely studied as a memory device capable of high-speed access. Among them, a device for forming a fine pit row on a storage disk and reproducing by utilizing a diffraction phenomenon of a light beam in the pit portion, and a reflection of a storage medium. A device for reproducing by utilizing the rate change has reached the range of practical application. However, the above-mentioned device has only the function of being read-only or capable of additionally recording information, and the optical storage device having the information erasing function, which is one of the major features of the memory device, is still in the research and development stage. .
【0003】本発明は情報の記録・再生・消去が可能な
光磁気記憶装置に関するものであり、次にこの光磁気記
憶装置の問題点について説明する。The present invention relates to a magneto-optical storage device capable of recording / reproducing / erasing information. Next, problems of this magneto-optical storage device will be described.
【0004】光磁気記憶装置の基本構成を図2に示す。
1は記録及び再生に必要な所定の光エネルギーを射出で
きるレーザ光源、2は所定の偏光ビームを透過する偏光
子、3は反射光を検出器側に導くための、2個のプリズ
ムを斜面において組み合わせたビームスプリッタ、4は
レーザ光源1より射出されたレーザビームを記憶媒体5
上に集光する絞りレンズ、6は基板、7は反射情報光を
偏光面について検波し情報信号を得るための検光子、8
は光検出器である。The basic structure of the magneto-optical storage device is shown in FIG.
Reference numeral 1 is a laser light source capable of emitting predetermined light energy required for recording and reproduction, 2 is a polarizer for transmitting a predetermined polarized beam, and 3 is a prism having two prisms for guiding reflected light to a detector side. The combined beam splitter 4 stores the laser beam emitted from the laser light source 1 in the storage medium 5.
A diaphragm lens for collecting light on the upper side, 6 a substrate, 7 an analyzer for detecting reflected information light on a polarization plane to obtain an information signal, 8
Is a photodetector.
【0005】上記の基本構成をもつ光磁気記憶装置を用
いて行う情報の記録・再生は公知の手法により容易に達
成できるものの、装置の小型化を計る上でレーザ光源1
は小出力のレーザ装置、例えば半導体レーザを使わざる
を得ない。従って記憶媒体5には記録感度の低いMnB
i、MnBiAl、MnBiCu等の結晶性磁性材料よ
りも記録感度の高いGd、Tb、Dy、Sm等の希土類
金属とFe、Co、Ni等の遷移金属とを組み合わせて
生成されるTbDyFe、GdTbFe、GdDyF
e、TbFe等の非晶質磁性体が利用されることにな
る。しかしながら上記非晶質磁性材料による磁気光学効
果は前記結晶性磁性材料に比べて弱く、いわゆるカー回
転角は0.1°〜0.2°に留り、再生信号のS/Nが
低く、さらに前記検光子7の方位角設定が困難であっ
た。そのため第3図に示すような記憶素子構造の改善に
より、光学的に反射光のカー回転角を増大させる手法に
よりカー回転角の増大を計る努力がなされている。図3
において9はガラスあるいはアクリル樹脂等により作製
される基板、10はAl、Au、Cu等の金属薄膜にて
なる反射膜、11は希土類・遷移金属の非晶質磁性材
料、12はSiO2 、SiO等の透明誘電体にてなる薄
膜であり、いずれも蒸着法、スパッタ法等により順に積
層されている。それぞれの薄膜の厚みは薄膜の干渉効果
によりカー回転角が増大するよう適宜設定されている。
なお、本出願人は、先に昭和56年7月2日付けで磁気
光学記憶素子と題する特許出願(特願昭56−1040
72号)を行った。上記先願明細書には、希土類・遷移
金属の非晶質薄膜の膜厚を250 以下とすると共に、
非晶質薄膜の裏面に反射膜を形成すると、入射光は非晶
質薄膜の表面で反射され、且つ非晶質薄膜を通り反射膜
で反射され、そのために二種の反射光が合成されること
になり、カー効果とファラデー効果が加わり、見掛けの
カー回転角が増大することが記載されている。Recording and reproduction of information using the magneto-optical storage device having the above-described basic structure can be easily achieved by a known method, but the laser light source 1 is required for downsizing the device.
Has no choice but to use a low-power laser device such as a semiconductor laser. Therefore, the recording medium 5 has a low recording sensitivity of MnB.
TbDyFe, GdTbFe, GdDyF produced by combining rare earth metals such as Gd, Tb, Dy, Sm and transition metals such as Fe, Co, Ni having a higher recording sensitivity than crystalline magnetic materials such as i, MnBiAl, MnBiCu.
Therefore, amorphous magnetic materials such as e and TbFe are used. However, the magneto-optical effect of the amorphous magnetic material is weaker than that of the crystalline magnetic material, the so-called Kerr rotation angle is limited to 0.1 ° to 0.2 °, and the S / N of the reproduced signal is low. It was difficult to set the azimuth angle of the analyzer 7. Therefore, efforts have been made to increase the Kerr rotation angle by a method of optically increasing the Kerr rotation angle of reflected light by improving the memory element structure as shown in FIG. FIG.
9 is a substrate made of glass or acrylic resin, 10 is a reflective film made of a metal thin film of Al, Au, Cu or the like, 11 is an amorphous magnetic material of rare earth / transition metal, 12 is SiO 2 , SiO Is a thin film made of a transparent dielectric material such as, and is sequentially laminated by a vapor deposition method, a sputtering method, or the like. The thickness of each thin film is appropriately set so that the Kerr rotation angle increases due to the interference effect of the thin films.
The present applicant previously filed a patent application entitled “Magnetic Optical Storage Element” on July 2, 1981 (Japanese Patent Application No. 56-1040).
72). In the above-mentioned specification, the amorphous thin film of rare earth / transition metal has a thickness of 250 or less, and
When a reflective film is formed on the back surface of the amorphous thin film, the incident light is reflected on the surface of the amorphous thin film, passes through the amorphous thin film, and is reflected by the reflective film, so that two types of reflected light are combined. It is described that the apparent Kerr rotation angle is increased by adding the Kerr effect and the Faraday effect.
【0006】本発明は上記現状に鑑み、光磁気記憶装置
に不可欠なビームスプリッタの偏光特性を利用し、さら
に磁気光学効果を強調して再生信号のS/N向上並びに
検波用検光子の方位設定を容易にすべくなされたもので
ある。In view of the above situation, the present invention utilizes the polarization characteristics of a beam splitter, which is indispensable for a magneto-optical storage device, and further enhances the magneto-optical effect to improve the S / N of a reproduced signal and set the azimuth of a detector for detection. It was made to facilitate.
【0007】以下に本発明に係わる光磁気記憶装置の構
成を説明する。The configuration of the magneto-optical storage device according to the present invention will be described below.
【0008】図1は本発明に係る光磁気記憶装置の基本
構成を示す説明図である。尚、図2に記載の光学素子と
同一のものについては同一の符号を記した。また、本発
明による効果は再生の場合に特に有効であるので再生手
法をもって説明する。FIG. 1 is an explanatory diagram showing the basic structure of a magneto-optical storage device according to the present invention. The same elements as those of the optical element shown in FIG. 2 are designated by the same reference numerals. Further, the effect of the present invention is particularly effective in the case of reproduction, so that a reproduction method will be described.
【0009】半導体レーザ13より射出されたレーザビ
ームは集光レンズ14によりコリメートされて所定の方
位に設定された偏光子2を通って図中の矢印にて示した
ように紙面内で矢印の方向に振動する直線偏光ビーム
(P波)となる。該直線偏光ビームはRS >R
P (RS :S波エネルギー反射率、RP :P波エネルギ
ー反射率)の偏光特性を効果的にもつように、2個のプ
リズムを斜面において組み合わせそのプリズム斜面に誘
電体薄膜が多層コートされたビームスプリッタ15を通
過する。誘電体薄膜は光吸収性が少なく、ZnS、Ce
O2 、TiO2 を用いることができる(久保田広、外2
名編「光学技術ハンドブック増補版」、昭和55年8月
10日株式会社朝倉書店、増補版第5刷発行、第666
頁)。前述した様に入射偏光はP波であるので偏光状態
は保存されて透過エネルギーのみTP 倍となる(TP :
ビームスプリッタ15のP波エネルギー透過率)。次に
該偏光レーザビームは絞りレンズ4により既に磁気記録
された記憶媒体5上をスポット状に照射する。そして、
上記照射点に当った偏光レーザビームは当該照射点の磁
化状態に応じて、いわゆるカー効果で知られる磁気光学
効果を受けてカー回転角αだけ回転した偏光レーザビー
ムとなって反射される。即ち第4図に示すように入射偏
光Pに対して記録されて磁化反転を受けた領域では−
α、それ以外の初期磁区のままの領域では+αだけ偏光
面が回転した反射レーザビームQ1 とQ2 が得られるこ
とになる。再び該反射レーザビームはビームスプリッタ
15に入射するが前述の偏光特性の効果により光検出器
側に反射されるレーザビームはR1 、R2 となり、その
偏光面回転角βはαより増大されることになる。この場
合、ビームスプリッタ15のP波振幅反射率√RP はほ
ぼ半分(0.5)であり、S波反射率√RS は1に近い
というようにされているが、このことは第4図にも示さ
れている。従ってその透過軸が図4においてTとなる様
に検光子7を設定することにより、集光レンズ16を介
して検出器8には前記記録領域がパルス状に配列した部
分を走査した場合、図5の様にパルス状情報信号が得ら
れる。但し、実際には反射レーザビームQ1 ,Q2 は記
録媒体5の光磁気特性による偏光解消並びにビームスプ
リッタ15において反射されるS波とP波の間に一般に
位相差が生じるため検光子7に到達する偏光は若干の楕
円偏光となるため、その信号出力は図6の様になる。The laser beam emitted from the semiconductor laser 13 is collimated by the condenser lens 14 and passes through the polarizer 2 set in a predetermined azimuth direction, as shown by the arrow in the figure, in the direction of the arrow in the drawing. It becomes a linearly polarized beam (P wave) that oscillates. The linearly polarized beam has R S > R
In order to effectively have the polarization characteristics of P ( RS : S-wave energy reflectance, R P : P-wave energy reflectance), two prisms are combined on a slope and a dielectric thin film is multi-layer coated on the prism slope. Beam splitter 15. Dielectric thin film has low light absorption, and ZnS, Ce
O 2 and TiO 2 can be used (Hiroshi Kubota, et al. 2
Masterpiece "Optical Technology Handbook Supplement Edition", August 10, 1980, Asakura Shoten Co., Ltd., Supplement Edition 5th Issue, 666
page). As described above, since the incident polarized light is the P wave, the polarization state is preserved and only the transmitted energy becomes T P times (T P :
P-wave energy transmittance of the beam splitter 15). Next, the polarized laser beam is applied by a diaphragm lens 4 in a spot shape onto the storage medium 5 which has already been magnetically recorded. And
The polarized laser beam hitting the irradiation point is reflected as a polarized laser beam rotated by the Kerr rotation angle α under the magneto-optical effect known as the so-called Kerr effect according to the magnetization state of the irradiation point. That is, as shown in FIG. 4, in the area recorded on the incident polarized light P and subjected to the magnetization reversal, −
In α and other regions where the initial magnetic domains remain, reflected laser beams Q 1 and Q 2 whose polarization planes are rotated by + α can be obtained. The reflected laser beam enters the beam splitter 15 again, but the laser beams reflected to the photodetector side are R 1 and R 2 due to the effect of the above-mentioned polarization characteristic, and the polarization plane rotation angle β is increased from α. It will be. In this case, the P-wave amplitude reflectance √ R P of the beam splitter 15 is almost half (0.5), and the S-wave reflectance √ R S is close to 1, which is the fourth factor. Also shown in the figure. Therefore, when the analyzer 7 is set so that its transmission axis is T in FIG. 4, when the detector 8 scans a portion where the recording areas are arranged in a pulse shape through the condenser lens 16, A pulse-shaped information signal is obtained as shown in FIG. However, in reality, the reflected laser beams Q 1 and Q 2 are depolarized by the magneto-optical characteristics of the recording medium 5 and a phase difference is generally generated between the S wave and the P wave reflected by the beam splitter 15. The arriving polarized light is a little elliptically polarized light, and the signal output is as shown in FIG.
【0010】以上説明した様に、プリズム斜面に誘電体
薄膜を多層コートしたビームスプリッタ15の反射偏光
特性を前述の様に設定すると、カー回転角を効果的に増
大させることができるため、検光子7の設定が容易にな
る。さらに磁気光学再生においてはAs described above, when the reflection polarization characteristic of the beam splitter 15 in which the prism slant surface is coated with a plurality of dielectric thin films is set as described above, the Kerr rotation angle can be effectively increased. Setting 7 becomes easy. Furthermore, in magneto-optical reproduction
【0011】[0011]
【数1】 [Equation 1]
【0012】(P:検光子に到達する光エネルギー、θ
K :カー回転角)の関係があるため、√P・θK が増大
されるようにビームスプリッタのP波エネルギー反射率
RP 、S波エネルギー反射率RS を設定しているのでS
/Nの向上も計れた。(P: optical energy reaching the analyzer, θ
K : Kerr rotation angle), the P-wave energy reflectance R P and the S-wave energy reflectance R S of the beam splitter are set so that √P · θ K is increased.
/ N was also improved.
【図1】本発明に係る光磁気記憶装置の基本構成を示す
図である。FIG. 1 is a diagram showing a basic configuration of a magneto-optical storage device according to the present invention.
【図2】従来の光磁気記憶装置の基本構成を示す図であ
る。FIG. 2 is a diagram showing a basic configuration of a conventional magneto-optical storage device.
【図3】記憶素子の構成を示す側面図である。FIG. 3 is a side view showing a configuration of a memory element.
【図4】本発明に係る光磁気記憶装置における再生原理
を示す説明図である。FIG. 4 is an explanatory diagram showing a reproducing principle in the magneto-optical storage device according to the present invention.
【図5】磁気光学効果による情報の再生信号の一例を示
す波形図である。FIG. 5 is a waveform diagram showing an example of a reproduction signal of information by a magneto-optical effect.
【図6】磁気光学効果による情報の再生信号の別の例を
示す波形図である。FIG. 6 is a waveform diagram showing another example of a reproduction signal of information by the magneto-optical effect.
1 レーザ光源 2 偏光子 3 ビームスプリッタ 4 絞りレンズ 5 記憶媒体 6、9 基板 7 検光子 8 光検出器 10 反射膜 11 希土類・遷移金属の非晶質磁性材料 12 誘電体薄膜 13 半導体レーザ 14 集光レンズ 15 ビームスプリッタ 16 集光レンズ 1 Laser Light Source 2 Polarizer 3 Beam Splitter 4 Aperture Lens 5 Storage Medium 6, 9 Substrate 7 Analyzer 8 Photodetector 10 Reflective Film 11 Amorphous Magnetic Material of Rare Earth / Transition Metal 12 Dielectric Thin Film 13 Semiconductor Laser 14 Focusing Lens 15 Beam splitter 16 Condenser lens
Claims (1)
属の非晶質磁性薄膜を具備する記憶媒体と、半導体レー
ザ光源と、該半導体レーザ光源からのレーザビームを通
過させるプリズム斜面に誘電体薄膜の多層コートが施さ
れたビームスプリッタと、該ビームスプリッタを通過し
たP波を該記憶媒体にスポット状に照射する絞りレンズ
と、該照射点における該磁性薄膜の磁化状態に応じてカ
ー回転角±αだけ偏光面が回転して反射されたレーザビ
ームであって、該絞りレンズを経てビームスプリッタに
入射し、該プリズム斜面にて反射されて出射するレーザ
ビームを受光する検光子と、該検光子によって検光され
た光を受光する光検出器と、該プリズム斜面に誘電体薄
膜の多層コートが施されたビームスプリッタの偏光特性
は、該誘電体薄膜の多層コートにより、該記憶媒体から
ビームスプリッタに入射し、そのプリズム斜面の誘電体
薄膜の多層コートにより反射されて、該検光子に向けて
出射されるレーザビームについてのS波振幅反射率が1
に近く、P波振幅反射率がほぼ半分であるようにされ
て、レーザビームの偏光面の回転角は±βに増大される
ようにされ、但しβ>αであることとを具備し、S/N
が向上してなることを特徴とする光磁気記憶装置。1. A storage medium comprising an amorphous magnetic thin film of a rare earth / transition metal having perpendicular magnetic anisotropy, a semiconductor laser light source, and a dielectric on a prism slope for passing a laser beam from the semiconductor laser light source. A beam splitter having a multi-layered thin film coating, a diaphragm lens that irradiates the storage medium with P waves that have passed through the beam splitter in a spot shape, and a Kerr rotation angle according to the magnetization state of the magnetic thin film at the irradiation point. An analyzer for receiving a laser beam whose polarization plane is rotated by ± α and which is reflected by the diaphragm lens, enters the beam splitter, and is reflected by the prism slope and emitted. The polarization characteristics of the photodetector that receives the light detected by the photon and the beam splitter in which the multilayer coating of the dielectric thin film is applied to the prism slope are A layer coated, incident on the beam splitter from the storage medium, is reflected by the multilayer coating of the dielectric thin film of the prism inclined surfaces, S wave amplitude reflectance of the laser beam emitted toward on the detected photons 1
And the rotation angle of the polarization plane of the laser beam is increased to ± β, where β> α. / N
An improved magneto-optical storage device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6184990A JP2510131B2 (en) | 1994-08-05 | 1994-08-05 | Magneto-optical storage device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6184990A JP2510131B2 (en) | 1994-08-05 | 1994-08-05 | Magneto-optical storage device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56173976A Division JPH0756709B2 (en) | 1981-10-29 | 1981-10-29 | Magneto-optical storage device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07296440A JPH07296440A (en) | 1995-11-10 |
JP2510131B2 true JP2510131B2 (en) | 1996-06-26 |
Family
ID=16162869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6184990A Expired - Lifetime JP2510131B2 (en) | 1994-08-05 | 1994-08-05 | Magneto-optical storage device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2510131B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4829453A (en) * | 1971-08-16 | 1973-04-19 | ||
JPS5424008A (en) * | 1977-07-26 | 1979-02-23 | Fujitsu Ltd | Magnetic recording and photo reproducing system |
JPS57200958A (en) * | 1981-06-02 | 1982-12-09 | Canon Inc | Recording pattern reading opticl system |
-
1994
- 1994-08-05 JP JP6184990A patent/JP2510131B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4829453A (en) * | 1971-08-16 | 1973-04-19 | ||
JPS5424008A (en) * | 1977-07-26 | 1979-02-23 | Fujitsu Ltd | Magnetic recording and photo reproducing system |
JPS57200958A (en) * | 1981-06-02 | 1982-12-09 | Canon Inc | Recording pattern reading opticl system |
Also Published As
Publication number | Publication date |
---|---|
JPH07296440A (en) | 1995-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4799114A (en) | Thermomagnetic recording carrier and a method for thermomagnetic recording | |
US4721368A (en) | Optical system in a magneto-optical memory device | |
US4586092A (en) | Thermo-magneto-optical memory device and recording medium therefor | |
HUT55156A (en) | Method for thermomagnetic recording of information and for optical reading | |
US5187703A (en) | Magneto-optical multilayer recording disk and method of reproducing the same | |
JPH0250335A (en) | Magneto-optical memory element | |
EP0530913B1 (en) | Magneto-optical recording medium | |
JPS62293541A (en) | Magneto-optical recording medium | |
EP0608134B1 (en) | Magneto-optical recording medium | |
JP2510131B2 (en) | Magneto-optical storage device | |
JPH0756709B2 (en) | Magneto-optical storage device | |
US5759657A (en) | Optical recording medium and device for reproducing the same | |
JPS6126954A (en) | Photomagnetic recording medium | |
JP2778761B2 (en) | Magneto-optical recording medium | |
JPS61269248A (en) | Photomagnetic disk | |
JP2555891B2 (en) | Magneto-optical recording medium | |
JP2511202B2 (en) | Optical device | |
JPH03130945A (en) | Magnetic recording medium and method of recording/ reproducing using this medium | |
EP0621591B1 (en) | Optical recording medium and device for reproducing the same | |
JPS61242356A (en) | Photomagnetic disk | |
JP2562219B2 (en) | Magneto-optical disk | |
JPH046642A (en) | Magneto-optical disk | |
JP2859519B2 (en) | Optical information reproducing device | |
JPS59208706A (en) | Thermomagnetic recording material | |
JPH0785514A (en) | Optical recording medium and device for reproducing optical recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080622 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080622 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090622 Year of fee payment: 15 |
|
LAPS | Cancellation because of no payment of annual fees |