JPS62290128A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62290128A
JPS62290128A JP13265086A JP13265086A JPS62290128A JP S62290128 A JPS62290128 A JP S62290128A JP 13265086 A JP13265086 A JP 13265086A JP 13265086 A JP13265086 A JP 13265086A JP S62290128 A JPS62290128 A JP S62290128A
Authority
JP
Japan
Prior art keywords
film
semiconductor device
manufacturing
silicide
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13265086A
Other languages
Japanese (ja)
Other versions
JP2577355B2 (en
Inventor
Yasushi Nakasaki
靖 中崎
Kyoichi Suguro
恭一 須黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61132650A priority Critical patent/JP2577355B2/en
Publication of JPS62290128A publication Critical patent/JPS62290128A/en
Application granted granted Critical
Publication of JP2577355B2 publication Critical patent/JP2577355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To form stable wiring structure even by a heating process at a high temperature without increasing the resistance of a substrate and a metallic layer by providing a process in which at least one of an silicide film and a nitride film is irradiated with an energy beam. CONSTITUTION:A TiN film 15 constituting a metallic wiring is applied onto the whole surface of l TiSi2 film 14, and the TiSi2 film 14 and the TiN film 15 are formed to a desired pattern. Annealing treat ment in which the patterns of the TiSi2 film 14 and the TiN film 15 shaped onto an oxide film 12 are scanned from the end sections of the patterns by an electron beam 16 set between the TiSi2 film 14 and the TiN film 15 in a maximally heated section by electron injection and the grain size of the TiSi2 film 14 and the TiN film 15 is increased is executed. The crystal grain size of the TiSi2 film 14a and the TiN film 15a grows, and crystal boundary density is reduced. A film such as a tungsten film 17 is applied onto the TiN film 15a, crystal grain size of which is augmented, as the wiring layer of a film consisting of a metal, and a resist is applied and patterned. In such a process, the tungsten film 17 is not changed into an silicide at all, and resistance can be lowered.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔発明の目的〕 (産業上の利用分野] 本発明は半導体装置の製造方法に係り、特に電極もしく
は配線の形成の改良をはかつ九半導体装置の製造方法に
関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Object of the Invention] (Industrial Field of Application) The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device, which improves the formation of electrodes or wiring. The present invention relates to a method for manufacturing a device.

(従来の技術〕 近年、半導体集積回路の高密度化に伴ない、配線抵抗、
配線間コンタクト抵抗、配線と基板とのコンタクト抵抗
等の低減化が必要となっている。
(Conventional technology) In recent years, with the increase in the density of semiconductor integrated circuits, wiring resistance,
There is a need to reduce contact resistance between interconnects, contact resistance between interconnects and substrates, etc.

ま之1例えば上層に抵抗として半導体配線を引き回すこ
とも、高抵抗負荷型メモリセル(スタティックR,AM
)のC−MO8回路等では重要になっている。
1. For example, it is possible to route semiconductor wiring as a resistor in the upper layer, or to create a high resistance load type memory cell (static
) has become important in C-MO8 circuits and the like.

一方、配線材料としては、熱的に安定で、電気的抵抗の
低い性質を有する金楓配線として例えば高融点金属が有
望視されている。特に配線の抵抗を低減化する几めに、
高融点金属を配線するのが効果的である。しかしながら
、この高融点金属の中でシリコンとの反応温度が最も高
いとされるタングステンさえ、例えば700 (”C)
以上の加熱王権を通過させることにより、容易にシリコ
ン基板等と珪化物反応が起こる。
On the other hand, as a wiring material, for example, a high melting point metal is considered to be promising as a gold maple wiring which is thermally stable and has low electrical resistance. In particular, to reduce wiring resistance,
It is effective to use high melting point metal for wiring. However, even tungsten, which is said to have the highest reaction temperature with silicon among these high-melting point metals, has a temperature of 700°C (700°C).
By passing through the above heating regime, a silicide reaction with the silicon substrate etc. easily occurs.

つま!ll第5図ra)に示す如く例えば、シリコン等
の基板(50〕表面の所唱領域にイオン注入法によりA
s十等のイオンを注入して拡散層(51) を形成した
後1周知のLPCVD法でシリコンaFZ、(50)及
び拡散層(51)上の全面にシリコン酸化(SiO7)
膜(52)を堆積せしめる。この酸化膜(52)に通常
のフォトリングラフィと几IE技術により接続孔(53
)を前記拡散層(51)上に開口し、この接続孔(53
)にLPCVD法を用いて高融点金属のタングステン(
蜀を埋め込み、タング2.テン層(54)全形成する。
wife! As shown in FIG.
After forming a diffusion layer (51) by implanting ions such as S, silicon oxide (SiO7) is applied to the entire surface of the silicon aFZ (50) and the diffusion layer (51) using the well-known LPCVD method.
A film (52) is deposited. This oxide film (52) is formed with a connecting hole (53) by ordinary photolithography and IE technology.
) is opened on the diffusion layer (51), and this connection hole (53
) using the LPCVD method to produce high melting point metal tungsten (
Embed Shu, tongue 2. The ten layer (54) is completely formed.

その後1例えばタングステン層(s4)の上にアルミニ
ウム或いはタングステン等の金4配置、1(55)を形
成し、パターニングしてこの配線(55)の上にPSG
等のパッシベーション膜(5G)企せ及凌した後()5
0°C〜1050°Cの温度で約30分間ベーキングし
て平坦化する或いはこのPSGI戻中のりンを900℃
以上の温度でゲラクリングする揚会、これら熱工程でタ
ングステン−(54)がシリコン基板(50)と反しし
珪化物化することになる。そして、この珪化物化したタ
ングステンliSが形成されることによ接続孔(53)
をタングステンQ(54)で埋めることは極めて困耐で
ある。
After that, 1 (55) is formed using gold such as aluminum or tungsten on the tungsten layer (s4), patterned, and PSG is formed on this wiring (55).
After the passivation film (5G) was attempted and surpassed ()5
Planarize by baking at a temperature of 0°C to 1050°C for about 30 minutes, or heat the phosphorus during PSGI restoration to 900°C.
During the gelling process at the above temperature, the tungsten (54) and the silicon substrate (50) are turned into silicide through these thermal steps. By forming this silicided tungsten liS, a connection hole (53) is formed.
It is extremely difficult to fill it with tungsten Q (54).

即ち、同図+b)に示すように前記熱工程により形成さ
れたタングステン珪化物(57)はシリコン基板(50
)の中に埋没し空洞(58)が生じてしまう、又拡散層
(51)と配線(55)とで良好なコンタクトをとるこ
とはできない。
That is, as shown in FIG.
), creating a cavity (58), and it is impossible to make good contact between the diffusion layer (51) and the wiring (55).

ま九一般に、900℃程度の熱工程を経る場合であって
も例えば、シリコン基板上に形成され念タングステン等
の高融点金属の配線が熱工程にょシ珪化物化され、これ
により、配線の抵抗が1桁以上も増加する等の問題7j
lあっ之。
In general, even if a thermal process of about 900°C is performed, for example, wiring formed on a silicon substrate and made of a high melting point metal such as tungsten is converted into a silicide during the thermal process, which reduces the resistance of the wiring. Problem 7j, such as increase by one digit or more
l Ah.

この様な問題を克服すべき配線構造として、発明者は先
に第6図に示すようにタングステン1−(53a)とシ
リコン基板(50)の間にシリコンと良好な抵抗性接触
を示す高融点金属の合金としてTiSi。
As a wiring structure that should overcome such problems, the inventors previously proposed a high melting point structure that exhibits good resistive contact with silicon between the tungsten 1- (53a) and the silicon substrate (50) as shown in FIG. TiSi as a metal alloy.

膜(59)をシリコン基板(50)上に形成し、このT
iS輸膜(59)の上にシリコンとの反応温度が900
℃以上である高融点金属の合金として例えばTiN膜(
60) t−介在さセ−(TiSi、膜(59) 、 
TiN膜(60) ’rバリアメタルとする構造を提案
している。このバリアメタルによって抵抗性を損うこと
なく珪化物の埋没を抑制することができる。ここで第6
図と同一のものについては同一の符号全f寸している。
A film (59) is formed on the silicon substrate (50), and this T
The reaction temperature with silicon on the iS transfusion membrane (59) is 900 °C.
For example, a TiN film (
60) t-intervening membrane (TiSi, film (59),
A structure is proposed in which the TiN film (60) is used as a barrier metal. This barrier metal can suppress silicide from being buried without impairing resistance. Here the 6th
Components that are the same as those in the figure are designated by the same reference numerals and dimensions.

ここ構造においてはタングステンとシリコンを直接接続
した構造に比べて上述し念のと同様の熱工程を経る場合
、タングステンが珪化される速度は2桁程度迄は抑制で
きる。しかしながらこの場合も、熱工程の時間によって
はバリアメタル中を拡散してタングステンfil (5
3a)に達するシリコン原子によりタングステン層(5
3a)の珪化物が生じ低抵抗化の実現が難しくなる。珪
化物化が生じるのは次の理由による。つまV、前記熱工
程の過程でTiSi、膜(59)、 T i N膜(5
7)の結晶粒径は、自然に略500A迄増大して珪化物
化が生じ難くなるが、この程度の大きさの粒径ではタン
グステン層(53a、1にシリコン基板(50)中のシ
リコンが拡散する九めの経路となってしまうと考えられ
るからである。
In this structure, compared to a structure in which tungsten and silicon are directly connected, the rate at which tungsten is silicified can be suppressed by about two orders of magnitude when the same thermal process as mentioned above is carried out. However, in this case as well, depending on the time of the thermal process, the tungsten film (5
The silicon atoms reaching the tungsten layer (5)
Silicides (3a) are formed, making it difficult to achieve low resistance. The reason why silicification occurs is as follows. In the process of the thermal process, the TiSi film (59) and the TiN film (59) are formed.
The crystal grain size of 7) naturally increases to about 500A, making it difficult for silicification to occur, but with a grain size of this size, silicon in the silicon substrate (50) will diffuse into the tungsten layer (53a, 1). This is because it is thought that it will become the ninth route.

(発明が解決しようとする問題点〕 本発明は上記しtように半導体装置の製造方法において
シリコン等の半導体基体上に高融点金属の珪化膜と窒化
膜を介して形成された高融点金属等の金1,1が高温の
熱工程を通過することにより前記基体と反応して珪化物
化等の問題を生じてしまい、@記基板と高融点金属等の
金4層とで良好なコンタクトがとれない等の問題を解決
し、前記基板と金属1の抵抗を増加させることなく高温
の熱工程でも安定な配線溝造を形成する方法を実現する
ものである。
(Problems to be Solved by the Invention) As described above, the present invention provides a method for manufacturing a semiconductor device in which a high melting point metal or the like is formed on a semiconductor substrate such as silicon through a silicide film and a nitride film of a high melting point metal. When the gold 1,1 passes through a high-temperature thermal process, it reacts with the substrate and causes problems such as silicification, and good contact cannot be made between the substrate and the gold 4 layer, which is a high melting point metal. The present invention solves problems such as the lack of resistance, and realizes a method of forming a stable wiring groove structure even in a high-temperature thermal process without increasing the resistance between the substrate and the metal 1.

〔発明の構成〕[Structure of the invention]

(問題点を解決する念めの手段] 本発明は上記問題点を解決する念めに半導体基体上に開
口部を設は念絶縁膜を形成し、少なくとも前記開口部を
高融点金属の珪化膜とこの珪化膜の上に形成した窒化膜
で被覆し、しかる後この窒化膜上に金属膜を形成し念後
熱工程を経る半導体装置の製造方法において、前記珪化
膜又は窒化膜或いはこの両方の膜にエネルギービームを
照射する工程を具備する半導体装置の製造方法を提供す
)る (作用〕 本発明によればシリコン等の半導体基体上に形成した高
融点金属の珪化膜と窒化膜の少なくともどちらかにエネ
ルギービームを照射して、この膜の結晶粒径の増大、即
ち結晶粒界密度の減少を生じせしめ、以って前記基板の
シリコン原子等が高融点今頃の珪化膜と窒化膜の上に形
成され念高融点金属等の金1iJSN/Jへその後の熱
工程で拡散してい〈経路を減少させるので高融点金属等
の金属膜の珪化物化等の問題が大幅に低減され、かつ配
線自体の低抵抗化を実現できる。
(Measures to Solve the Problems) In order to solve the above problems, the present invention provides an opening on a semiconductor substrate, forms an insulating film, and at least covers the opening with a silicide film of a high melting point metal. A method for manufacturing a semiconductor device in which the silicide film is coated with a nitride film formed on the silicide film, and then a metal film is formed on the nitride film and a post-heating process is performed. According to the present invention, at least one of a silicide film and a nitride film of a high melting point metal formed on a semiconductor substrate such as silicon is provided. By irradiating the crystal with an energy beam, the crystal grain size of this film is increased, that is, the grain boundary density is decreased, so that silicon atoms, etc. of the substrate are irradiated with a high melting point silicide film and a nitride film. It is formed in the gold 1iJSN/J, which is a high-melting point metal, and then diffused into the gold 1iJSN/J, which is a high-melting point metal, during a subsequent thermal process.Because the path is reduced, problems such as silicification of metal films such as high-melting point metals are greatly reduced, and the interconnection itself is It is possible to achieve low resistance.

(実施例〕 以下1本発明の実施例全図面を用いて説明する。(Example〕 DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to all the drawings.

第1図は1本発明の一実施例に係る半導体装置の製造方
法全工程順に説明する九めの工程断面図である。
FIG. 1 is a ninth step cross-sectional view illustrating all the steps of a semiconductor device manufacturing method according to an embodiment of the present invention.

第1図[alに示されるように半導体基体としてガえば
シリコン(Si)基板(10)表面の所望領域にイオン
注入法によりAs+等のイオンを注入して、その後95
0℃、30分の熱処理で行ない拡散層(1υを惟潰せし
める。この【炭化膜上にレジスト(図示セス)を塗布し
た後、このレジストをマスクトシて反応性イオンエツチ
ング(RIH)により、所望Iii* のコンタクトホール(13)を拡散層01)上の前記セ
ンタクトホール(13) f!:形成し之後、前記酸化
膜(【の?マスクとして行なってもよい。
As shown in FIG.
The diffusion layer (1υ) is crushed by heat treatment at 0°C for 30 minutes. After applying a resist (recess shown in the figure) on this carbonized film, the resist is masked and reactive ion etching (RIH) is performed to form the desired III *The contact hole (13) is connected to the center hole (13) on the diffusion layer 01) f! : After formation, the oxide film ([?] may be used as a mask.

次いで、前記レジスト(図示せず)を除去した後、第1
図(b)に示さ几るように、少なくとも拡散層(1υ上
に金属配線を構成するTiSi、膜(14)を同時スパ
ッタにより約50OAの膜厚に破着する。ここで(C,
コンタクトホール(13)及び酸fヒm (12)上V
CモT ! S ’* U (14) Ire 形成サ
レル。Ti5i1膜(14)形成の几めの同時スパッタ
はシリコン(Sりとチタン(Ti)が、ある一定の面屑
比の分布全回するターゲットに例えばAr+イオンのよ
うな重い荷電粒子分照射して行なう。次いで、このTi
Si、膜(14)全面にやはり%金属配線をf1成する
TiN膜(15〕を化成スパッタで約1000Aの膜厚
で被着した後、TiSi。
Next, after removing the resist (not shown), the first
As shown in Figure (b), at least the TiSi film (14) constituting the metal wiring is deposited on the diffusion layer (1υ) to a thickness of about 50 OA by simultaneous sputtering.Here, (C,
Contact hole (13) and acid fhim (12) upper V
CmoT! S'*U (14) Ire formation salel. In the careful simultaneous sputtering of Ti5i1 film (14), silicon (S) and titanium (Ti) are irradiated with heavy charged particles such as Ar+ ions onto a target with a certain surface scrap ratio distribution. Next, this Ti
After depositing a TiN film (15) with a film thickness of about 1000A by chemical sputtering on the entire surface of the Si film (14), which also forms a metal interconnection f1, TiSi is formed.

膜(14)及びT i NN (15)を周知のエツチ
ング技術で所望のパターンに形成する。
The film (14) and T i NN (15) are formed into a desired pattern using well-known etching techniques.

TiN膜(15)のスパツタリングは窒素(Nりガス雰
囲気中でチタン(T1)のターゲットに例えば、Ar+
イオンを照射して行なう、このチタン(Ti )の珪フ
ニウム(Hf )の珪化膜及び窒化膜を用いてもよい。
Sputtering of the TiN film (15) is carried out using a titanium (T1) target in a nitrogen gas atmosphere, for example, Ar+
A silicide film and a nitride film of titanium (Ti) and silicide (Hf), which are formed by ion irradiation, may also be used.

しかる後に、第1図tel FC示すようにビーム加速
電圧6KV、ビーム慮流Q、5〜1mA、ビーム径50
μmφ のととく′α子注入による最高加熱部分が、T
iSi、膜(14)とTiN膜(15ンの間に設定され
九電子ビーム(16)を酸化膜(【2)上に形成され之
T is i。
After that, as shown in FIG.
The highest heating part due to α particle injection of μmφ is T
Nine electron beams (16) are set between the iSi film (14) and the TiN film (15) and formed on the oxide film (2).

膜(14)及びT i N @ (15)のパターン端
部から図の矢印方向へ走査速度10cm/secで走査
させてTiSi。
TiSi was scanned from the pattern end of the film (14) and TiN@(15) in the direction of the arrow in the figure at a scanning speed of 10 cm/sec.

膜(14)及びTiN膜(15)の粒径を大きくするア
ニール(加熱)処理を行なう、又、この実施例では。
In this example, an annealing (heating) treatment is performed to increase the grain size of the film (14) and the TiN film (15).

酸化膜([2)上のTi8i、膜(lり及びTiN膜(
15)パターン端部からアニールし之が、コンタクトホ
ール(t3)底1ffi部に形成され念TiS輸膜(1
4)とTiN膜(15)に116射するだけでもよい。
Ti8i on oxide film ([2), film (litter) and TiN film (
15) A TiS implanted film (1) is formed at the bottom 1ffi of the contact hole (t3) by annealing from the end of the pattern.
4) and the TiN film (15) may be irradiated with 116 rays.

即ち、一般にシリコン基板(10)との接触部分の多い
フンタクトホール([3)の底面邪においてほとんどそ
の後形成される配線層の珪化物化の問題が生じることを
考慮すればコンタクトホール(【3)底L111]fi
5(’) T I S +1 膜(14) 、 ’J:
’ iNM(t!5) FCヒー1− ’j 照射する
だけで十分珪化物イヒ全抑制する効果は得られる。又、
酸化膜とのTi8i、腰(14)やTiN膜(+5)に
も電子ビーム(16)に照射することii:、 a2膜
(14) 。
In other words, considering that the problem of silicification of the wiring layer that is formed afterwards occurs at the bottom of the contact hole ([3), which generally has many contact areas with the silicon substrate (10), the contact hole ([3] Bottom L111] fi
5(') T I S +1 membrane (14), 'J:
' iNM (t!5) FC Heat 1- 'j Just by irradiating it, the effect of completely suppressing silicide formation can be obtained. or,
The Ti8i film (14) and the TiN film (+5) with the oxide film are also irradiated with the electron beam (16).ii:, the A2 film (14).

(15)の低抵抗化の促進という点での効果か得られる
The effect of (15) in terms of promoting lower resistance can be obtained.

更に電子ビームによるアニールはビーム0)パワーを’
l”iSi!l漢(14)とl’ i Nil (15
)の両方でなく、どちらかに合わせてそのビームのパワ
ーを合わせた膜の結晶粒径を大きくしてもよい。
Furthermore, annealing with an electron beam reduces the beam 0) power.
l"iSi!lkan (14) and l' i Nil (15
) The crystal grain size of the film may be increased to match either of the above, but not both.

この工程によシ単1図((1)に示すように’l’is
i。
In this process, 'l' is shown in single figure ((1)).
i.

1% (14a ) 、 T iN膜(tSa)の結晶
粒径は暎堆積直後の10〜50Aから5000〜100
OOAにまで成長し。
1% (14a), the crystal grain size of the TiN film (tSa) changes from 10 to 50A immediately after deposition to 5000 to 100A.
It grew to OOA.

それに伴ない単位長さあ几りの結晶粒界密度は5XIO
XIO’本/ cmから1〜2×104本/cmと大略
2桁以上減少する。
Accordingly, the grain boundary density of the unit length is 5XIO
It decreases by more than two orders of magnitude from XIO' lines/cm to 1 to 2 x 104 lines/cm.

しかる後に第1図fe)に示すように結晶粒径を増大せ
しめfcT i N膜(15a)上に金属からなる膜の
配線層として例えばタングステン膜(17)をLPCV
D法で約1000Aの膜厚に被層した後、レジストを塗
布してバターニングを行なう。ここで、クンゲステン膜
(17)のパターニングを行なう前に、酸化膜([2)
上に形成され九タングステン膜(17)に電子ビームに
照射して低抵抗化をはかることも考えらレル。Mfl述
LりTiS i![(14)、 ’I” 1NIIIi
l(15) ツバ’)−ニングは、ここで行なってもよ
い、又、タングステンffi (17)はモリブデン膜
又はこnらの合金膜或いはアルミニウムを主成分とする
合金膜であってもよく、その他、シリコン等の不純物を
含有した金属膜であってもよい。
Thereafter, as shown in FIG. 1 (fe), the crystal grain size is increased, and a tungsten film (17), for example, is formed by LPCV as a wiring layer of a metal film on the fcT i N film (15a).
After forming a film with a thickness of about 1000 Å using the D method, a resist is applied and patterning is performed. Here, before patterning the Kungesten film (17), the oxide film ([2]
It is also possible to reduce the resistance by irradiating the tungsten film (17) formed above with an electron beam. Mfl mentions TiS i! [(14), 'I' 1NIIIi
The tungsten ffi (17) may be a molybdenum film, an alloy film of these, or an alloy film mainly composed of aluminum. Alternatively, a metal film containing an impurity such as silicon may be used.

更に、バターニングされ念タングステン膜(17)の上
に保護膜としてBPSG膜(即ち、ホウ素を含有すルP
 S GflI8)(18) kcVD法テ約7000
ArDN。
Furthermore, a BPSG film (i.e., boron-containing phosphorus) is applied as a protective film on the patterned tungsten film (17).
S GflI8) (18) kcVD method approx. 7000
ArDN.

さに被”3fし、950℃で30分リフローさせ平坦化
させる(第1図ば))、このような工程において。
In such a process, the film is coated with a 3-layer film and then reflowed at 950° C. for 30 minutes to flatten it (see Fig. 1).

タングステンfee (17)の珪化物fヒは全く見ら
れず。
No silicide of tungsten fee (17) was observed at all.

従来よりもシート抵抗で120/口から0.7Ω/口に
まで低抵抗化を図ることができた。
We were able to lower the sheet resistance from 120Ω/hole to 0.7Ω/hole than before.

又、前記電子ピームアニール工程1−1:、レーザービ
ームアニール工程て代替することも可能である。
Further, the electron beam annealing step 1-1: or the laser beam annealing step may be substituted.

レーザービームアニール工程ではアルゴンイオンレーサ
ー光ヲビーム径50μmφ、レーザーパワー1〜5W(
レーザーパワー密度4×104〜2×1OsW/cm”
)、走査速度10 crn / secで走査すること
により、 TiSi、膜(14)及びTiN膜(15)
或いは。
In the laser beam annealing process, the argon ion laser beam was used with a beam diameter of 50 μmφ and a laser power of 1 to 5 W (
Laser power density 4×104~2×1OsW/cm”
), TiSi, film (14) and TiN film (15) by scanning at a scanning speed of 10 crn/sec.
Or.

この両膜(14) 、 (1!5)のいずれか一方の粒
径f、5000〜100OOA  Kまで成長させるこ
とができる。
Either one of these films (14) and (1!5) can be grown to a grain size f of 5000 to 100OOAK.

更ニ、電子ビームアニール工程は、ランプ加熱工程で代
替することも可能である。このランプ加熱工程では、窒
素(N宜)又はアルゴン(Ar)等の不活性雰囲気中に
おいて1200℃で約30秒の赤外線加熱を行なうこと
により、TiSi、膜(14)及びTiN膜(15)の
結晶粒径を5000〜100OOA迄成長させることが
できる。
Further, the electron beam annealing process can be replaced with a lamp heating process. In this lamp heating step, TiSi, film (14) and TiN film (15) are heated by infrared rays at 1200°C for about 30 seconds in an inert atmosphere such as nitrogen (N) or argon (Ar). It is possible to grow the crystal grain size to 5,000 to 100 OOA.

以上、電子ビーム、レーザービーム、ランプ加熱いずれ
の方法でも高融点金属の珪化物或いは窒化物へのエネル
ギービームの照射時間は短かいので拡散層(11)の接
合深さが増大することなく、又表面濃度が低下すること
もない。
As mentioned above, regardless of the electron beam, laser beam, or lamp heating method, the irradiation time of the energy beam to the high melting point metal silicide or nitride is short, so the junction depth of the diffusion layer (11) does not increase, and There is no decrease in surface concentration.

第2図は、上記実施例の嘉1の巳用例金示す断面図であ
る。第1図と同一のものについては同一の符号をけして
示し、詳細な説明は省略する。
FIG. 2 is a cross-sectional view showing an example of the snake of the above embodiment. Components that are the same as those in FIG. 1 are designated by the same reference numerals, and detailed explanations will be omitted.

すなわち、上述の実施例と同様の方法で結晶粒径を増大
させ7yTiSi、膜(14a)及び’f’ i N膜
(15a)を形成しそのTiN膜(15a)の上に約1
000Aのタングステン膜(17) を被着して配線パ
ターンとして形成した後、層間絶縁膜(2のとして例え
ばPSG膜をLPCVD法によシ前記配線パターン上に
堆積させる。その後、このPSG膜(2のを平坦化する
九め950℃〜1050℃で約30分間ベーキングする
That is, a 7yTiSi film (14a) and an 'f' i N film (15a) are formed by increasing the crystal grain size in the same manner as in the above-mentioned embodiment, and approximately
After a tungsten film (17) of 000A is deposited to form a wiring pattern, a PSG film, for example, is deposited as an interlayer insulating film (2) on the wiring pattern by LPCVD. Bake at 950°C to 1050°C for about 30 minutes to flatten the surface.

しかる後前記配線パターンとコンタクトをとるた(21
)にLPCVD法でタングステンを埋め込んだ後エッチ
バック法でタングステン層(22)を形成する。このタ
ングステンの埋め込まれ念スルーホール(21)上に配
線膜(23)として例えばアルミニウムを蒸着法等で形
成しtものである。この場合、前記psoHのベーキン
グの熱工程でもシリコン基数(10)とタングステン1
曲(22)は、結晶粒径を増大させ2TiSi、膜(,
14a、)及びTiN膜(15a)t−介しているので
、これらの膜(14a)、(15a)にビームを照射し
ない場合に比べて、熱処理後のタングステン層(,22
)の珪化物化或いはタングステン層(22つとシリコン
基板(10)の反応による拡牧層(1υのPN接合破壊
は全く見られず良好な接触抵抗を得ることができた。即
ち、配線抵抗は2Ω/口以下であり、シリコンl’! 
(22)との接触抵抗も不純物濃度I X I O20
cm−”  の場合にはP型に対して1×lXl0’Ω
cm!以下、N型に対してはl×10″Ωcm”以下で
あった。前記PSG膜(20) ViB P S G膜
であってもよい。
After that, contact was made with the wiring pattern (21
) is filled with tungsten using an LPCVD method, and then a tungsten layer (22) is formed using an etch-back method. For example, aluminum is formed as a wiring film (23) on the tungsten-filled through hole (21) by vapor deposition or the like. In this case, even in the thermal process of psoH baking, the number of silicon groups (10) and tungsten 1
Curve (22) shows that the grain size is increased and the 2TiSi film (,
14a,) and the TiN film (15a), the tungsten layer (, 22) after heat treatment is
) or the expansion layer (1υ) due to the reaction between the tungsten layer (22) and the silicon substrate (10), no PN junction breakdown was observed and a good contact resistance could be obtained. That is, the wiring resistance was 2Ω/ It's less than a mouthful and silicon l'!
The contact resistance with (22) is also the impurity concentration I
cm-”, 1×lXl0'Ω for P type
cm! Below, for N type, it was less than 1×10″Ωcm″. The PSG film (20) may be a ViB PSG film.

第3図は第2の応用例を示す最終工程断面図である。第
1図と同一のものについては同一の符号を付して示し、
詳細な説明は省略する。
FIG. 3 is a final process sectional view showing the second application example. Components that are the same as those in Figure 1 are indicated with the same reference numerals.
Detailed explanation will be omitted.

すなわち、第3図は第1の応用例と全く同様の方法で、
電子ビームの照射により結晶粒界を増大させりTiSi
!膜(14a)とTiN[(15a)を形成してその上
にPSG膜(20)を被着しt後、拡散層(1υ上の酸
化膜(20)を選択的にエツチングしてコンタクトホー
ル(13a)e形成する。このコンタクトホール(13
a、)にタングステン層(22a )を形成し念後金属
層としてアルミニウム配線(23)をこのタングステン
It1(22a)上に蒸着法により形成し友ものである
In other words, in Figure 3, in exactly the same way as in the first application example,
By increasing the grain boundaries by electron beam irradiation, TiSi
! After forming a film (14a) and a TiN film (15a) and depositing a PSG film (20) thereon, the oxide film (20) on the diffusion layer (1υ) is selectively etched to form a contact hole ( Form this contact hole (13a)e.
A tungsten layer (22a) is formed on the tungsten It1 (22a), and then an aluminum wiring (23) is formed as a metal layer on this tungsten It1 (22a) by vapor deposition.

ここで@2図と同様にPSG膜(20〕をベーキングす
る熱工程がある場合の他にタングステン層(22a)上
にアルミニウム配線(23)でなく拡散層を形成するよ
うな場合でも本発明は適用可能である。即ち、タングス
テン層(22a)上に前述しt実施例と同様にTiN膜
、Ti5i−レこの順に被着しt後。
Here, in addition to the case where there is a thermal process of baking the PSG film (20) as in Figure @2, the present invention also applies when a diffusion layer is formed instead of the aluminum wiring (23) on the tungsten layer (22a). That is, a TiN film and a Ti5i layer are deposited in this order on the tungsten layer (22a) in the same manner as in the embodiment described above.

電子ビーム等のエネルギービームを照射してTiN膜、
 TiSi、暎の結晶粒径を増大せしめる。しかる後、
これら膜の全面にシリコン層をLPCVD法で被着し%
前記タングステン層(22a)上に形成した前記シリコ
ン14にAs  イオン注入し*t+、 900’C、
30分の熱処理を行なう、この場合も前述し几のと同様
にタングステン層(22a、lが珪化することなく良好
なコンク、クトが得られる。
A TiN film is formed by irradiating an energy beam such as an electron beam.
Increases the crystal grain size of TiSi. After that,
A silicon layer is deposited on the entire surface of these films using the LPCVD method.
As ions are implanted into the silicon 14 formed on the tungsten layer (22a) at *t+, 900'C,
Heat treatment is carried out for 30 minutes. In this case as well, a good concrete is obtained without silicification of the tungsten layers (22a, 1), as in the case of the above-mentioned process.

又%第2図と同一のものについては同一の符号をけして
示し、詳細な説明は省略する。
Components that are the same as those in FIG. 2 are designated by the same reference numerals, and detailed explanations will be omitted.

第4図は1本発明による他の実施例を示す断面図である
FIG. 4 is a sectional view showing another embodiment of the present invention.

すなわち1周知の技術によってnjMシリコン基板(1
0)に形成し几シリコン酸化膜(24) kマスクとし
てp+をイオン注入してp+拡散4 (25)を形成し
た後、ゲート用ポリシリコン1m (,26J k前記
酸化膜(24)及び拡散78 (25)上に約3000
〜4000Aの膜厚で被覆する。しかる後、実施例1と
全く同様にこのポリシリコン層(,26)7)上に遊子
ビーム照射によって結晶粒径を増大したTi5il膜(
14a )どrIN(15a)を形成した後、第1の応
用例と同様にして形成しfcNi間絶縁膜(20)を選
択的にエツチングしてスルーホール(21)t−形成し
念後、このスルーホール(21)にタングステンを埋め
込んでタングステン層(22)とし、この層(22)を
介して前記TiN膜(+58)とアルミニウムの、@着
等により形成し之配線としての全1萬層(23)を接続
している0例えばこの工程で層間絶縁膜としてPSG膜
、或いは。
That is, an njM silicon substrate (1
After forming a p+ diffusion 4 (25) by ion-implanting p+ as a mask, the oxide film (24) and the diffusion 78 (25) Approximately 3000 above
Coat with a film thickness of ~4000A. Thereafter, in exactly the same way as in Example 1, a Ti5il film (26) 7) whose crystal grain size was increased by irradiation with a proton beam was deposited on this polysilicon layer (26)7).
14a) After forming the rIN (15a), the fcNi insulating film (20) is selectively etched to form a through hole (21) in the same manner as in the first application example. The through hole (21) is filled with tungsten to form a tungsten layer (22), and the TiN film (+58) and aluminum are formed by @ deposition etc. through this layer (22) to form a total of 10,000 layers (10,000 layers) as wiring. 23) For example, a PSG film or a PSG film is used as an interlayer insulating film in this step.

BPSG膜を用いる場合、この膜形成後、膜中に含まれ
るリンfF5を取り除く九めに通常、リンのゲッタリン
グが行なわれる。このゲッタリングにおいては900℃
以上の熱工程を経ることになるが、この場合も、同様の
効果が得られる。
When a BPSG film is used, after the film is formed, phosphorus gettering is usually performed to remove the phosphorus fF5 contained in the film. In this gettering, 900℃
Although the above thermal process is performed, similar effects can be obtained in this case as well.

本発明に上述しmJ施例に限定されるものではなく本発
明の骨子を逸脱しないξ囲で適宜植々変形して用いるこ
と炉でさる。
The present invention is not limited to the above-mentioned mJ embodiment, but may be used in a furnace with various modifications as appropriate within the range of ξ without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上、述べて@念ように本発明によれば半導体基体上に
形成された尚融点金属等の金属配線が高温工程を経を後
でも珪化することなく良好なコンタクト特性全得ること
ができる。
As stated above, according to the present invention, metal wiring made of melting point metal or the like formed on a semiconductor substrate can obtain good contact characteristics without becoming silicified even after undergoing a high-temperature process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による一実施例を示す工程断面図、第2
図乃至ル4図は本発明の他の実施例を説明するための断
面図、嘉5図及び第6図は、従来例を説明するtめの断
面図である。 10・・・シリコン基板、14+14a・・・T18i
!膜。 15 、15 a−TiN寝、  16−に子ビーム、
17・・・タングステン層、18・・・BP8GBa、
22・・・タングステン層、23・・・配IF9 。 第1図 第1図 丁1 第2図 第3図 S 第4図
Fig. 1 is a process sectional view showing one embodiment of the present invention;
Figures 4 to 4 are cross-sectional views for explaining other embodiments of the present invention, and Figures 5 and 6 are t-th cross-sectional views for explaining conventional examples. 10...Silicon substrate, 14+14a...T18i
! film. 15, 15 a-TiN beam, 16-ni beam,
17...Tungsten layer, 18...BP8GBa,
22... Tungsten layer, 23... Interlayer IF9. Figure 1 Figure 1 Figure 1 Figure 2 Figure 3 S Figure 4

Claims (12)

【特許請求の範囲】[Claims] (1)半導体基体上に開口部を設けた絶縁膜を形成し、
少なくとも前記開口部を高融点金属の珪化膜とこの珪化
膜の上に形成した窒化膜で被覆し、しかる後この窒化膜
上に金属からなる膜を形成した後熱工程を経る半導体装
置の製造方法において、前記珪化膜および窒化膜の少な
くとも一方にエネルギービームを照射する工程を具備す
る半導体装置の製造方法。
(1) Forming an insulating film with an opening on the semiconductor substrate,
A method for manufacturing a semiconductor device, comprising covering at least the opening with a silicide film of a high-melting point metal and a nitride film formed on the silicide film, and then forming a film made of metal on the nitride film, followed by a thermal process. A method of manufacturing a semiconductor device comprising the step of irradiating at least one of the silicide film and the nitride film with an energy beam.
(2)前記金属からなる膜は配線又は電極である特許請
求の範囲第1項記載の半導体装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein the film made of metal is a wiring or an electrode.
(3)前記金属からなる膜は高融点金属又はその合金膜
、或いはアルミニウムを主成分とする合金膜である特許
請求の範囲第1項記載の半導体装置の製造方法。
(3) The method for manufacturing a semiconductor device according to claim 1, wherein the film made of metal is a high melting point metal or its alloy film, or an alloy film containing aluminum as a main component.
(4)前記エネルギービームの加熱によって珪化膜又は
窒化膜或いは両方の膜の結晶粒径を略1000Å以上に
増大せしめることを特徴とする特許請求の範囲第1項記
載の半導体装置の製造方法。
(4) The method of manufacturing a semiconductor device according to claim 1, wherein the crystal grain size of the silicide film, the nitride film, or both films is increased to approximately 1000 Å or more by heating with the energy beam.
(5)前記エネルギービームは、電子ビーム、レーザー
ビーム、キセノンランプ光のいずれかである特許請求の
範囲第1項記載の半導体装置の製造方法。
(5) The method for manufacturing a semiconductor device according to claim 1, wherein the energy beam is any one of an electron beam, a laser beam, and xenon lamp light.
(6)前記珪化膜及び窒化膜を構成する高融点金属はチ
タン、ジルコニウム、ハフニウムのいずれかである特許
請求の範囲第1項記載の半導体装置の製造方法。
(6) The method of manufacturing a semiconductor device according to claim 1, wherein the high melting point metal constituting the silicide film and the nitride film is titanium, zirconium, or hafnium.
(7)前記開口部に形成された高融点金属の珪化膜又は
窒化膜或いはこの両方の膜が絶縁膜上まで連続して形成
されていることを特徴とする特許請求の範囲第1項記載
の半導体装置の製造方法。
(7) A silicide film or a nitride film of a high melting point metal formed in the opening, or both films are formed continuously up to an insulating film. A method for manufacturing a semiconductor device.
(8)前記連続して形成された高融点金属の珪化膜又は
窒化膜或いはこの両方の膜にエネルギービームを照射す
る特許請求の範囲第7項記載の半導体装置の製造方法。
(8) The method of manufacturing a semiconductor device according to claim 7, wherein an energy beam is irradiated onto the continuously formed silicide film or nitride film of a high melting point metal, or both films.
(9)前記熱工程は600℃以上の工程である特許請求
の範囲第1項記載の半導体装置の製造方法。
(9) The method for manufacturing a semiconductor device according to claim 1, wherein the thermal step is a step at 600° C. or higher.
(10)前記熱工程は、合金膜のシンタ工程である特許
請求の範囲第1項記載の半導体装置の製造方法。
(10) The method of manufacturing a semiconductor device according to claim 1, wherein the thermal step is an alloy film sintering step.
(11)前記熱工程は、金属からなる膜を被覆するパッ
シベーション膜のベーキング工程である特許請求の範囲
第9項記載の半導体装置の製造方法。
(11) The method of manufacturing a semiconductor device according to claim 9, wherein the thermal step is a step of baking a passivation film covering a film made of metal.
(12)パッシベーション膜はPSG又はBPSG膜で
ある特許請求の範囲第11項記載の半導体装置の製造方
法。
(12) The method for manufacturing a semiconductor device according to claim 11, wherein the passivation film is a PSG or BPSG film.
JP61132650A 1986-06-10 1986-06-10 Method for manufacturing semiconductor device Expired - Fee Related JP2577355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61132650A JP2577355B2 (en) 1986-06-10 1986-06-10 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61132650A JP2577355B2 (en) 1986-06-10 1986-06-10 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS62290128A true JPS62290128A (en) 1987-12-17
JP2577355B2 JP2577355B2 (en) 1997-01-29

Family

ID=15086280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61132650A Expired - Fee Related JP2577355B2 (en) 1986-06-10 1986-06-10 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2577355B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649642A (en) * 1987-07-02 1989-01-12 Fujitsu Ltd Manufacture of semiconductor device
JPS6427243A (en) * 1987-03-30 1989-01-30 Ibm Conductive structure for semiconductor device
JPH02151060A (en) * 1988-12-02 1990-06-11 Hitachi Ltd Semiconductor device and manufacture thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101540773B1 (en) * 2013-07-29 2015-07-31 한국생산기술연구원 Method of forming metal nano particle and method of manufacturing solar cell using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5791517A (en) * 1980-11-28 1982-06-07 Toshiba Corp Manufacture of semiconductor device
JPS5842273A (en) * 1981-09-07 1983-03-11 Nec Corp Manufacture of semiconductor device
JPS5954218A (en) * 1982-09-21 1984-03-29 Nec Corp Manufacture of semiconductor substrate
JPS6074675A (en) * 1983-09-30 1985-04-26 Fujitsu Ltd Semiconductor device
JPS60153121A (en) * 1984-01-20 1985-08-12 Nec Corp Fabrication of semiconductor device
JPS61102059A (en) * 1984-10-25 1986-05-20 Nec Corp Semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5791517A (en) * 1980-11-28 1982-06-07 Toshiba Corp Manufacture of semiconductor device
JPS5842273A (en) * 1981-09-07 1983-03-11 Nec Corp Manufacture of semiconductor device
JPS5954218A (en) * 1982-09-21 1984-03-29 Nec Corp Manufacture of semiconductor substrate
JPS6074675A (en) * 1983-09-30 1985-04-26 Fujitsu Ltd Semiconductor device
JPS60153121A (en) * 1984-01-20 1985-08-12 Nec Corp Fabrication of semiconductor device
JPS61102059A (en) * 1984-10-25 1986-05-20 Nec Corp Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427243A (en) * 1987-03-30 1989-01-30 Ibm Conductive structure for semiconductor device
JPS649642A (en) * 1987-07-02 1989-01-12 Fujitsu Ltd Manufacture of semiconductor device
JPH02151060A (en) * 1988-12-02 1990-06-11 Hitachi Ltd Semiconductor device and manufacture thereof

Also Published As

Publication number Publication date
JP2577355B2 (en) 1997-01-29

Similar Documents

Publication Publication Date Title
JP3704427B2 (en) Method for forming copper metal wiring of semiconductor device
JPH04320024A (en) Manufacture of semiconductor device
JPH077077A (en) Semiconductor device and manufacture thereof
JPS63127551A (en) Manufacture of semiconductor device
JPS61263159A (en) High temperature mutual connection for integrated circuit
JPH03203322A (en) Manufacture of semiconductor device
JPS62290128A (en) Manufacture of semiconductor device
US6114764A (en) Semiconductor device and process for fabricating the same
JPS5961146A (en) Manufacture of semiconductor device
JPH08330427A (en) Wiring formation of semiconductor element
NL194710C (en) Method for manufacturing a semiconductor device.
JP3245269B2 (en) Method for manufacturing semiconductor device
JPS63169755A (en) Manufacture of laminating type semiconductor device
JPH02241032A (en) Wiring formation method
JPS61274325A (en) Manufacture of semiconductor device
JPH04196122A (en) Manufacture of semiconductor device
JPS59151422A (en) Manufacture of semiconductor device with shallow junction
JPS6197975A (en) Manufacture of semiconductor device
JPH02106971A (en) Semiconductor integrated circuit device and manufacture thereof
JPH02170424A (en) Manufacture of semiconductor device
JPH02210833A (en) Manufacture of semiconductor device
JPH0117252B2 (en)
JP3200979B2 (en) Method of forming plug-in vertical wiring
JPH07297380A (en) Connection structure of wiring and manufacture thereof
JPS62140435A (en) Semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees