JPS62276373A - Intermittent operation type heat pump device - Google Patents

Intermittent operation type heat pump device

Info

Publication number
JPS62276373A
JPS62276373A JP11970986A JP11970986A JPS62276373A JP S62276373 A JPS62276373 A JP S62276373A JP 11970986 A JP11970986 A JP 11970986A JP 11970986 A JP11970986 A JP 11970986A JP S62276373 A JPS62276373 A JP S62276373A
Authority
JP
Japan
Prior art keywords
temperature
heat
hydrogen
gas
metal hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11970986A
Other languages
Japanese (ja)
Other versions
JPH0481711B2 (en
Inventor
敬 井波
努 原田
実 田頭
功 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11970986A priority Critical patent/JPS62276373A/en
Publication of JPS62276373A publication Critical patent/JPS62276373A/en
Publication of JPH0481711B2 publication Critical patent/JPH0481711B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は工場廃熱等によって駆動される間欠作動式ヒー
トポンプ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to an intermittent operation type heat pump device driven by factory waste heat or the like.

従来の技術 一般に間欠作動式ヒートポンプ用作動物質としてゼオラ
イトあるいは金属水素化物が用いられ、これらの作動物
質と反応する作動気体は前者に対しては水、後者に対し
ては水素が相当する。ここでは金属水素化物を用いた間
欠作動式ヒートポンプ装置の従来例について説明する。
BACKGROUND OF THE INVENTION In general, zeolites or metal hydrides are used as working substances for intermittent heat pumps, and the working gas that reacts with these working substances is water for the former and hydrogen for the latter. Here, a conventional example of an intermittent operation type heat pump device using a metal hydride will be explained.

TiMn系合金に代表される金属水素化物はある温度・
圧力条件のもとて水素ガスを吸蔵して発熱反応を行ない
別の温度・圧力条件のもとでは水素ガスを放出して吸熱
反応を行なう。金属水素化物の上記の特性を利用して金
属水素化物が水素と反応する際の反応熱を適尚な熱媒に
より熱交換することによって外部に取り出し、温熱発生
時には暖房給湯用として、冷熱発生時は冷房用として利
用することができる。水素吸蔵平衡圧の異なる3種の合
金を用い、高温用合金と低温用合金とを組み合わせて第
1のサイクルを形成し、さらに中温用合金と低温用合金
とを組み合せて第2のサイクルを形成し、第1のサイク
ルを高温のガスによって加熱して駆動し、第2のサイク
ルは第1のサイクルの廃熱によって駆動する2重効用間
欠作動式ヒートポンプ装置の従来の構成例を第2図に示
す。
Metal hydrides, such as TiMn alloys, can be heated at a certain temperature.
Under certain pressure conditions, it absorbs hydrogen gas and performs an exothermic reaction, and under different temperature and pressure conditions, it releases hydrogen gas and performs an endothermic reaction. Utilizing the above-mentioned properties of metal hydrides, the reaction heat generated when metal hydrides react with hydrogen is extracted to the outside by heat exchange with an appropriate heating medium, and can be used for heating and hot water supply when hot heat is generated, and used for heating and hot water supply when cold heat is generated. can be used for cooling. Using three types of alloys with different hydrogen storage equilibrium pressures, a first cycle is formed by combining a high temperature alloy and a low temperature alloy, and a second cycle is formed by combining a medium temperature alloy and a low temperature alloy. Figure 2 shows an example of a conventional configuration of a dual-effect intermittent heat pump device in which the first cycle is heated and driven by high-temperature gas, and the second cycle is driven by waste heat from the first cycle. show.

高温用合金(以下MH,と呼ぶ)1及び低温用合金(M
H3) 2は第2図に示すように金属水素化物収容容器
3及び4内に充てんされており、特に金属水素化物収容
容器3は複数の管状の容器に分割されている。金属水素
化物収容容器3及び4は水素導管5によって連通し第1
のサイクルを形成する。前記導管5の途中にパルプ6が
設けられている。複数に分割された金属水素化物収容容
器3は高温ガス通路γ内に設置され高温ガス8により加
熱されるようになっている。また分割された容器3のそ
れぞれ内部にはMH,の顕熱及び水素を吸蔵する際の反
応熱を熱交換して外部に取り出すだめの熱媒体循環流路
9が設けられている。なお熱媒体循環流路9は容器3を
循環する部分においてそれ以外の部分で単一管であった
ものが容器3の分割数に応じて複数に分岐しており、分
岐した部分の流路9の管径及び長さは均一である。
High temperature alloy (hereinafter referred to as MH) 1 and low temperature alloy (M
H3) 2 is filled in metal hydride containers 3 and 4 as shown in FIG. 2, and in particular, metal hydride container 3 is divided into a plurality of tubular containers. The metal hydride storage containers 3 and 4 are connected to each other by a hydrogen conduit 5.
form a cycle of A pulp 6 is provided in the middle of the conduit 5. The metal hydride storage container 3 divided into a plurality of parts is installed in the high temperature gas passage γ and is heated by the high temperature gas 8. Further, inside each of the divided containers 3, there is provided a heat medium circulation channel 9 for exchanging the sensible heat of MH and the reaction heat when storing hydrogen and taking it out to the outside. The heat medium circulation flow path 9 is a single pipe in the part where the container 3 is circulated, but is branched into a plurality of pipes depending on the number of divisions of the container 3, and the flow path 9 in the branched part is a single pipe in other parts. The tube diameter and length of the tube are uniform.

一方、第2のサイクルは中温用合金(MH2)と低温用
合金MH3’(合金組成は同一であるが第1のサイクル
のMW、と区別するためにMW、’  とする)とによ
って構成される。MH2とMHs’ はそれぞれ金属水
素化物収容容器12及び13に充てんされ、それらの容
器は水素導管14によって連通し、導管14の途中に水
素パルプ15が設けられている。
On the other hand, the second cycle is composed of a medium-temperature alloy (MH2) and a low-temperature alloy MH3' (the alloy composition is the same, but it is referred to as MW,' to distinguish it from the MW of the first cycle). . MH2 and MHs' are filled in metal hydride storage containers 12 and 13, respectively, and these containers are communicated by a hydrogen conduit 14, with a hydrogen pulp 15 provided in the middle of the conduit 14.

金属水素化物収容容器12の内部には熱媒体循環流路9
が設けられ熱媒体によって運ばれてきた第1のサイクル
のMH,の顕熱及び水素吸蔵時の反応熱によりMH2が
加熱されMH2及び収容容器12の温度上昇及び水素放
出が行なわれる。なお、熱媒体循環流路9にはポンプ1
6とバルブ17が設けられている。
A heat medium circulation channel 9 is provided inside the metal hydride storage container 12.
MH2 is heated by the sensible heat of the MH of the first cycle carried by the heating medium and the reaction heat during hydrogen absorption, thereby raising the temperature of MH2 and the container 12 and releasing hydrogen. Note that a pump 1 is installed in the heat medium circulation channel 9.
6 and a valve 17 are provided.

金属水素化物収容容器4及び13には、金属水素化物M
H5及びMH5’ が水素と反応する際の反応熱を外部
に取り出し、温出力および冷出力を得るための水流路1
8及び19が内部に設けられている。
Metal hydride storage containers 4 and 13 contain metal hydride M.
Water flow path 1 for extracting the reaction heat when H5 and MH5' react with hydrogen to the outside to obtain hot output and cold output
8 and 19 are provided inside.

今、第1のシステムにおいてM)I、からMH5へ水素
を移動する場合を考える。水素移動開始前には、kH,
はMH3よりも水素の吸蔵量が多い状態にある。
Now, consider the case where hydrogen is transferred from M)I to MH5 in the first system. Before hydrogen transfer starts, kH,
is in a state where it has a larger amount of hydrogen storage than MH3.

高温ガス8によりMH,は高温に加熱され、水素平衡圧
力が一方のMH5より高くなり、バルブ6を開けること
により水素はMH,からMH3へ移動する。
MH, is heated to a high temperature by the high temperature gas 8, the hydrogen equilibrium pressure becomes higher than that of one MH5, and by opening the valve 6, hydrogen moves from MH, to MH3.

このときMH5は水素を吸蔵するため発熱反応を起こし
発生した熱は水流路16を流れる水によって外部に取り
出される。ここで金属水素化物収容容器3が高温ガス8
により加熱される際、高温ガス8に最も近接した最前列
のMu、の温度が最も高く、高温ガス8の流動方向に従
ってMl(、との熱交換により高温ガス8の温度が低下
し、また温度の低下により高温ガスの流量が減少し、ガ
ス側熱伝達率が低下することと相まって後列にいくに従
ってMH,の温度は低くなる。なお、MH,が高温ガス
8により加熱される間は、ポンプ16は停止しており、
バルブ17は閉止している。
At this time, since MH5 absorbs hydrogen, an exothermic reaction occurs and the generated heat is taken out to the outside by water flowing through the water flow path 16. Here, the metal hydride storage container 3 is filled with high-temperature gas 8
When heated by , the temperature of Mu in the front row closest to the high temperature gas 8 is the highest, and the temperature of the high temperature gas 8 decreases due to heat exchange with Ml ( , according to the flow direction of the high temperature gas 8, and the temperature The flow rate of high-temperature gas decreases due to the decrease in MH, and the gas-side heat transfer coefficient decreases, and the temperature of MH, decreases toward the rear row.Note that while MH, is heated by high-temperature gas 8, the pump 16 has stopped,
Valve 17 is closed.

MH,からMHsへ水素を移動する反応が終了すればパ
ルプ6を閉止し、バルブ1了を開け、ポンプ16によっ
て熱媒体を金属水素化物収容容器3へ送りこみ、MH,
の顕熱を熱媒体と熱交換させる。
When the reaction of transferring hydrogen from MH, to MHs is completed, the pulp 6 is closed, the valve 1 is opened, and the heat medium is sent to the metal hydride storage container 3 by the pump 16, and the MH,
The sensible heat is exchanged with the heat medium.

この結果、MH,の温度は下がり、水素平衡圧力が低く
なり、パルプ6を開ければMH3からMH,へ水素が移
動する。このときMH5は水素放出するため吸熱反応と
なり、水流路18により冷熱を外部へ取り出すことがで
きる。一方MH,の顕熱及びMl(。
As a result, the temperature of MH decreases, the hydrogen equilibrium pressure decreases, and when pulp 6 is opened, hydrogen moves from MH3 to MH. At this time, MH5 releases hydrogen, resulting in an endothermic reaction, and cold heat can be extracted to the outside through the water flow path 18. On the other hand, the sensible heat of MH, and Ml (.

が水素を吸蔵するときの反応熱は熱媒体によって第2の
サイクルのMH2へ運ばれMH2及び収容容器12の温
度上昇、及びMH2から水素をMH3’へ放出するとき
の反応熱として消費される。金属水素化物収容容器3に
おいて熱媒体流路9内の熱媒体の流動は液体と気体が混
在する2相状態であり、MH,の温度が高い部分の熱媒
体流路9では熱媒体の沸騰が促進されるだめ気相部分が
多く、MH,の温度が低い部分では気相部分が少なくな
る。一般的に2相状態の流動において管路の形状(例え
ば、管径、管路長)が同じであれば、同一重量流量に対
しては、その流動抵抗は気相部分が多い程、大きくなる
。従ってMH,の温度の高い収容容器3部分の流動抵抗
が大きくなり、MHlの温度の低い収容容器3では流動
抵抗が小さくなる。分割された金属水素化物収容容器3
に対し、熱媒体循環流路9は並列に分岐されているため
、Ml、の温度の高い部分よりも温度の低い部分の熱媒
体循環流路9へより多くの熱媒体が循環することになる
。一端然媒体の循環に不均等が生じると、MH,の温度
の低い部分はますます温度が下がり、MH,の温度の高
い部分は温度が下がらず、その温度差は広がる一方であ
る。その結果Ml、の温度の高い部分の顕熱はMH2へ
移送されず、またMH,の温度が下がらないために、M
H5から水素を吸蔵することができなくなり、MH2及
びMH5から放出する水素移動量が減少する。従って外
部へ取り出すことのできる温熱、冷熱出力が減少する。
The heat of reaction when hydrogen is occluded is carried by the heating medium to MH2 in the second cycle and is consumed as heat of reaction when the temperature of MH2 and the container 12 increases, and when hydrogen is released from MH2 to MH3'. In the metal hydride storage container 3, the flow of the heat medium in the heat medium flow path 9 is in a two-phase state where liquid and gas are mixed, and the heat medium does not boil in the heat medium flow path 9 where the temperature of MH is high. The promoted gas phase portion is large, and the gas phase portion is small in areas where the temperature of the MH is low. In general, in two-phase flow, if the pipe shape (e.g. pipe diameter, pipe length) is the same, the flow resistance increases as the gas phase increases for the same weight flow rate. . Therefore, the flow resistance in the container 3 portion where the temperature of MH is high becomes large, and the flow resistance in the container 3 where the temperature of MHl is low becomes small. Divided metal hydride storage container 3
On the other hand, since the heat medium circulation flow path 9 is branched in parallel, more heat medium circulates to the heat medium circulation flow path 9 in the lower temperature part than in the high temperature part of Ml. . Once unevenness occurs in the circulation of the medium, the temperature of the low-temperature portion of the MH further decreases, while the temperature of the high-temperature portion of the MH does not decrease, and the temperature difference continues to widen. As a result, the sensible heat in the high temperature part of Ml is not transferred to MH2, and the temperature of MH does not fall, so
It becomes impossible to store hydrogen from H5, and the amount of hydrogen transferred from MH2 and MH5 decreases. Therefore, the heat and cold output that can be taken out to the outside is reduced.

発明が解決しようとする問題点 以上述べたように高温ガスによって複数に分割された作
動物質収容容器を加熱し作動気体を放出させる際に、作
動物質の各収容容器間に温度分布が生じる。作動気体の
放出が終了した後温度分布を有する作動物質収容容器に
熱媒体を循環し、作動物質及び作動物質収容容器の温度
を下げようとする場合、複数の熱媒体流路において温度
分布に起因する流動抵抗の差が生じ、熱媒体循環流量が
不均等になり、作動物質の温度の高い収容容器の温度が
下がらず、作動気体移動量の減少、ひいては温熱あるい
は冷熱出力の低下という欠点があった。
Problems to be Solved by the Invention As described above, when a plurality of divided working substance containers are heated by high temperature gas and the working gas is released, a temperature distribution occurs between the working substance containers. When attempting to lower the temperature of the working substance and the working substance storage container by circulating the heating medium through the working substance storage container that has a temperature distribution after the release of the working gas is completed, the temperature distribution may occur in multiple heating medium flow paths. This results in a difference in flow resistance between the two, resulting in uneven heating medium circulation flow rates, failure to lower the temperature of the high-temperature container containing the working material, and a reduction in the amount of working gas transferred, resulting in a reduction in heating or cooling output. Ta.

問題点を解決するだめの手段 本発明は以上のように、作動物質あるいは作動気体を収
容した複数の容器を互いに連通させ相互に作動気体の移
動を行なわせて作動物質が作動気体と反応する際の反応
熱を暖房給湯(あるいは冷房)に利用する間欠作動式ヒ
ートポンプ装置において、少なくとも一方の作動物質収
容容器に管径の異なる複数の熱媒体循環流路を設けるも
のである。
Means for Solving the Problems The present invention, as described above, communicates a plurality of containers containing a working substance or a working gas with each other and allows the working gas to move between them, so that when the working substance reacts with the working gas, In an intermittent-operating heat pump device that uses reaction heat for heating and hot water supply (or cooling), at least one of the working substance storage containers is provided with a plurality of heat medium circulation channels having different pipe diameters.

作用 本発明は上記した構成により、高温ガスによる加熱によ
り温度分布の生じた複数に分割された作動物質収容容器
の温度を均一に下げることができ、作動気体移動量の増
大、温熱、冷熱出力の向上が図れる。
Effect of the Invention With the above-described configuration, the present invention can uniformly lower the temperature of the working material storage container, which is divided into a plurality of parts and has a temperature distribution caused by heating with high-temperature gas, thereby increasing the amount of working gas movement and reducing the heating and cooling output. Improvements can be made.

実施例 以下本発明の一実施例を添付図面にもとづいて説明する
。第1図は本発明の一実施例の金属水素化物を用いた間
欠作動式ヒートポンプ装置の構成図である。
EXAMPLE Hereinafter, an example of the present invention will be described based on the accompanying drawings. FIG. 1 is a block diagram of an intermittent operation type heat pump device using a metal hydride according to an embodiment of the present invention.

高温用合金(以下MH,と呼ぶ)1及び低温用合金(M
Hs ) 2は第1図に示すように金属水素化物収容容
器3及び4内に充てんされており、特に金属水素化物収
容容器3は複数の管状の容器に分割されている。金属水
素化物収容容器3及び4は水素導管5によって連通し、
第1のサイクルを形成する。前記導管5の途中にパルプ
6が設けられている。複数に分割された金属水素化物収
容容器3は高温ガス通路T内に設置され、高温ガス8に
より加熱されるようになっている。まだ分割された容器
3のそれぞれの内部にはMH,の顕熱及び水素を吸蔵す
る際の反応熱を熱交換して外部に取り出すための熱媒体
循環流路9が設けられている。なお熱媒体循環流路9は
容器3を循環する部分においてそれ以外の部分で単一管
であったものが容器3の分割数に応じて複数に分岐して
おり、分岐した部分の流路9の長さは均一であるが、管
径は異なっており、高温ガス8に最も近接した最前列の
金属水素化物収容容器3内部の流路9が最も大きく、高
温ガス8の流動方向に従って管径は小さくなる。
High temperature alloy (hereinafter referred to as MH) 1 and low temperature alloy (M
Hs) 2 is filled in metal hydride containers 3 and 4 as shown in FIG. 1, and in particular, metal hydride container 3 is divided into a plurality of tubular containers. The metal hydride storage containers 3 and 4 are communicated by a hydrogen conduit 5,
Forming the first cycle. A pulp 6 is provided in the middle of the conduit 5. The metal hydride storage container 3 divided into a plurality of parts is installed in the high temperature gas passage T and is heated by the high temperature gas 8. Inside each of the divided containers 3, a heat medium circulation passage 9 is provided for exchanging the sensible heat of MH and the reaction heat when storing hydrogen and taking it out to the outside. The heat medium circulation flow path 9 is a single pipe in the part where the container 3 is circulated, but is branched into a plurality of pipes depending on the number of divisions of the container 3, and the flow path 9 in the branched part is a single pipe in other parts. Although the length is uniform, the pipe diameters are different, and the flow path 9 inside the metal hydride container 3 in the front row closest to the high temperature gas 8 is the largest, and the pipe diameter changes according to the flow direction of the high temperature gas 8. becomes smaller.

一方、第2のサイクルは中温用合金(MH2)と低温用
合金MH5’  (合金組成は同一であるが第1のサイ
クルのMH3と区別するためにMH3’とする)とによ
って構成される。MH2とMH5’ はそれぞれ金属水
素化物収容容器12及び13に充てんされ、それらの容
器は水素導管14によって連通し、導管14の途中に水
素パルプ16が設けられている。
On the other hand, the second cycle is composed of a medium-temperature alloy (MH2) and a low-temperature alloy MH5' (the alloy composition is the same, but it is called MH3' to distinguish it from MH3 of the first cycle). MH2 and MH5' are filled in metal hydride storage containers 12 and 13, respectively, and these containers are communicated by a hydrogen conduit 14, with a hydrogen pulp 16 provided in the middle of the conduit 14.

金属水素化物収容容器12の内部には、熱媒体循環流路
9が設けられ熱媒体によって運ばれてきた第1のサイク
ルのMH,の顕熱及び水素吸蔵時の反応熱によりMH2
が加熱されMH2及び収容容器12の温度上昇及び水素
放出が行なわれる。なお、熱媒体循環流路9にはポンプ
16とパルプ17が設けられている。
A heat medium circulation flow path 9 is provided inside the metal hydride storage container 12, and MH2 is generated by the sensible heat of the first cycle MH carried by the heat medium and the reaction heat during hydrogen storage.
is heated, the temperature of MH2 and the storage container 12 is increased, and hydrogen is released. Note that a pump 16 and a pulp 17 are provided in the heat medium circulation channel 9.

金属水素化物収容容器4及び13には、金属水素化物M
H,及びMH5′ が水素と反応する際の反応熱を外部
に取り出し、温出力および冷出力を得るだめの水流路1
8及び19が内部に設けられている。
Metal hydride storage containers 4 and 13 contain metal hydride M.
Water flow path 1 for extracting the reaction heat when H and MH5' react with hydrogen to the outside to obtain hot output and cold output
8 and 19 are provided inside.

今、第1のシステムにおいてMH,からMH5へ水素を
移動する場合を考える。水素移動開始前には、MHlは
MH3よりも水素の吸蔵量が多い状態にある。
Now, consider the case where hydrogen is transferred from MH, to MH5 in the first system. Before the start of hydrogen transfer, MHL is in a state where it has a larger amount of hydrogen storage than MH3.

高温ガス8によりMH,は高温に加熱され、水素平衡圧
力が一方のMH3より高くなり、パルプ6を開けること
により水素はMl(、からMH5へ移動する。
MH, is heated to a high temperature by the high temperature gas 8, the hydrogen equilibrium pressure becomes higher than that of MH3, and by opening the pulp 6, hydrogen moves from Ml(, to MH5).

このときMH3は水素を吸蔵するため発熱反応を起こし
発生した熱は水流路16を流れる水によって外部に取り
出される。ここで金属水素化物収容容器3が高温ガス8
にユリ加熱される際、高温ガス8に最も近接した最前列
のMH,の温度が最も高く、高温ガス8の流動方向に従
ってMH,との熱交換により高温ガス8の温度が低下し
、また温度の低下により高温ガスの流量が減少し、ガス
側熱伝達率が低下することと相まって後列にいくに従っ
てMH,の温度は低くなる。なおMH,が高温ガス8に
より加熱される間は、ポンプ16は停止しており、バル
ブ1アは閉止している。
At this time, since MH3 absorbs hydrogen, an exothermic reaction occurs and the generated heat is taken out to the outside by water flowing through the water flow path 16. Here, the metal hydride storage container 3 is filled with high-temperature gas 8
When the lily is heated, the temperature of the MH in the front row closest to the high-temperature gas 8 is the highest, and the temperature of the high-temperature gas 8 decreases due to heat exchange with the MH, according to the flow direction of the high-temperature gas 8. The flow rate of high-temperature gas decreases due to the decrease in MH, and the temperature of the MH decreases as one goes to the rear row, coupled with a decrease in the gas-side heat transfer coefficient. Note that while the MH is being heated by the high temperature gas 8, the pump 16 is stopped and the valve 1A is closed.

MHlからMH5へ水素を移動する反応が終了すればパ
ルプ6を閉止し、パルプ17を開け、ポンプ16によっ
て熱媒体を金属水素化物収容容器3へ送りこみ、MH,
の顕熱を熱媒体と熱交換させる。
When the reaction of transferring hydrogen from MHL to MH5 is completed, the pulp 6 is closed, the pulp 17 is opened, and the heat medium is sent to the metal hydride container 3 by the pump 16, and the MH,
The sensible heat is exchanged with the heat medium.

この結果、MHIの温度は下がり、水素平衡圧力が低く
なり、パルプ6を開ければMH5からMHjへ水素が移
動する。このときMK、は水素放出するため吸熱反応と
なり、水流路18により冷熱を外部へ取り出すことがで
きる。一方MH,の顕熱及びMH。
As a result, the temperature of MHI decreases, the hydrogen equilibrium pressure decreases, and when pulp 6 is opened, hydrogen moves from MH5 to MHj. At this time, MK undergoes an endothermic reaction to release hydrogen, and cold heat can be extracted to the outside through the water flow path 18. On the other hand, the sensible heat of MH, and MH.

が水素を吸蔵するときの反応熱は熱媒体によって第2の
サイクルのMH2へ運ばれMH2及び収容容器12の温
度上昇、及びMH2から水素をMH3’へ放出するとき
の反応熱として消費される。金属水素化物収容容器3に
おいて熱媒体流路9内の熱媒体の流動は液体と気体が混
在する2相状態であり、MH,の温度が高い部分の熱媒
体流路9では熱媒体の沸謄が促進されるため気相部分が
多く、MH,の温度が低い部分では気相部分が少なくな
る。一般的に2相状態の流動において管路の形状(例え
ば、管径、管路長)が同じであれば、同一重量流量に対
しては、その流動抵抗は気相部分が多い程大きくなる。
The heat of reaction when hydrogen is occluded is carried by the heating medium to MH2 in the second cycle and is consumed as heat of reaction when the temperature of MH2 and the container 12 increases, and when hydrogen is released from MH2 to MH3'. In the metal hydride storage container 3, the flow of the heat medium in the heat medium flow path 9 is in a two-phase state in which liquid and gas are mixed, and the flow of the heat medium in the heat medium flow path 9 in the portion where the temperature of MH is high is caused by boiling of the heat medium. Since this is promoted, the gas phase portion is large, and the gas phase portion is small in areas where the temperature of MH is low. Generally, in two-phase flow, if the shape of the pipe (for example, pipe diameter, pipe length) is the same, the flow resistance increases as the gas phase increases for the same weight flow rate.

しかしながら第1図に示すように、MHlの温度が高い
部分の流路9の管径は大きく、MHjの温度が低い部分
の流路9の管径は小さくなっており、温度と流路9の管
径は比例するように構成されているため、MH,の温度
の高い部分の流動抵抗を池の温度の低い部分と同等ある
いはそれ以下に下げることができる。従ってMH,の温
度の高い容器3に対しては大流量の熱媒体を流し大巾に
温度を下げ、MW、の温度の低い容器3に対しては小流
量の熱媒体を流し温度の下降をおさえ、最終的にMHl
の温度を低い温度で均一化することができる。この結果
、MH,及び金属水素化物収容容器3の顕熱を熱媒体に
よりMH2へ十分移送することができ、またMHlが均
一に低い温度になるためMH3からの水素移動量が増大
しMH5での冷熱出力が増える。さらにMH,が吸蔵す
る水素量が増えるため反応熱が増加しその反応熱を熱媒
体により第2のサイクルのMH2へ移送するためMH2
からMH3へ移動する水素量が増えてMW3’  での
温熱出力が増える。
However, as shown in FIG. 1, the pipe diameter of the passage 9 in the part where the temperature of MHl is high is large, and the pipe diameter of the passage 9 in the part where the temperature of MHj is low is small, and the temperature and the pipe diameter of the passage 9 are small. Since the pipe diameters are configured to be proportional, the flow resistance in the high temperature part of the MH can be lowered to the same level or lower than that in the low temperature part of the pond. Therefore, a large flow of heat medium is flowed into the container 3 with a high temperature of MH, to greatly lower the temperature, and a small flow of heat medium is flowed into the container 3 with a low temperature of MW, to lower the temperature. Hold it down, finally MHL
temperature can be made uniform at a low temperature. As a result, the sensible heat of MH and the metal hydride storage container 3 can be sufficiently transferred to MH2 by the heat medium, and since MHl becomes uniformly low in temperature, the amount of hydrogen transferred from MH3 increases and the amount of hydrogen transferred to MH5 increases. Cooling output increases. Furthermore, since the amount of hydrogen absorbed by MH increases, the heat of reaction increases, and the heat of reaction is transferred to MH2 in the second cycle by the heating medium.
The amount of hydrogen transferred from MW3' to MH3 increases, and the thermal output at MW3' increases.

以上、金属水素化物を用いた間欠作動式ヒートポンプ装
置についてその実施例を説明したが、他の作動物質例え
ばゼオライト等に対しても同様に実施できる。
Although the embodiments have been described above regarding an intermittent operation type heat pump device using a metal hydride, the same can be applied to other operating materials such as zeolite.

発明の効果 以上のように本発明においては、温熱及び冷熱出力の増
大を図ることができる。
Effects of the Invention As described above, in the present invention, it is possible to increase the heating and cooling output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における金属水素化物利用間
欠作動式ヒートポンプ装置の原理図、第2図は従来例の
間欠作動式ヒートポンプ装置の原理図である。 1.2,10.11・・・・・・金属水素化物、3.4
゜12.13・・・・・金属水素化物収容容器、5゜1
4・・・・・・水素導管、8・・・・・・高温ガス、9
・・・・・・熱媒体循環流路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
FIG. 1 is a diagram showing the principle of an intermittent operation type heat pump device using metal hydride according to an embodiment of the present invention, and FIG. 2 is a principle diagram of an intermittent operation type heat pump device of a conventional example. 1.2, 10.11...Metal hydride, 3.4
゜12.13・・・Metal hydride storage container, 5゜1
4...Hydrogen pipe, 8...High temperature gas, 9
...Heat medium circulation channel. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
figure

Claims (2)

【特許請求の範囲】[Claims] (1)作動物質あるいは前記作動物質と反応する作動気
体を収容した複数の容器を互いに連通させ相互に作動気
体の移動を行なわせて作動物質が作動気体と反応する際
の反応熱を暖房給湯(あるいは冷房)に利用する間欠作
動式ヒートポンプ装置において少なくとも一方の作動物
質収容容器に管径の異なる複数の熱媒体循環流路を設け
たことを特徴とする間欠作動式ヒートポンプ装置。
(1) A plurality of containers containing a working substance or a working gas that reacts with the working substance are communicated with each other so that the working gas moves between them, and the reaction heat when the working substance reacts with the working gas is used for heating and hot water supply. 1. An intermittent-operating heat pump device for use in cooling or air conditioning, characterized in that at least one working substance storage container is provided with a plurality of heat medium circulation channels having different pipe diameters.
(2)熱媒体循環流路の管径は、前記流路近傍の作動物
質の温度に関係し、作動物質の温度が高い部分の流路管
径は作動物質の温度が低い部分の流路管径よりも大きい
ことを特徴とする特許請求の範囲第1項記載の間欠作動
式ヒートポンプ装置。
(2) The pipe diameter of the heat medium circulation passage is related to the temperature of the working substance near the passage, and the diameter of the passage pipe in the part where the temperature of the working substance is high is the part of the passage pipe where the temperature of the working substance is low. The intermittent operation type heat pump device according to claim 1, characterized in that the diameter is larger than the diameter of the heat pump device.
JP11970986A 1986-05-23 1986-05-23 Intermittent operation type heat pump device Granted JPS62276373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11970986A JPS62276373A (en) 1986-05-23 1986-05-23 Intermittent operation type heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11970986A JPS62276373A (en) 1986-05-23 1986-05-23 Intermittent operation type heat pump device

Publications (2)

Publication Number Publication Date
JPS62276373A true JPS62276373A (en) 1987-12-01
JPH0481711B2 JPH0481711B2 (en) 1992-12-24

Family

ID=14768157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11970986A Granted JPS62276373A (en) 1986-05-23 1986-05-23 Intermittent operation type heat pump device

Country Status (1)

Country Link
JP (1) JPS62276373A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895167A (en) * 1981-11-30 1983-06-06 積水化学工業株式会社 Heat pump device
JPS6048467A (en) * 1983-08-24 1985-03-16 積水化学工業株式会社 Method of driving heat pump device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5895167A (en) * 1981-11-30 1983-06-06 積水化学工業株式会社 Heat pump device
JPS6048467A (en) * 1983-08-24 1985-03-16 積水化学工業株式会社 Method of driving heat pump device

Also Published As

Publication number Publication date
JPH0481711B2 (en) 1992-12-24

Similar Documents

Publication Publication Date Title
JPH046357A (en) Operation method of heat utilizing apparatus using hydrogen-occlusion alloy
JPS62276373A (en) Intermittent operation type heat pump device
JPS62276372A (en) Intermittent operation type heat pump device
JPH02110263A (en) Heat-utilizing system utilizing hydrogen storage alloy and operation thereof
JPS6329183B2 (en)
JP2643235B2 (en) Metal hydride heating and cooling equipment
JPS6249163A (en) Metallic-hydride utilizing air-conditioning hot-water supplydevice
JPS63129264A (en) Fluidized bed type heat exchanger for solid-gas reaction powder
JPH0355749B2 (en)
JPS6186542A (en) Intermittent operation type heat pump device
JPS61134551A (en) Metallic hydride heat pump device
JPS6183847A (en) Intermittent operation type heat pump device
JPH0784966B2 (en) Heat pump using metal hydride and control method thereof
JPS5819956B2 (en) Cooling device using metal hydride
JPS62202970A (en) Intermittent operation type heat pump device
JPS61285357A (en) Heat pump device
JPH04161768A (en) Operation control method for heat pump device
JPS61285356A (en) Metallic hydride utilizing air-conditioning hot-water supplydevice
JPH0316594B2 (en)
JPS62202971A (en) Intermittent operation type heat pump device
JPH0646154B2 (en) Cooling and heating water heater using metal hydride
JPH06194077A (en) Heat-exchanging device
JPS61265466A (en) Intermittent operation type heat pump device
JPS6064168A (en) Heat pump system
JPS60140068A (en) Heat pump device